Однако, при всей невероятности и даже сомнительности холодного термоядерного синтеза, нельзя прятать голову в песок. «Отмечу недавний успех в лазерном термоядерном синтезе, где радиационное сжатие смеси дейтерия и трития позволило запустить реакцию ядерного синтеза с выделением большей энергии, чем было доставлено в образец.
В Ливерморе совершили прорыв в получении термоядерной энергии
Научное сообщество пришло к выводу об ошибочности исходных результатов. С тех пор появлялось множество сообщений об аналогичных эффектах в разнообразных системах, в том числе живых, но они либо были признаны научным сообществом недостоверными, либо проводились без достаточной строгости для проверки наличия эффекта. Эта ситуация вынесла исследования холодного термояда за пределы науки, и этой областью теперь в основном занимаются любители, а не профессиональные ученые. Однако потенциальные достоинства таких ядерных превращений несомненны, и в 2015 году компания Google запустила проект, в рамках которого около 30 ученых из нескольких лабораторий пытались повторить отвергнутые наукой результаты с использованием современных технологий. На инициативу было выделено 10 миллионов долларов. В статье, опубликованной в Nature, описываются текущие результаты работы и описываются перспективы их продолжения. Задачей ученых было проведение тщательно спланированных опытов и экспериментальных протоколов, которые установят четкие ограничения на возможный диапазон параметров, при которых могло бы протекать холодное слияние.
Если же ученым удалось бы его зафиксировать, то они должны были сформулировать определяющий эксперимент, который смогут повторить исследователи из других групп и убедиться в наличии феномена. Ученые пытались реализовать три предложенные ранее схемы.
Виктор Ильгисонис: Он просто один из пяти, по порядку. Не следует придавать нумерации какое-либо значение. Но если говорить о числе вовлеченных в проект организаций вне контура "Росатома", то термоядерный проект - однозначно первый. Его масштабность, широта охвата, многообразие ожидаемых результатов и их применений в значительной степени обусловили причисление всей программы РТТН к числу национальных проектов. Самой дорогостоящей частью "термоядерного" федерального проекта, как и всей программы РТТН, принято считать модернизацию существующей инфраструктуры и создание новых экспериментальных установок. Что тут в приоритетах? Где и на каких площадках уже ведутся такие работы? Виктор Ильгисонис: В действующей версии программы главный приоритет - это вывод на рабочие режимы токамака Т-15МД в Национальном исследовательском центре "Курчатовский институт", который должен быть оснащен различными системами дополнительного нагрева плазмы, диагностики, сбора и обработки данных, генерации тока и другими современными элементами.
Осуществляются поддержка и развитие экспериментальной базы термоядерных исследований на площадках Физико-технического института имени Иоффе в Санкт-Петербурге, Института ядерной физики имени Будкера в Новосибирске, Национального исследовательского ядерного университета МИФИ в Москве. Серьезные "задельные" работы по развитию инфраструктуры, ориентированные на следующий до 2030 года этап реализации федерального проекта, ведутся в научном центре ТРИНИТИ в Троицке. Год назад вы говорили о 110 контрольных точках по этому проекту, на 2023-й их в полтора раза больше. Как продвигаетесь по маршруту и что требует особого внимания? Виктор Ильгисонис: Движемся по плану, скрупулезно выполняя намеченное. Трудности, конечно, есть. Серьезный момент - заметное удорожание любого строительства в связи с известными причинами. Это может привести к смещению графика завершения строек на следующий этап проекта и к "заморозке" сооружения новых запланированных объектов. Чтобы этого избежать и обеспечить полноценное продление РТТН на период до 2030 года, как это определено Указом Президента Российской Федерации, абсолютно необходима поддержка правительства, всех вовлеченных в процесс федеральных органов исполнительной власти. Без этого, если финансирование федерального проекта и РТТН в целом будет вестись по остаточному принципу и подвергаться периодическому "обрезанию", наши амбициозные цели останутся таковыми лишь на бумаге.
Токамак - это тот редкий случай, когда название научной установки, созданной в нашей стране, разошлось по миру и стало международным брендом. А что означает словосочетание "токамак с реакторными технологиями"? И какие перспективы у такого, извините за сравнение, мутанта? Или это "токамак плюс"?
Идеальным местом добычи гелия-3 является именно Луна. В лунном грунте гелий-3 лежит в чистом виде, и его даже не нужно обрабатывать: достаточно просто собирать в капсулы специальным комбайном — и можно сразу отправлять на Землю ракетной экспресс-доставкой. Считается, что две тонны гелия-3, разогретые в токамаке или стеллараторе модернизированный термоядерный реактор , могут дать столько же энергии, сколько 30 млн тонн нефти, сжигаемой в печах ТЭС. Если верить специалистам в области энергетики, лунных запасов гелия-3, необходимого для термоядерного синтеза, будет достаточно для обогрева и освещения Земли в течение следующих шести-семи тысяч лет. Правда, есть одна проблема. Некоторые физики считают применение гелия-3 в термоядерных реакторах неграмотным и настаивают на том, что все доводы в пользу этого элемента — обычная глупость. К китайскому опыту в этом направлении стоит приглядеться чуть внимательнее, поскольку физики из Поднебесной тестировали свой импульсный термоядерный реактор и повторяли опыты советских физиков. Однако российские учёные тем временем придумали, как из экспериментальной конструкции сделать пригодный к опытно-промышленному применению термоядерный реактор. На токамаке реакторе, в котором разогретую плазму удерживают магнитные катушки Т-15МД российские учёные будут отрабатывать все процессы. Затем их масштабируют на реакторе ITER. Этот термоядерный реактор, строящийся сейчас на территории Франции, без опыта российских исследователей просто не запустится. Это значит, что без преувеличения жизни миллионов землян будущего зависят от российских физиков. Уже известно, что над проектом токамака Т-15МД трудятся лучшие специалисты Курчатовского института и Научно-исследовательского института электрофизической аппаратуры имени Ефремова, и, по сути, российские специалисты — единственные в своём роде: ни в одной другой стране мира попытки совладать с термоядерным синтезом не дошли до строительства реакторов подобного масштаба и типа, как в России. Инженер-атомщик Владимир Спиридонов в беседе с Лайфом отметил, что ни в США, ни в Европе, ни в Китае к разгадке секрета термоядерного синтеза пока не приблизились. Проблема та же, что и 30, и 40 лет назад. Нормальный источник возбуждения реакции не найден, механизм удержания — тоже.
Прорыв был совершен 5 декабря группой ученых из Национальной лаборатории Лоуренса Ливермора в Калифорнии. Новая эра началась? Термоядерный синтез — это процесс, который происходит в звездах, в том числе в нашем Солнце. В масштабах нашей планеты он мог бы стать практически неисчерпаемым источником экологичной энергии, для производства которой могло бы понадобиться только немного морской воды. Однако, чтобы термоядерный синтез, подобный звездному, успешно протекал, необходимы колоссальные температуры и давление. На Земле создать такое уже давно возможно, однако для этого долгое время требовалось больше энергии, чем получалось на выходе.
Прорыв в термоядерном синтезе
Один из самых популярных и перспективных материалов — сплав никеля и титана — нитенол. При последовательной смене температур кристаллическая решетка сплава меняет конфигурацию, крайне важно, что эффект проявляет себя даже при незначительном нагревании и охлаждении, что значительно удешевляет технологию. На картинке видно кинетическую схему нитенолового двигателя. А это двигатель Бэнкса, работающий на таком принципе.
Естественными бесплатными источниками энергии для таких двигателей и для всех нас уже давно могли бы стать моря и океаны, если бы в дешевой энергии были бы заинтересованы те, кто находиться у власти. Генератор Хендершота Первое упоминание о магнитном генераторе свободной энергии в работах американского физика — изобретателя Лестора Хендершота появилось в 1927. Уже в следующем году Хенедершот построил прототип небольшого генератора и сумел запитать 2 стандартные лампы по 110 ватт.
Авторитетные эксперты вынуждены были признать — генератор работал без видимого внешнего источника. После двух хвалебных упоминаний в Нью-Йорк Таймс в феврале 1928 года Лестора публично обвинили в шарлатанстве.
Флейшман и Понс уверовали, что внутри кристаллической решетки этого металла атомы дейтерия столь сильно сближаются, что их ядра сливаются в ядра основного изотопа гелия. Этот процесс идет с выделением энергии, которая, согласно их гипотезе, нагревала электролит.
Объяснение подкупало простотой и вполне убеждало политиков, журналистов и даже химиков. Они-то прекрасно знали, что два дейтрона в принципе могут дать начало ядру гелия-4 и высокоэнергичному гамма-кванту, но шансы подобного исхода крайне малы. Даже если дейтроны вступают в ядерную реакцию, она почти наверняка завершается рождением ядра трития и протона или же возникновением нейтрона и ядра гелия-3, причем вероятности этих превращений примерно одинаковы. Если внутри палладия действительно идет ядерный синтез, то он должен порождать большое число нейтронов вполне определенной энергии около 2,45 МэВ.
Их нетрудно обнаружить либо непосредственно с помощью нейтронных детекторов , либо косвенно поскольку при столкновении такого нейтрона с ядром тяжелого водорода должен возникнуть гамма-квант с энергией 2,22 МэВ, который опять-таки поддается регистрации. В общем, гипотезу Флейшмана и Понса можно было бы подтвердить с помощью стандартной радиометрической аппаратуры. Флейшман использовал связи на родине и убедил сотрудников британского ядерного центра в Харуэлле проверить его «реактор» на предмет генерации нейтронов. Харуэлл располагал сверхчувствительными детекторами этих частиц, но они не показали ничего!
Поиск гамма-лучей соответствующей энергии тоже обернулся неудачей. К такому же заключению пришли и физики из Университета Юты. Сотрудники Массачусетского технологического института попытались воспроизвести эксперименты Флейшмана и Понса, но опять же безрезультатно.
Результаты абсолютно достоверные и опубликованы в научном журнале «Энерсофтнукэнерджи».
Сегодня проектом живо интересуются в Индии и Японии, где на складах Фокусимы скопилось более миллиона тонн радиоактивной воды, но перспективы его признания лабораториями и корпорациями, синтезирующими редкие изотопы на миллиарды долларов традиционным путем, выглядят не слишком радужно. Холодный ядерный синтез 23 марта 1989 года ученые из университета Юты Флешмен и Полц объявили о получении аномально высокого тепла в ходе ядерной реакции, проводимой без использования сверхвысоких температур и энергии. Но опыта были признаны невоспроизводимыми. Между тем еще в 1957 технология без уранового ядерного синтеза гелия из дейтерия на тяжелой воде при температуре 1010 градусов Цельсия была предложена Иваном Филимоненко.
В единой государственной программе по реализации идей ученого были задействованы лучшие специалисты 80 крупнейших предприятий союза. Но после череды смертей Курчатова, Королева и Жукова проект заморозили, а к 68 прикрыли полностью. Чтобы отбить охоту вертеться под ногами у РАН и топливных монополистов, Филимоненко отстранили от работ и командировали за решетку на 6 лет. В 1969 году через 4 дня после скандальной конференции Полца и Флешмена ученого пригласили на подольское НПО Луч, где Иван Степанович взялся воссоздать две термоэмиссионные установки по 12.
Благодаря одинаковым структурам внешних оболочек, с параллельным спином, тепловой протон может легко захватывать тепловой нейтрон с образованием дейтрона фото 7 , посредством слияния-объединения связано-замкнутых дебройлевских квантов-вихронов. После пересечения и преобразования вихронами их фазовых объёмов происходит процесс энергетического упорядочивания внутренних оболочек при рождении новой микрочастицы с излучением-сбросом гамма-кванта с энергией 2,2 Мэв. В процессе слияния этих нуклонов суммарный заряд сфер-источников ГЭММ всех оболочек дейтрона увеличивается, размер — уменьшается, частота и число оболочек — изменяются. Фото 7. Схема рождения дейтрона. Слева протон, затем нейтрон, справа дейтрон. Спин и электрический заряд дейтрона равен единице, суммарный заряд энергии сфер-источников ГЭММ всех оболочек увеличивается вдвое, средний диаметр — 4,1 х 10—13 см, а масса в СИ — 1875 Мэв равна удвоенной массе нуклонов без энергии вылетевшего гамма-кванта. Эта ядерная реакция является знаковой по формуле — охлаждение с образованием вокруг движущихся микрочастиц связано-замкнутых дебройлевских вихронов, ориентация спинов, дрейф, захват-синтез с расширением внутреннего дискретного микропространства на величину, соответствующую энергии 2,2 Мэв, преобразование и снятие возбуждения и характеризует последовательное взаимодействие быстрых ядерных вихронов — сброс освободившейся энергии в виде вылета свободного биполярного вихрона в форме фотона с энергией 2,2 Мэв. Такие преобразования внутренней структуры промежуточной составной частицы, образованной слиянием одинаковых дебройлевских гравитационных монополей, дополняют свойства ядерных вихронов. Внутренние вихроны, вылетев в такое пространство после взаимодействия и изменения в общем фазовом объёме, по новому образуют вложенные друг в друга биполярные оболочки, и уже с другим частотным спектром.
Эта ядерная реакция экзотермическая — лишняя освободившаяся энергия, как и в случае возбуждённого атома, сбрасывается в виде ядерного гамма-излучения. При этом надо отметить, что эта ядерная реакция является первой, порождающей ещё стабильный тяжёлый изотоп водорода-дейтрон. Уже вторая реакция антипротона с дейтроном или наоборот даёт нестабильный изотоп сверхтяжёлого изотопа водорода — тритон тритий. Это связано с тем, что стабильных ядер легче протона в нашей природе на поверхности Земли быть не может. Однако ядерно-ионные реакции с участием положительных и отрицательных тяжёлых ядер, начиная с титана, идут в природе и в некоторых экспериментах 34. В таких случаях, которые проверены и достоверно установлены, рождается чуть ли не вся таблица элементов из одного элемента меди. Аналогичные процессы с внутриядерной перестройкой вихронов происходят при внутреннем и внешнем возбуждении вихронов, которое приводит к делению и распаду тяжёлых ядер с образованием и вылетом двух более лёгких ядер и нескольких лёгких элементарных частиц. Нейтроны с тепловыми энергиями менее 1 Мэв, также легко, как и в случае с протоном, проникают в ядра всех химических элементов с образованием промежуточного возбуждённого ядра. Облучение веществ тепловыми нейтронами позволяет проводить элементный анализ — это так называемый и широко распространенный нейтронно-активационный анализ образцов. А захват нейтронов ядрами других элементов с последующим бета-распадом, известный под названием быстрый R — и медленный S-процесс, происходящий в звёздах, вносят определённый вклад в производство более тяжёлых химических элементов во всей Вселенной.
Таким образом, геометрическую структуру и физические свойства нейтронов и протонов определяют: количество оболочек фото 4—5 — 6 и энергетически-частотный состав внутренних вихронов. А за их стабильность, заряд и спин отвечают внешние оболочки и внутреннее состояние внешнего полярного вихрона в стационарном поле нуклона. Масса покоя в системе СИ нейтрона и антинейтрона равна 939,57 Мэв. Центральная ядерная оболочка типа К-ноль мезон с наибольшей кривизной и частотой, обладает большей энергией, чем внешние и даёт больший вклад в индукцию заряда массы покоя нейтрона. Сродство структуры фотона с оболочечной структурой нейтрона и протона подтверждают экспериментальные исследования рассеяния жестких электронов и гамма-квантов на протонах, которые позволили обнаружить в них схожее пространственное распределение плотности электрического заряда, а также найти электрическую и магнитную поляризуемости их объёма. Подтверждение указанной структуры нуклонов находим на каждом шагу анализа распадов и взаимодействий, особенно частица-античастица, а также легких и тяжёлых элементарных частиц, следующих из известной таблицы изотопов 35. Так, например, с участием лептонов — мюонный захват протоном с последующим образованием нейтрона и мюонного нейтрино. Другие источники обнаружены во всех генераторах холодного ядерного синтеза LENR при ионизации внешних оболочек ядер тяжёлых элементов. Когда атмосфера пульсара уже перенасыщена нейтронами и плотность слоя прилегающего непосредственно к поверхности ядра звезды достигает критического, то спектр нейтронов начинает обогащаться более тяжёлыми нейтральными ядрами. Другой путь производства и накопления нейтральных ядер происходит при вращении ядер звёзд и планет путём индукции механических гипервихронов, состоящего из гравитационного гипермонополя.
Для сохранения средней энергии, в связи с тем, что в таких системах, не может произойти перезарядка индуктированного монополя на противоположный, происходит квантовый переход с образованием электромагнитного гипервихрона, квантовые переходы в котором доступны этой системе массы. При его квантовых переходах электрический гипермонополь уже способен сбрасывать излишнюю индуктированную энергию в виде излучения мощных «тяжёлых» магнитных монополей, которые взаимодействуя с плотными слоями нейтронов преобразуют их в нейтральные ядра с весом в две, три или четыре атомные единицы и т. Структура этих частиц — центрально-оболочечная из волноводов зёрен-электропотенциалов и гравпотенциалов, причём каждая оболочка вложена одна в другую таким образом, что над отрицательной полусферой внутренней находится внешняя полусфера положительных волноводов, как и в нейтроне — фото 4. Фото 8. Оболочечная структура атомных ядер из оболочек ГЭМД. Каждая внутренняя оболочка заполняется более энергетическими вихронами, по сравнению с предыдущей внешней, то есть в терминах СИ, по мере увеличения атомного веса идёт заполнение центральных оболочек более тяжёлыми мезонами типа ипсилон Y cм. Такой процесс принципиально отличается от заполнения атомных оболочек частицами одного электрического знака электронов, САП с полуцелым спином. Таким образом идёт заполнение центра сферы нейтральной частицы вплоть до ядра кальция. На поверхности ядра звезды нейтральные ядра достаточно стабильны, но по мере заполнения ими атмосферы всего прилегающего пространства, дальнейшего уплотнения и вытеснения по радиусу в наиболее слабые гравитационные пояса звезды, начинается распад внешних оболочек фото 9 с образованием положительных или отрицательных ядер с помощью ядерно-мезонной плазмы. Это обусловлено тем, что появляется возможность у двух магнитных монополей внешней оболочки в отличие от внутренних оболочек пульсировать в свободное пространство.
Ядерно-мезонная плазма. При распаде по каналу бета-плюс образуются отрицательно заряженные ядра, которые практически мгновенно же объединяются синтез ядер с положительными. При энергии такого излучения от 0,4 до 0,9 эв с частотой 1—2 х 10 13 Гц и длине волны 1,4 — 3 микрона, сфера заряда энергии имплозией способна проникать даже в атомное ядро имея размер около 10—14 см. Этот процесс идёт наиболее интенсивно, как показывают результаты «выстрелов» С. Адаменко, при определённых условиях и в твёрдом теле. Фото 9. Деление внешней оболочки и распад После этого следует движение к поверхности и долгая стабилизация-распад с образованием уже известных ядер химических элементов. Подтверждением такой схемы жизни нейтральных ядер свидетельствуют проблемы, возникающие при полной обдирке от атомных электронов тяжёлых ядер при подготовке пучков тяжёлых многозарядных ионов. В этом случае, после неоднократного разделения пучка в магнитном поле на положительный, отрицательный и нейтральный, последний необходимый пучок опять содержит все эти компоненты. Реакции, которые приводятся в работах А.
Кладова на основе капельной модели ядра, а также в работах А. Вачаева, могут идти только как ядерно-ионные, то есть ядра при распаде могут быть как положительные, так и отрицательные. К настоящему времени на поверхности Земли не осталось ни одного типа нейтральных ядер атомов химических элементов кроме нейтрона, что свидетельствует об их весьма коротком периоде полураспада на этом гравитационном поясе. Однако имеется от 3000 до 7000 радиоактивных изотопов, до сих пор находящихся в стадии стабилизации, то есть на пути превращения в стабильные изотопы, путём радиоактивного распада. Распад тяжёлых нейтральных ядер идёт с образованием как положительных, так и отрицательных ядер. Распад лёгких нейтральных ядер идёт по схеме деления внешней оболочки на два замкнутых вихрона с образованием двух оболочек одной внутренней и одной внешней, фото 6 волноводов преимущественно положительных потенциалов, образующих его спин и внешнее электрическое поле ядра, запирающее его дальнейший спонтанный распад. Заряд электрическим потенциалом ядра, определяющий число электронов в нейтральном атоме формируется только внешней оболочкой, которая по мере увеличения тяжести ядра меняется на более тяжёлые мезоны. Внутренние оболочки попарно нейтрализованы противоположно заряженными — фото 4 и своей структурой обновления гравитационных контуров определяют лишь суммарную массу частицы, которая, является продуктом взаимодействия противоположных полей атомного ядра и гравитационного поля Земли. Во внешнем пространстве атома два магнитных монополя сферы двух внешних оболочек формирует положительное электрическое поле, рождённое с частотой накачки на три десятичных порядка больше, чем это делают электроны на атомных оболочках, что и определяет количество присоединённых электронов в нейтральном атоме, чтобы полностью скомпенсировать на ноль своё собственное внешнее поле. В целом, таким образом сформированная внешняя ядерная оболочка, имеет форму сферы с положительным зарядом электрического потенциала, соответствующим атомному номеру стабильного химического элемента.
Этот процесс очень сложный и заключается в том, чтобы каждое положительное зерно-потенциала было уничтожено отрицательным зерном потенциалом волновода электрона. А так как на двух внешних оболочках ядра вблизи узлов нахождения магнитных монополей размещены более мощные по значению величины и дальнодействию потенциалы, превосходящие подобные противоположные зёрна электронов, то и месторасположение точки их нейтрализации находится вблизи волновода электронов, удалённого на расстояние размера атома. Появившиеся в результате распадов нейтральных ядер замкнутые вихроны, ранее входившие в состав внешних нейтральных оболочек, во внешнем пространстве, в результате каскадных распадов и взаимодействий с другими частицами на пути к поверхности, образует, в конечном итоге, стабильные электроны. Так образуются атомные ядра и свободные электроны. В результате несовместимости энергетического сосуществования нейтральных оболочечных микрочастиц и слабых гравитационных полей, первые распадаются на два основных фрагмента — положительно заряженное, несущее основную массу, ядро и отрицательно заряженная часть его внешней оболочки, формируемая второй замкнутой частицей. Перед распадом идет интенсивный процесс разрыхления внешних оболочек ядер в уже свободное пространство, соответствующее слабым окружающим полям. Эта внешняя оболочка со структурой, показанной на фото 6, с замкнутым контуром в структуре атомного ядра и является той поверхностью, на которой пара магнитных монополей ГЭММ квантует на волноводе соответствующие зёрна-потенциалов и определяет его заряд электрическим потенциалом. При обновлении этот двойной контур излучается в пространство над ядром, формируя внешнее поле этого заряда электрического потенциала ядра — это и есть электрический эфир с положительным знаком заряда. Таким уже объёмным образом порождается, умножается и аккумулируется строительный материал из электрических зёрен-потенциалов, который в отличие от аккумуляции его в линейном треке фотона, порождает бесконечный объём, а количество этой субстанции пропорционально заряду массы ядра. Такой газоподобный электрический эфир удалось Н.
Тесла захватить, преобразовать и отделить в кластере меди от электронов в своём резонансном трансформаторе и частично исследовать. Так рождается положительный заряд электрическим потенциалом атомного ядра атома химического элемента, бесконечный по объёму электрический эфир в пространстве вокруг атомного ядра, мерилом которого является количество электронов на оболочках атома, противоположные по знаку внешние поля которых его полностью уничтожают. В поле собственного заряда дальнейший распад остатка ядра замедляется и идет уже по другим схемам распада, как и в случае радиоактивных семейств урана, которые приводят его, наконец, на поверхности планеты к тому или иному стабильному изотопу — процесс ядерной стабилизации, химической релаксации и минерализации, приводящий к образованию 82 стабильных химических элементов в коре, воде и атмосфере на поверхности планеты. Этот процесс конкретно характеризует широко известная таблица распределения радиоактивных изотопов относительно стабильных атомных ядер, то есть процесс распада по бета-плюс каналу предваряет разрыхление с отрывом частицы с положительной полусферой волноводов, а по каналу бета — минус — отрыв частицы с отрицательной полусферой. Образовавшиеся стабильные ядра имеют заряд электрического потенциала и спин, формируемые вихронами полусфер двух внешних оболочек — внешней и внутренней. Электрический заряд ядра создаётся волноводами магнитных монополей этих внешних вихронов, с частотой на три десятичных порядка больше, чем у электронных оболочек атомов. Эти оболочки в отличие от внутренних квантуют волноводы не в ограниченной сфере оболочек ядра, а в свободном пространстве, и в таком количестве по поверхности, которое соответствует его внутренним параметрам, создавая заряд ядра, который определяется количеством электронов в нейтральном атоме. Атомные ядра входят в состав атомов химических элементов, из которых построено всё видимое Мироздание. Всего стабильных и долгоживущих атомных ядер на Земле около 300, а находящихся на пути стабилизации и пополняющих запасы стабильных путём распада по разным оценкам от 3000 до 7000. Почему столько много радиоактивных нестабильных тяжёлых изотопов?
Потому что ядра этих изотопов образовались в результате синтеза тяжёлых противоположно заряженных ядер, то есть положительно заряженное ядро соединилось с отрицательно заряженным ядром. Образовавшаяся двух ядерная система в результате внутренней перестройки ядерных вихронов медленно переходит в равновесное одно ядерное состояние, с излучением лишних не резонансных вихронов, образующих различные элементарные частицы при вылете из внешних оболочек этого ядра. У тяжёлых трансурановых элементов этот процесс может занять очень длительное время, называемое периодом полураспада. Источники основного производства атомных ядер находятся вблизи поверхности ядер звёзд и планет — это квантованные кластеры плотной чёрной ядерно-мезонной плазмы, то есть смеси заряженных атомных ядер, мезонов, мюонов, и распадающихся нейтральных ядер. Стабильные ядра поверхности Земли имеют внешнее электрическое поле, спин, магнитный момент, определённые заряд массы, заряд электрическим потенциалом, размер, форму и оболочечную структуру. Ядра, имеющие порядковый номер 2, 8, 20, 28, 50, 82 и некоторые другие, обладают сферической формой. Все другие являются сплюснутыми или вытянутыми эллипсоидами. Вытянутых ядер больше сплюснутых. Большинство ядер имеют по несколько изотопов. Обращает на себя внимание то, что все эти нуклиды имеют нечетные массовые числа в системе СИ и полуцелые спины.
Откуда можно сделать вывод о том, что ядра с полуцелым спином более стабильны, что и подтверждается экспериментально. В основу структуры фото 9а атомного ядра положены экспериментальные результаты исследований по строение протона, гиперонов, резонансов, мезонов, экзотических частиц, мезоатомов и эта-ядер.
Что такое холодный термоядерный синтез? Холодный термоядерный синтез: принцип
Термоядерный синтез — это процесс, когда два легких атомных ядра объединяются в одно более тяжелое ядро, высвобождая большое количество энергии. В термоядерном синтезе ядра разгоняются до высоких скоростей (в токамаках и в Солнце — из-за высокой температуры). 8 декабря 2014 Новости. 8 октября 2014 года была завершена проверка независимыми исследователями из Италии и Швеции устройства E-Cat для выработки электроэнергии на основе реактора холодного термоядерного синтеза. Американская установка термоядерного синтеза позволила получить больше энергии, чем было потрачено для её запуска. Следует понимать, что холодный ядерный синтез на настольных аппаратах не только возможен, но и осуществлен, причем в нескольких версиях.
Самая грандиозная научная стройка современности. Как во Франции строят термоядерный реактор ITER
Еще одна проблема возникла при сварке секторов вакуумной камеры. При проектировании ИТЭРа первую стенку решили делать из бериллия. Сейчас российское термоядерное сообщество анализирует, насколько оправданна замена материала. К середине апреля мы выработаем позицию и представим ее на следующем совете ИТЭР.
Смею вас заверить, дискуссии будут глубокими, фундаментальными и наше мнение будет учтено». Физпуск состоялся еще 18 мая 2021 года. А вот с энергопуском возникли организационные проблемы.
У исследователей Мартина Флейшманна и Стэнли Понса однажды возникла подобная идея. И они выбрали палладий в качестве металла-катализатора. И это сработало!
Исследователи сообщили всему миру о производстве избыточного тепла. И даже некоторых побочных продуктов синтеза! К сожалению, ни одна другая лаборатория не смогла воспроизвести этот эксперимент.
И это погасило бушующее пламя сенсации — холодного синтеза с положительным выходом энергии. Никто так и не смог объяснить, почему один раз это сработало, а в другие — нет. Отбросьте глупые амбиции!
После стольких лет неудачных исследований холодный синтез начал приобретать плохую репутацию. Как для себя, так и для всех, кто им занимался. Это направление исследований стали рассматривать как лженауку.
Как что-то, что никогда не может быть достигнуто. Что-то, что никогда не будет надёжным источником энергии. Это создало своеобразную репутационную ловушку.
Которая привела к застою в этой области и всеобщему преследованию её сторонников. В попытке немного «почистить ауру» и сделать название более привлекательным, исследователи стали называть холодный синтез «низкоэнергетическими ядерными реакциями». Но прорыва после этого так и не последовало.
В последнее время стали появляться сообщения, что некоторые неровности на поверхности металла ответственны за появление горячих точек ядерной активности. И что именно в этом причина несоответствия проводимых экспериментов. Просто у некоторых металлов есть такие неровности, а у других их нет.
Опять же, это утверждение, которое никто не смог проверить. Новые горизонты Перспектива превращения научной фантастики в науку всегда завораживает.
Каждый год более подробно становятся проблемы эти ясны. Да потому, что за этим ИТЭРом находятся люди, которые всю жизнь бубнили об этом, а толку никакого».
Тем временем реализовать подобные проекты — причем значительно дешевле — пытается и частный бизнес. Согласно данным Ассоциации индустрии синтеза FIA , 33 частных компании привлекли в этом секторе в 2022 году 2,8 млрд долларов частных инвестиций. Альтернативные проекты строятся не на принципе так называемого токамака, как в случае ИТЭР, и не на принципе лазерного сжатия, который отрабатывает калифорнийская Национальная лаборатория Лоуренса Ливермора. Есть идеи так называемых стеллараторов, которые позволяют длительное содержание плазмы без необходимости постоянного внешнего влияния, комбинированных систем магнитно-инерционного сжатия, где оба принципа совмещаются.
И некоторые другие. Но все это иллюзии, уверен директор АНО «Атоминфо-центр» Александр Уваров: Александр Уваров директор АНО «Атоминфо-центр» «В термоядерной энергетике давно была шутка, что термоядерная энергетика была, есть и будет светлым будущим нашей энергетики. Волны, действительно, возникают. Как правило, это совпадает с какими-то кризисными явлениями.
Несколько реализованных идей Ниже мы перечислим современные подходы к холодному синтезу. Мюон-катализируемый синтез Учёные придумали уже несколько типов холодного синтеза, которые действительно работают. И это делает холодный синтез реальностью с точки зрения его осуществимости. Ключом к первому подходу в этой проблеме являются мюоны. Дело тут обстоит так: поскольку электроны очень лёгкие, они вращаются вокруг ядра атома достаточно далеко, на расстоянии, которое немного больше, чем необходимое для того, чтобы произошёл синтез. Но мюоны намного тяжелее электронов. И если их поместить на место последних, они будут вращаться гораздо ближе к ядру, сливаясь с атомами гораздо проще и быстрее. Такой способ ядерного синтеза — это реальность.
И учёные осуществляли его уже неоднократно. И даже при комнатной температуре. Но, к сожалению, мюоны очень нестабильны. И часто распадаются ещё до начала процесса холодного синтеза, в котором они участвуют. Нестабильность мюонов приводит к тому, что процесс их создания в ускорителях частиц потребляет намного больше энергии, чем количество, которое возникает при их последующем использовании. Это обстоятельство делает весь этот процесс бессмысленным. И его можно использовать для бомбардировки и осаждения на поверхность металла, такого как титан. Когда кристаллическая решётка металла оказывается заполнена, часть дейтерия начинает вступать в реакцию синтеза.
Этот процесс называется синтезом твёрдого тела. И его используют для производства нейтронов в лаборатории. Металл помогает уменьшить кулоновский барьер и облегчает процесс синтеза. Однако в этом случае скорость синтеза крайне низка. А количество вводимой энергии значительно превышает количество получаемой на выходе. На самом деле учёные считают, что, возможно, другие типы металлов будут иметь ещё более низкий кулоновский барьер. У исследователей Мартина Флейшманна и Стэнли Понса однажды возникла подобная идея.
Холодный синтез: миф и реальность
Так называют предположения, которые нельзя опровергнуть и подтвердить экспериментами. Например, учение о плоской Земле, удивительно популярное даже в наше время, по ряду признаков весьма близко именно к лженауке — но только до тех пор, пока его сторонники не попробуют космические полеты, чтобы увидеть на практике: плоская Земля или шарообразная. С практической точки зрения это вполне лженаука, поскольку реально существующие «плоскоземельцы» не способны сами создать средства достижения космоса, а «официальным» ракетам они не доверяют. Холодный термояд точнее именовать «патологической наукой». Это значит, что его сторонники формально не отвергают научный метод, строят предположения, которые могут быть подтверждены или опровергнуты.
Однако они — часто будучи неспециалистами — ставят эксперименты некорректно или неверно интерпретируют их результаты, поэтому остаются убеждены, что делают реальные научные открытия. Автор термина, нобелевский лауреат по химии Ирвинг Лэнгмюр, отмечал, что почва для «патологической науки» формируется почти каждый раз, когда какая-то концепция признается научным сообществом некорректной. Всегда найдется тот, кто не хочет оставить ее, или же, в силу того, что не является специалистом в вопросе, не может понять причины, по которым наука оставила эту концепцию. Как отличить патологическую науку от нормальной Есть несколько банальных рекомендаций, позволяющих быстро заметить, что вам «втирают какую-то дичь».
Первое: где опубликовано сообщение. В случае с Мизуно это «выжимки» для Международной конференции по холодному термоядерному синтезу. Любители патологической науки стараются не выставлять напоказ лишний раз «подозрительные» словосочетания, маскируя их под малопонятные сокращения типа «ICCF-22». Поэтому желательно разобраться, что значат все непонятные аббревиатуры и обозначения, касающиеся места публикации статьи о том или ином результате.
Поймите, кто автор. Если нам пишут «японский ученый Тадахико Мизуно добился…», сперва узнайте, ученый ли он. Где он работает? Обычно любой, кто хочет, чтобы к нему относились серьезно, укажет, если работает в университете или исследовательском центре.
То есть человек работает в небольшой компании, где он к тому же входит в состав руководства, а в научных учреждениях не числится.
Еще одна проблема возникла при сварке секторов вакуумной камеры. При проектировании ИТЭРа первую стенку решили делать из бериллия.
Сейчас российское термоядерное сообщество анализирует, насколько оправданна замена материала. К середине апреля мы выработаем позицию и представим ее на следующем совете ИТЭР. Смею вас заверить, дискуссии будут глубокими, фундаментальными и наше мнение будет учтено».
Физпуск состоялся еще 18 мая 2021 года. А вот с энергопуском возникли организационные проблемы.
ИТЭР — это проект планетарного масштаба, существующий вне политики. Также проекту помогают Казахстан, Австралия, Канада, Таиланд.
Сегодня мы поговорим об этом уникальном проекте и заглянем за кулисы ядра, скрывающего неисчерпаемую мощь. Как покоряют атомное ядро Ядро атома, как мы знаем из физики и химии, состоит из положительно заряженных протонов. Вокруг них — отрицательно заряженные электроны. Силы, удерживающие систему в балансе, как раз и являются объектом изучения ядерных физиков.
При этом существуют два принципиально разных подхода к высвобождению скрытой энергии: Атомная энергетика. Здесь за основу берется тяжелый элемент как правило, уран или плутоний , который расщепляется на составляющие с выделением энергии. То есть ключевой процесс — распад ядра. Первая в мире атомная электростанция была запущена еще в 1954 году — ей стала Обнинская АЭС в Калужской области.
Человечество хорошо освоило расщепление, хотя проблемы пока остаются. Управляемый термоядерный синтез УТС.
Однако, разумеется, такие реакции могут генерировать гораздо больше энергии, чем им требуется — и Солнце тому прямое подтверждение.
Также немаловажный плюс термоядерного синтеза — полное отсутствие вредных отходов. Не производятся парниковые газы, не загрязняется атмосфера, не нужно утилизировать радиоактивное топливо, и даже при аварии ничего серьезнее выброса водорода в атмосферу, который и является топливом для термоядерного реактора, не будет. При этом термоядерный синтез может быть настолько эффективным, что текущих запасов водорода на Земле хватит, чтобы удовлетворить все потребности человечества в энергии на миллионы лет вперед.
Нам нужно решение проблемы глобального потепления — иначе цивилизация окажется в беде. Похоже, переход на термоядерную электроэнергетику может помочь исправить ситуацию». Слева — простейшая реакция термоядерного синтеза с использованием дейтерия и трития тяжелого водорода.
Справа — схема токамака. В большинстве экспериментальных термоядерных реакторов используется советская конструкция в форме пончика, называемая токамаком. В такой установке используются мощные магнитные поля, чтобы удерживать облако плазмы или ионизированного газа при экстремальных температурах, достаточно высоких, чтобы атомы могли сливаться вместе.
Deneum: как заниматься холодным ядерным синтезом и бороться с сомнениями ученых
Эти аппараты обеспечивают защиту сверхпроводниковых катушек магнитной системы в случае перехода сверхпроводника в резистивное близкое к критическому состояние и являются важными компонентами защиты. Четыре уже доставлены на стройплощадку. Проблемы и решения На самой масштабной инновационной стройке мира не обходится без проблем. Продолжительность ремонта термоэкранов оценивается примерно в два года». Еще одна проблема возникла при сварке секторов вакуумной камеры. При проектировании ИТЭРа первую стенку решили делать из бериллия. Сейчас российское термоядерное сообщество анализирует, насколько оправданна замена материала.
Только вот никто еще не выводил работающее устройство холодного синтеза на рынок, не говоря уж о получении хоть какого-нибудь одобрения со стороны мирового сообщества. Что происходит? Если бы только Тони Старк существовал в реальности Возможет ли холодный синтез? В отличие от химических реакций, которые высвобождают энергию в электрон-вольтах эВ на атом, в котором протекают, ядерные реакции — вроде синтеза и деления — выпускают мегаэлектрон-вольты МэВ энергии на атом: в миллион раз больше. Самый мощный ядерный взрыв, который когда-либо гремел на Земле, в энергетическом эквиваленте был равен примерно массе яблока и был достаточно силен, чтобы уничтожить большой город целиком. Эксперименты и теории, как правило, выдаются за чистую монету, чтобы не подливать масла в огонь критики извне, если уж кому-то за пределами группы заблагорассудится послушать. В этих условиях процветают психи, и тем хуже для тех, кто верит, что они занимаются серьезной наукой». Ядерный синтез, однако, протекает между заряженными частицами вроде атомных ядер, и барьер отталкивания таких зарядов весьма силен. Чтобы подвести два протона достаточно близко, чтобы они слились, потребуется температура в 4 миллиона Кельвинов, которая приведет к уже известному нам синтезу: горячему синтезу. По этой причине для зажигания ядерного синтеза в водородной бомбе, самом мощном оружии, придуманном людьми, необходима ядерная бомба. По части магнитного ограничения синтеза конфайнмента и инерциального конфайнмента, когда мощные магнитные поля или серия лазерных импульсов удерживают и сжимают плазму, заставляя ядра сливаться, за последние несколько десятилетий был достигнут определенный прогресс. В ходе этих реакций извлекается все больше и больше энергии, чем было затрачено на их запуск и поддержание, но мы все еще далеки от точки невозврата: когда в процессе реакции появляется намного больше энергии, чем было затрачено на запуск всей цепочки реакций. Если мы сможем достичь точки безубыточности, это будет настоящий прорыв, поскольку энергия синтеза чистая, не производит радиоактивных отходов, а топливо для нее дешевое и практически неограниченное. Пока что традиционный «горячий синтез» требует поддержания невероятно высоких температур, чтобы все работало, а для этого нам нужно построить собственное миниатюрное солнце; собственно, эти технические трудности прежде всего объясняют, почему мы до сих пор никуда не пришли. Но есть и другая возможность: холодный синтез. Вместо того чтобы поддерживать температуры в миллионы градусов, холодный синтез — недавно переименованный в LENR — в теории позволит эффективно проводить повторяющиеся реакции при значительно более низких температурах, в тысячи градусов или даже чуть выше комнатной температуры. Он мог бы обеспечить нас дешевой и изобильной энергией и даже поселиться в каждом доме.
Эксперт был проведен при помощи небольшой гранулы водородной плазмы и самого большого в мире лазера, пишет Financial Times со ссылкой на трех собеседников, ознакомившихся с предварительными результатами работы ученых. Двое источников FT отметили, что энергии было получено больше, чем планировалось, что привело к повреждению диагностического оборудования и усложнило анализ результатов, прорыв уже широко обсуждается учеными. Реакции термоядерного синтеза не оставляют углеродный след, не производят радиоактивных отходов, которые долго распадаются, а небольшой объем водородного топлива теоретически могла бы питать дом в течение сотен лет, указывает FT.
Слово «предполагаемая» здесь очень важно, потому что сегодня нет ни одной теории и ни одного эксперимента, которые указывали бы на возможность такой реакции. Но если нет ни теорий, ни убедительных экспериментов, то почему же эта тема довольно популярна? Чтобы ответить на этот вопрос, нужно понимать проблемы ядерного синтеза вообще. Ядерный синтез часто говорят «термоядерный синтез» — это реакция, в которой легкие ядра при столкновении объединяются в одно тяжелое ядро. Например, ядра тяжелого водорода дейтерия и трития превращаются в ядро гелия и один нейтрон. При этом выделяется огромное количество энергии в виде тепла. Энергии выделяется настолько много, что 100 тонн тяжелого водорода хватило бы, чтобы обеспечить энергией все человечество на целый год не только электричеством, но и теплом. Именно такие реакции происходят внутри звезд, благодаря чему звезды и живут. Много энергии это хорошо, но есть проблема. Чтобы запустить такую реакцию, нужно сильно столкнуть ядра.
Комментарии
- Преимущества и недостатки термоядерных реакторов
- Deneum: как заниматься холодным ядерным синтезом и бороться с сомнениями ученых
- В защиту холодного ядерного синтеза (ХЯС): ss69100 — LiveJournal
- Регистрация
Что такое холодный термоядерный синтез? Холодный термоядерный синтез: принцип
В Китае на несколько часов запустили реактор термоядерного синтеза, или так называемую установку токамак. Холодный термоядерный синтез новости. В термоядерном синтезе ядра разгоняются до высоких скоростей (в токамаках и в Солнце — из-за высокой температуры). Статья автора «Живой Космос» в Дзене: Холодный синтез — это мечта, над исполнением которой некоторые учёные трудятся уже несколько десятилетий. Реакции термоядерного синтеза возможны в случае экстремального нагрева атомов вплоть до 100 миллионов градусов по Цельсию, что приводит к их слиянию с побочным выделением большого количества энергии. Но и на этом «плохие» новости для сторонников холодного термоядерного синтеза не закончились.
Проект Google не смог обнаружить холодный ядерный синтез
Лабораторный реактор холодного термоядерного синтеза. Хотя об этом еще не было объявлено публично, эта новость быстро распространилась среди физиков и других ученых, изучающих термоядерный синтез. Несмотря на то что многие считают эту публикацию Керврана первоапрельской шуткой, некоторые ученые всерьез заинтересовались проблемой холодного ядерного синтеза. Холодный термоядерный синтез в обыкновенной кружке. У России появился шанс вновь стать лидером в освоении термоядерного синтеза. Американская установка термоядерного синтеза позволила получить больше энергии, чем было потрачено для её запуска.