Звезды. Live. Добавить новость Добавить мини-пост. Звезды. Live. Добавить новость Добавить мини-пост. Подборка самых дорогих товаров в категории пирометры и тепловизоры за 2023 год.
Как устроен ИК-пирометр
- Пирометры включенные в Госреестр РФ
- Позвольте посоветовать
- Лучшие пирометры
- Лучшие модели пирометров
- Швабе - Пресс-центр - Новости - «Швабе» получил патент на радиационный пирометр
- Как выбрать пирометр: топ лучших для дома, для производства
Принцип работы лазерного измерителя
Самый точный пирометр из всех оказался Testo 830-T2 с двуми лазерными указателями, которые указывают крайние точки диаметра пятна измерения. Лазерные пирометры состоят из фокусирующей линзы, фильтра, инфракрасного детектора, аналого-цифрового преобразователя, а также процессора. Лазерный бесконтактный цифровой пирометр КВТ KT 650A серии PROLINE {79137}. Арт. купить в интернет-магазине ЭТМ по выгодным ценам, широкий каталог продукции и ассортимент для юридических и физических лиц, фото и характеристики, условия доставки. Лазерные уровни. Рейтинг лучших пирометров 2024 года. Пирометр — это устройство, способное измерять температуру вещества бесконтактным методом.
12 лучших пирометров
Поскольку оптическая головка и оптоволоконный кабель не содержат никакой электроники, эти детали могут быть установлены очень близко к индукционной катушке без каких-либо помех сильному электромагнитному полю. Индукционный нагрев шестерни. Температура отверждения может быть измерена быстро и точно без контакта с пирометром.
С широким внедрением данных приборов появилась возможность дистанционно измерять температуру как в жидких, так и твердых тел. Термометр-пирометр сегодня классифицируется по нескольким важнейшим параметрам. Давайте рассмотрим их детально. Главные признаки По данному критерию можно выделить три основные вида: Яркости.
Температура нагретого предмета определяется путем сравнения его цвета и оттенка эталонной нити. Такие пирометры определяют температуру объекта по мощности его теплового излучения. Эта разновидность прибора оценивает температуру предмета на основе цветового отображения его поверхности в разных спектрах. Что это означает? Это устройство имеет два типа модификаций: Низкотемпературные. Пирометры подобного типа способны измерять только отрицательные температуры объектов.
Эти устройства выполняют оценку только нагретых предметов. Поэтому у таких приборов одним из важнейших параметров является предельная температура измерений. Тип исполнения Бесконтактный пирометр также классифицируется по типу назначения: Портативные модели представляют собой карманную разновидность этих устройств. Такие приборы незаменимы тогда, когда при измерении температуры объекта к нему невозможно подойти на достаточное расстояние. Пирометры подобного рода оснащаются небольшим экраном, что позволяет отображать текстовую и графическую информацию. Стационарные устройства.
Пирометры стационарного типа применяются для высокоточных измерений.
Инфракрасные термометры пирометры — это незаменимое средство измерения на строительных площадках, в области электроэнергетики и теплоэнергетики. С помощью бесконтактного пирометра можно узнать температуру двигателя, масла в картере двигателя, температуру интеркулера и, что немаловажно, узнать температуру горячей части турбины.
Его назначение — измерение температуры объекта на определенном расстоянии от него.
С помощью пирометра Компании «ПРОФФТЕСТ» можно безопасным способом померить показатели температуры труднодоступных или раскаленных предметов, поэтому они являются незаменимыми помощниками на любом промышленном производстве. Ведь часто бывают ситуации, когда просто невозможно подойти к объекту измерения, или же он представляет опасность для здоровья людей. Эти приборы могли измерять температуру тел лишь визуально. Основные расчеты состояли из обработки данных об изменении цвета и яркости раскаленного предмета.
Конечно, эти показатели не были достаточно точными. В настоящее время функциональность таких приборов значительно расширилась, это позволило измерять температуру не только нагретых предметов, но и тех объектов, у которых этот показатель не превышает 0 градусов. Усовершенствование этих приборов началось в 60-х годах XIX века. Данная отрасль успешно развивается и в настоящее время.
Благодаря активным разработкам, появилась возможность производить промышленные пирометры, которые оснащались высокими техническими характеристиками. При этом с освоением нанотехнологий размеры устройств с каждым годом становились все меньше, что делало их использование максимально удобным. Первая портативная модель пирометра буларозроблена в 1967 году ведущей американской компанией Wahl. Именно она послужила прототипом современных инфракрасных устройств.
Внедрение новых технологий и разработок позволило усовершенствовать работу пирометра. Основной ее принцип строился на определении тепловой энергии, которую излучал объект. С широким внедрением данных приборов появилась возможность дистанционно измерять температуру как в жидких, так и твердых тел. Термометр-пирометр сегодня классифицируется по нескольким важнейшим параметрам.
Чем отличаются пирометр и тепловизор?
Устройство имеет Г-образный силуэт; на основании расположен индикатор, демонстрирующий полученные результаты. Надежный корпус и рукоятка в переносных пирометрах делают прибор удобным для работы. Благодаря лазерному наведению достигается повышенная точность в получении результатов. Сегодня производят пирометры с аналоговыми и цифровыми дисплеями. Работа осуществляется следующим образом. Датчик улавливает излучение, которое преобразуется в сигнал электротока. В зависимости от температуры растет и мощность этого сигнала.
После он передается в преобразователь, и на экране отображается проекция изображения от воздействия излучения объекта. Так можно наблюдать за изменениями температуры на поверхности объектов. Для начала работы необходимо включить прибор и направить его на объект. Через несколько секунд на экране появятся цифры, отображающие температуру. Где применяются пирометры Приборы широко применяют на промышленных производствах и в быту. Они популярны в тепло- и электроэнергетике.
Здесь с их помощью возможно снимать данные с различного нагревательного оборудования, с элементов в электрощитах. Актуальны в металлургии, для отслеживания и поддержания должных температур в массах расплавленных металлов. В машиностроении помогают диагностировать состояние двигателя. В пищевой промышленности не обойтись без специального оборудования для соблюдения точного температурного режима для хранения и изготовления продукции. В быту пирометры могут пригодиться для подтверждения факта ненадлежащего отопления помещения и в других подобных ситуациях. Функции пирометров Современные пирометры помогают не только получить данные о температуре конкретного объекта, но также обладают следующими возможностями: Оснащение звуковой и визуальной сигнальной системой для оповещения по преодолению определенной границы.
Сохранение максимального и минимального показателей измерения. Накопление и сохранение полученных данных. USB порты для переноса данных на другой носитель.
Мобильный пирометр ручного типа с частичным излучением серии Термоскоп-100 используются для быстрого и бесконтактного определения температуры тел с разной температурой нагрева. Этот пирометр относится к многоцелевым и получил довольно широкое его использование практически во всех отраслях промышленности. Пирометр термоскоп-100 можно использовать для проведения контроля за технологическими параметрами и в работах по энергоаудиту. Ручные пирометры серии Термоскоп-300-1С относятся к приборам профессионального типа и применяются в качестве высокоточного инструмента для быстрого и точного измерения температуры тел, нагретых до средних и высоких температур, в различных технологических процессах. Прибор оснащается оптическим видоискателем и позволяет проводить точное наведение пирометра на измеряемый объект с отображением информации о значении температуры в нем. Ручные пирометры спектрального отношения Термоскоп-300-2С используются для удаленного бесконтактного определения температуры тел, нагретых с разной температурой.
Однако прибор довольно точно определяет температуру и может быть использован для целей раннего выявления лиц с высокой температурой, для и дальнейшего обследования. Источник Source Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь. Устройство и принцип действия Основу структуры пирометра составляет детектор инфракрасного излучения. Данные преобразуются посредством встроенной электронной системы и отображаются на дисплее. Типовой пирометр по форме напоминает пистолет с небольшим дисплеем. Компактная панель управления, наводка лазером и высокая точность при близком взаимодействии с объектом объясняют востребованность инструмента среди работников инженерных и технических сфер. Читайте также: Холодильник постоянно работает и не отключается, находим и устраняем причины Основными рабочими элементами пирометра считают линзу, приёмник, а также дисплей, на который выводится результат измерения. Принцип действия пирометра следующий: от изучаемого объекта исходит инфракрасное излучение и посредством линзы оно фокусируется и отправляется в приемник термобатарея, полупроводник, термопара. Если используется термопара, в момент нагрева приемника меняется напряжение. Сопротивление — в случае использования полупроводников. Эти изменения преобразуются в показания температуры. Для того, чтобы провести измерение, необходимо просто навести пирометр на объект, привести его в действие и отметить полученный результат. Используя специальную кнопку, вы можете регулировать формат измерения температуры — по шкале Цельсия или Фаренгейта. Два основных метода пирометрии Практическая пирометрия возникла на рубеже 19 и 20-го веков. Примерно тогда же и сформировались два основных метода пирометрии: радиационная яркостная пирометрия и цветовая пирометрия. Названия эти с течением времени менялись и корректировались, но суть методов осталась неизменной. Метод яркостной пирометрии называемой также радиационной пирометрией, пирометрией по излучению использует зависимость энергетической яркости излучения объекта в ограниченном диапазоне длин волн от его температуры. Другими словами, яркость излучения объекта зависит от его температуры. Следовательно, измерив яркость излучения объекта, мы можем измерить с той или иной точностью значение температуры объекта. Таким образом, ключевым элементом радиационного пирометра является приемник излучения, преобразующий приходящую на него энергию излучения в иную физическую величину, чаще всего в ток или в напряжение. Его дополняют оптическая система, собирающая в определенном телесном угле излучение от объекта, и электронная схема с системами питания и индикации, усиливающая, преобразовывающая и отображающая результат измерения. Метод цветовой оптической пирометрии первоначально основывался на зависимости спектрального распределения потока излучения нагретого объекта от температуры в диапазоне видимых длин волн. Другими словами, от температуры нагретого объекта зависел цвет его излучения. Долгое время основными элементами цветового сравнения были глаз оператора и нагретая нить накала или спираль , расположенная в окуляре пирометра в поле зрения оператора.
Предоставление приборов во временное пользование для пробной эксплуатации Заказчиком. Гарантийный и послегарантийный ремонт. Модернизация и замена приборов,бывших в эксплуатации. Разработка методики бесконтактного измерения температуры в техпроцессах Заказчика.
Для чего нужен пирометр и как его выбрать?
Длинным считается фокус от 30:1 до 100:1. Скорость измерения. В некоторых местах долго находиться человеку нельзя. Поэтому прибор должен очень быстро определить температуру. Для бытовых целей подойдет прибор со скоростью отклика 0,25-0,5 с.
У более скоростных устройств этот показатель находится в пределе 0,1-0,15 с. Дополнительные опции. Стоимость пирометра зависит не только от основных параметров, но и от наличия дополнительных опций. Одни модели могут определять влажность, другие способны фиксировать результаты на видеокамеру.
Полезными будут и такие функции, как лазерный указатель, подсветка дисплея, сохранение результатов в памяти. Мы отобрали в наш обзор 12 лучших пирометров.
Следует отметить, что самые хорошие коротковолновые аппараты будут давать меньшую погрешность замеров. Это особенно актуально во время исследования раскаленных объектов. Необходимо учитывать наличие оптических препятствий между прибором и изучаемым предметом. Это может быть: вода, пар, накипь, пламя, газы сгорания, плазма, физические преграды. Они создают различные типы помех, влияя на получение данных, так как проходя через оптические препятствия волна меняет свою длину.
Еще один важный момент — метод нагрева объекта: индукция, пламя, газовая или вакуумная печь. Если вы исследуете объект внутри печи, где есть дымовые газы, необходимо выбрать пирометр с функцией, которая поможет получать данные. При получении данных внутри вакуумной печи, где создается плазма, важно выбрать прибор улавливающий правильную длину волны, тогда вы сможете исследовать плазму. Нужно правильно представлять себе размер целевой мишени. Изучение этого вопроса поможет приобрести прибор с необходимым оптическим разрешением, интерфейсом передачи данных. Это особенно важно, когда происходит работа с маленькими объектами, например, проводами. Использование пирометра с большим полем зрения позволяет избежать неточностей.
Они идеальны для исследования блуждающих целей. Еще один параметр, который необходимо учитывать во время выбора — дальность замеров. Это в сочетании с габаритами мишени поможет определить оптическое разрешение прибора и его желаемую конструкцию. В некоторых случаях существуют физические ограничения на пути находятся оптические барьеры, строительные леса, оборудование , не позволяющие устанавливать аппарат близко к цели, поэтому должна быть возможность установить его на расстоянии нескольких метров. В этом случае рекомендуются применять оптоволоконную конфигурацию прибора, его можно установить в тесных или труднодоступных местах.
Стационарные пирометры частичного излучения серии Термоскоп-800 разработаны для измерения температуры тел с высокой точностью на технологических процессах в условиях сложной производственной обстановки повышенная температура, влажность и прочее. Предлагаемый пирометр позволяет изменять свое фокусное расстояние, что позволяет добиваться высокой точности измерения при любом расстоянии расположения пирометра от измеряемого объекта. Стационарный пирометр Термоскоп-800-2С спектрального отношения используется для удаленного бесконтактного определения температуры нагретых с разной температурой тел в условиях сложной производственной обстановки повышенная температура, влажность, запыленность, вибрация. Наличие функции изменения фокусного расстояния до измеряемого объекта позволяет достигать высокой точности измерения в независимости от расположения пирометра. Стационарно устанавливаемый оптоволоконный пирометр серии Термоскоп-600-1С разработан для его использования в сложных условиях производства повышенная температура, влажность. Конструктивно пирометр состоит из двух основных частей: микропроцессорного электронного блока и оптической головки, которые соединяются между собой оптоволоконным кабелем, осуществляющим передачу принимаемого от измеряемого объекта инфракрасного излучения.
Предназначены для непрерывного измерения и документирования длительных от десятков минут до десятков суток технологических процессов. Стационарные пирометры разделяются еще на одноблочные и двухблочные. У последних измерительная головка вынесена в отдельный узел или блок и соединена с блоком основной электроники кабелем. По конструкции визирной и оптической системы С прицельной планкой. На верхней панели пирометра устанавливают прицельную планку, как у стрелкового оружия. Пирометры с подобной визирной системой приемлемы для измерений температуры большеразмерных объектов, когда точность наведения не очень важна. С оптическим прицелом. Аналогичны приборам с прицельной планкой, но вместо нее установлен оптический прицел обычно оружейный. Точность наведения чуть выше, чем у приборов с прицельной планкой, но для измерения малоразмерных объектов пирометры с такой визирной системой также непригодны. С лазерным прицелом. Обычно используют при измерении температуры объектов до 1000? С, поскольку излучение от сильно нагретых объектов сопоставимо или значительно превышает интенсивность отраженного от объекта лазерного луча. Если прибор формирует только один лазерный пучок, то его ось чаще всего смещена относительно оптической оси приемника с объективом, и такой прибор также плохо пригоден для точного наведения на объект измерений. Если прибор формирует два или более лазерных пучков, то оптическая ось приемника с объективом лежит как правило в центре отрезка между пучками если их два или в центре окружности если их несколько, и они расположены на окружности. Если на заводе-изготовителе лазеры съюстированы правильно относительно оптической оси приемника с объективом, то с таким прицелом возможно достаточно точное наведение пирометра на центр объекта измерения. Вышеописанные визирные системы называют параллаксными, поскольку между оптической осью визира и оптической осью приемника с объективом существует смещение параллакс от 10…20 до 60…70 мм. Трудности с наведением на малоразмерные объекты компенсируются относительной дешевизной пирометров с такими визирными системами, что выгодно отличает их при измерениях большеразмерных объектов. С беспараллаксным визиром. Такой визир является в отличие от оптического прицела, независимого от приемника пирометра составной частью достаточно сложной оптической системы пирометра. В окуляре визира пользователь видит изображение измеряемого объекта, и черную точку или перекрестье в центре окуляра. Черная точка перекрестье точно соответствует тому месту с поверхности объекта, излучение от которого попадает на приемник излучения. Благодаря отсутствию параллакса, пирометры с подобной системой визирования позволяют легко измерять малоразмерные объекты, и точно регистрировать область измерения на поверхности объектов больших размеров. Часто пирометры с беспараллаксной системой визирования снабжают объективами, фокусируемыми на объект измерения, что позволяет резко снизить характерную для энергетических пирометров зависимость результатов измерений от расстояния между объектом и пирометром. Но большинство пирометров имеет объектив с постоянной фокусировкой, настроенный на расстояние 1 м от пирометра это расстояние может изменяться производителем от 0,3 м до 2…3 м. Также нужно отметить, что объективы пирометров бывают зеркальными с лавсановой защитной пленкой или линзовыми. Зеркальные объективы характеризуются несколько меньшими аберрациями, чем линзовые, но защищающая их пленка легко повреждаема, что снижает эксплуатационную надежность пирометров с зеркальной оптикой. По показателю визирования Широконаправленные. То есть, на расстоянии 1 м от пирометра пятно визирования составит соответственно от 16 см до 7 см. Таким показателем визирования обладают обычно простейшие низкотемпературные пирометры. При этом пятно визирования на расстоянии 1 м составит соответственно от 40 мм до 7 мм. Таким показателем визирования обладает большинство пирометров. При этом пятно визирования на расстоянии 1 м составит соответственно от 5 мм до 1 мм. Таким показателем визирования как правило обладают пирометры, специально сконструированные под определенные задачи. Необходимо отметить, что перечисленные выше диаметры пятна визирования — это расчетные диаметры. Реальные диаметры пятна визирования обычно в 1,5…3 раза больше расчетных, в зависимости от качества оптической системы. Очевидно, что одиночная линза формирует пятно визирования большего диаметра, чем многолинзовый фотообъектив. Также нужно учитывать, что уширение пятна визирования у пирометров с узкополосными коротковолновыми приемниками меньше, чем у пирометров с относительно длинноволновыми термоэлементами, так как у последних значительно ниже крутизна градуировочной характеристики. Основные источники погрешности пирометров Пирометрия является очень сложной областью измерений. Причина заключается в том, что на поток излучения, принимаемый приемником приемниками пирометра напрямую влияет не только температура измеряемого нагретого объекта, но и его излучательная способность. Поэтому наряду с инструментальными погрешностями, присущими самим пирометрам, при измерениях имеют место еще и систематические методические погрешности, которых можно насчитать десяток. Для коррекции результатов измерений энергетических пирометров в них необходимо тем или иным предусмотренным производителем способом ввести так называемый коэффициент коррекции другие названия — коэффициент излучения, коэффициент черноты, степень черноты и т. Этот коэффициент прямо связан с излучательной способностью измеряемого объекта. Однако проблема его правильного выбора сегодня является самой сложной в практической пирометрии. Обычно значения коэффициента излучения выбирают из справочной литературы или из руководств по эксплуатации тех или иных пирометров Однако надо иметь ввиду, что коэффициент излучения зависит не только от материала измеряемого объекта, но и от спектральных характеристик используемого пирометра, поэтому к выбору этого коэффициента из литературных данных нужно подходить осторожно. И кроме того, коэффициент излучения может сильно зависеть от температуры измеряемого объекта. Допустимо находить коэффициент излучения методом подбора — зачеканить в измеряемый объект термопару, нагреть его до температуры, примерно соответствующей температуре техпроцесса, измерить температуру объекта по термопаре и затем подобрать в пирометре такое значение коэффициента коррекции, при котором он покажет ту же температуру, что и термопара. Помимо погрешности за счет неучета или неправильного учета коэффициента излучения, энергетические пирометры обладают еще целым рядом погрешностей: за счет переотражения излучения близко расположенных нагретых объектов, за счет виньетирования измеряемого объекта посторонним телом, за счет влияния промежуточных сред защитных стекол, водяного пара, углекислого газа ,. Дополнительно на пирометры с термоэлементами влияет температура окружающей среды, а на пирометры с пироэлементами — нестабильность частоты модуляции. Производители пирометров обычно стараются свести погрешности за счет этих факторов к минимуму. Пирометры спектрального отношения свободны ото всех методических погрешностей, присущих энергетическим пирометрам. Для измерений в эти приборы не надо вводить никакой коэффициент излучения, они практически нечувствительны к наличию защитных стекол перед объектом, или посторонних объектов в поле зрения, частично заслоняющих измеряемый объект. Они обычно невосприимчивы к запылению в разумных пределах защитных окон в вакуумных камерах, у них практически нет зависимости результатов измерений от расстояния между пирометром и объектом. Далее, ими можно без потери точности измерять температуру малоразмерных объектов, площадь которых в два-четыре раза меньше площади пятна поля зрения. Все это обеспечило стремительный рост продаж пирометров спектрального отношения в последние два десятилетия. Однако при измерении пирометрами спектрального отношения температуры объектов, спектральная излучательная способность которых изменяется с изменением длины волны, у пирометров спектрального отношения также возникает дополнительная погрешность, величина которой зависит от крутизны изменения спектральной излучательной способности с ростом длины волны излучения. Эта погрешность систематическая, то есть повторяющаяся при измерении одного и того же материала в одних и тех же условиях одним и тем же пирометром спектрального отношения. Если необходимы более точные измерения, нужно осуществлять коррекцию согласно. Применения Теплоэнергетика — для быстрого и точного контроля температуры на участках не доступных или мало доступных для другого вида измерения. Электроэнергетика — контроль и пожарная безопасность, эксплуатация объектов Транспорт, в т. Черная и цветная металлургия, металлургия благородных металлов — контроль температуры в процессах плавки, трансформирования и термообработки.
Таблицы сравнения технических характеристик пирометров
Лазерный пирометр характеризуется комфортным и надежным корпусом, устойчив к влиянию повышенных и пониженных температурных показателей. Изготовлен в виде пистолетной рукояти. Лазерными пирометрами обычно называют инфракрасные пирометры, в которых лазерный луч используется для наведения прибора на точку измерения температуры. Чтобы приобрести лучший пирометр в 2021 году, был составлен данный рейтинг. Лазерный пирометр принцип действия. Пирометр с лазерным указателем.
7 лучших пирометров и советы по выбору
Пирометры. Лазерные измерители температуры С середины 60-х годов прошлого столетия началось интенсивное развитие бесконтактных портативных пирометров. новости космоса. Пирометры незаменимы для безопасного измерения температур раскаленных объектов, физическое взаимодействие с которыми невозможно. Рейтинг ТОП-9 лучших бесконтактных пирометров: обзор и характеристики моделей 2023-2024 года. Большой выбор пирометров в интернет-магазине Эльдорадо: цены от 850 ₽. Купите пирометр и заберите уже сегодня из ближайшего магазина или закажите доставку на дом. Купить пирометр недорого в интернет-магазине Ситилинк. Акции, скидки, низкие цены на пирометры с доставкой по городам России.