Новости с точки зрения эволюционного учения бактерии являются

Из перечисленных признаков, общим для клеток растений и животных является а) наличие.

Другие вопросы:

  • Прокариоты в сети Интернет (обзоры, статьи, новости, порталы)
  • МОЛЕКУЛЯРНЫЙ ТУПИК ТЕОРИИ ЭВОЛЮЦИИ
  • Клеточное строение и жизнедеятельность бактерий.
  • Общая биология, ответы на билеты

Какими организмами являются бактерии с точки зрения эволюции

И даже рак является результатом эволюционных процессов, происходящих в тканях. Поскольку «эволюция бактерий» часто доказывается именно указанием на их способность приспосабливаться к воздействию антибиотиков, то в ряде исследований биологи проверили древних бактерий именно на устойчивость к этим самым антибиотикам. Согласно третьей точке зрения, это был химерный организм, образовавшийся в результате слияния клеток нескольких разных архей и бактерий.

Лекция 14. Бактерии

Бактериями питаются многие одноклеточные животные, например амёбы и инфузории. Бактерии-симбионты, обитающие в кишечниках копытных животных, способны перерабатывать целлюлозу, содержащуюся в растительных кормах, и увеличивать их пищевую ценность. Паразитические бактерии могут поселяться в организмах животных и растений, ослаблять их, вызывать опасные заболевания и даже гибель. Значение бактерий в жизни человека Бактерии играют важную роль в жизни человека. Микрофлора кишечника человека — это полезные бактерии-симбионты, обитающие в пищеварительном тракте. Эти микроорганизмы выполняют некоторые полезные функции, например препятствуют проникновению и размножению болезнетворных бактерий. Многие болезни человека — ангина, коклюш, сальмонеллёз — вызываются болезнетворными бактериями. Бактерии, живущие в зубном налёте, питаются остатками пищи и могут вызывать кариес от лат. С патогенными бактериями люди борются с помощью антибиотиков от лат. Полезные и вредные бактерии в организме человека Молочнокислые и уксуснокислые бактерии используются для приготовления продуктов брожения — простокваши, йогурта, сметаны, сыра, квашеной капусты, соевого соуса, уксуса.

Силос — сочный корм для сельскохозяйственных животных — тоже получают с помощью бактерий, путём заквашивания зелёной массы кормовых растений. Бактерии гниения и брожения могут вызывать порчу пищевых продуктов — скисание молока, прогоркание масла, протухание мяса и рыбы. Употребление в пищу испорченных продуктов может вызывать отравление. Для сохранения продуктов их подвергают специальной обработке — консервации от лат. В результате такой обработки создаются условия, не подходящие для развития микроорганизмов, а упаковка предотвращает попадание на продукты новых бактерий и их спор. Учёными используют бактерий как объект для исследования. Клетки бактерий относительно просто устроены, но обладают процессами жизнедеятельности, сходными с клетками других организмов. Генетики и биохимики на клетках бактерий как на модельных организмах изучают деятельность генов и особенности обмена веществ. Учёные смогли «научить» бактерии производить нужные людям вещества, например инсулин лекарство для больных диабетом , витамины, пищевой и кормовой белок.

Главное Бактерии — микроскопические одноклеточные организмы, которых можно встретить везде — в воде, воздухе, почве, на поверхности тел других организмов и даже внутри них. Клетки бактерий окружены прочной оболочкой, но не имеют ядер и сложно устроенных органоидов. Бактерии очень устойчивы к воздействиям внешней среды. Они способны образовывать споры и переносить неблагоприятные условия в течение длительного времени. У разных видов бактерий разные потребности к условиям окружающей среды. Среди них есть паразиты, симбионты и свободноживущие организмы; нуждающиеся в кислороде и способные жить без него; потребители готовых органических веществ и их производители. Бактерии имеют большое значение в природе и жизни человека. Они разрушают мёртвое органическое вещество, поддерживают плодородие почв, участвуют в пищевых цепях, являясь пищей для одноклеточных животных. Некоторые бактерии вызывают опасные заболевания, другие полезны для человека и используются им.

Вакцинация — введение в организм вакцины. Цитоплазма представляет собой прозрачное гелеобразное вещество и находящиеся в нём обязательные клеточные структуры — органоиды, а также непостоянные образования — включения. Включения имеют вид зёрен, комочков, капель разной величины и формы. В виде включений в клетке могут накапливаться запасы питательных веществ, ненужные продукты обмена веществ, пигменты красители. Эукариотами являются животные, растения и грибы. Прокариотами являются бактерии и археи. К аэробам относятся все растения, большинство животных, грибов и бактерий. К анаэробам относятся некоторые виды животных, грибов и бактерий. Неорганические вещества ещё называют минеральными.

Среди них есть как простые состоящие из одного химического элемента, например железо, кислород, алмаз , так и сложные вещества состоящие из атомов двух и более видов, например углекислый газ, пищевая сода, поваренная соль. Самые распространённые в телах живых существ неорганические вещества — это вода и минеральные соли. Органические вещества — так в начале XIX в.

Насыщение атмосферы кислородом кардинально изменило Землю, создав условия для дальнейшей эволюции живых существ от микроба до человека. Ученые, занимающиеся биологией, уверены, что за 3 миллиарда лет в ходе эволюции бактерий были усовершенствованы следующие факторы: морфология и химический состав клеток; принципы обменных процессов; взаимодействие микроорганизмов между собой и с объектами неживой природы. Эволюция микробов сыграла ведущую роль в формировании биосферы Земли и создании экологического баланса. Эволюция бактерий Пытаясь объяснить, как шла эволюция бактерий, ученые выдвигали многочисленные версии. Вероятнее всего, процесс развития начался с анаэробных микроорганизмов, разделившихся впоследствии на факультативных анаэробов, аэробов, хемосинтезирующих аутотрофов. Эти формы дошли до наших дней, получив широкое распространение в современных экосистемах.

Разнообразие видов, форм и способов приспособления микроорганизмов указывает на сложный путь, пройденный ими от сгустка вещества до живой клетки. Необходимые условия для появления живой клетки Приспособившись в процессе эволюции к развитию при низкой температуре, они стали обосабливаться, формировать так называемые коацерватные капли в форме коллоидных частиц. Теории происхождения прокариот Сформированные коацерватные капли представляли собой высокомолекулярные протеиновые образования, адсорбирующие из окружающей среды отдельные химические элементы. Эта способность положила начало обмену веществ, который является одним из признаков жизни. Растворенные в воде органические вещества, которые затем попадали внутрь коацерватов, увеличивали их массу. Когда она доходила до критической точки, связи, удерживающие молекулы вместе, разрывались, и коллоид распадался на более мелкие частицы. Так зарождался процесс размножения. Незначительные размеры и отсутствие твердых компонентов не позволили большинству примитивных живых организмов сохраниться до наших дней. Однако учеными были обнаружены породы возрастом 3.

Строение безъядерных микроорганизмов Основной характеристикой прокариотов является отсутствие ядра. Их ДНК, являющаяся носителем генетической информации, заключена в нуклеоид, заменяющий хромосомы. Отсутствие других мембранных органоидов митохондрий, эндоплазматической сети и других компенсируется мезосомами, выполняющих аналогичные функции. Имеется небольшое количество мелких рибосом. В процессе эволюции некоторые бактерии утратили клеточную стенку и перешли в L-форму. Таким способом им удалось пережить возникшие неблагоприятные условия, а затем вернуться к исходному состоянию. Бактерии, у которых в естественном состоянии отсутствует клеточная стенка, называются микоплазмами. Появление в ходе эволюции жгутиковых форм бактерий определило способность микроорганизмов к передвижению. Впоследствии количество и расположение жгутиков на теле прокариот стало одним из признаков видовой принадлежности.

Микробы приобрели самые разные формы и органоиды, чтобы приспособиться к изменяющимся условиям. Чем питались и дышали древнейшие бактерии Одними из старейших микроорганизмов считаются бактерии, восстанавливающие сульфаты. Они способны поглощать ионы водорода и переносить их на сульфаты, восстанавливая те до сульфидов. Усовершенствованный в процессе эволюции метод переноса электронов, используемый бактериями, происходит с участием цитохромов крупных белков. Благодаря механизму фосфорилирования, протекающему в анаэробных бескислородных условиях, накапливается энергия. Другими представителями микромира были: бактерии, обладавшие способностью фиксировать углеводородные соединения и аммиак; водородные бактерии, окислявшие молекулярный водород; микроскопические сине-зеленые водоросли, использовавшие углеводород для строительства своего тела и выделявшие кислород. Их жизнедеятельность привела к обогащению биосферы Земли кислородом с одновременным снижением концентрации в ней углекислого газа. Такая эволюция фотосинтеза привела к массовой гибели анаэробных микроорганизмов и дала возможность развиваться аэробам. Таким образом, произошло четкое разделение между прокариотами и эукариотами.

Микробы приобрели самые разные формы и органоиды, чтобы приспособиться к изменяющимся условиям. Чем питались и дышали древнейшие бактерии Одними из старейших микроорганизмов считаются бактерии, восстанавливающие сульфаты. Они способны поглощать ионы водорода и переносить их на сульфаты, восстанавливая те до сульфидов. Усовершенствованный в процессе эволюции метод переноса электронов, используемый бактериями, происходит с участием цитохромов крупных белков. Благодаря механизму фосфорилирования, протекающему в анаэробных бескислородных условиях, накапливается энергия. Другими представителями микромира были: бактерии, обладавшие способностью фиксировать углеводородные соединения и аммиак; водородные бактерии, окислявшие молекулярный водород; микроскопические сине-зеленые водоросли, использовавшие углеводород для строительства своего тела и выделявшие кислород. Их жизнедеятельность привела к обогащению биосферы Земли кислородом с одновременным снижением концентрации в ней углекислого газа. Такая эволюция фотосинтеза привела к массовой гибели анаэробных микроорганизмов и дала возможность развиваться аэробам.

Таким образом, произошло четкое разделение между прокариотами и эукариотами. Безъядерные бактерии продолжали использовать сульфатное дыхание, формировать и потреблять метан, фиксировать азот и выполнять другие важные для экологии функции. Жизнедеятельность ядерных микроорганизмов базировалась в основном на фотосинтезе и существовании в присутствии кислорода. Как передается генетическая информация Отсутствие полового размножения у бактерий привело к возможности не только воспроизводить потомство путем простого деления, но и делиться генетическим материалом с другими микроорганизмами. Данное явление получило название горизонтального переноса. Оно создает значительные трудности для ученых в отслеживании развития определенного вида бактерий и архей. Изучение подвижных генетических элементов и их роли в эволюции бактерий позволило установить, что они могут оказывать влияние на процесс преобразования наследственной информации в РНК или протеин. В результате этого происходит блокировка определенных действующих и активизация неактивных генов, вызывая мутации и создавая этим определенные эволюционные преимущества.

Эволюция вирусов Вирусы представляют собой микроскопические частицы, которые состоят из молекул нуклеиновых кислот, заключенных в протеиновую оболочку капсид. Особенностями вирусных микроорганизмов является наличие только одного типа нуклеиновых кислот РНК или ДНК , а также неспособность размножаться, находясь вне клетки хозяина. Так как вирусы не имеют общего предка и не образуют окаменелостей, то не существует единой теории их возникновения. Однако выделение вирусных элементов из геномов останков древних существ позволяет проследить их распространение и изменение. Откуда взялись бесклеточные организмы В настоящее время выдвинуты следующие теории происхождения вирусов в ходе эволюции: регрессия одноклеточных микроорганизмов; переход доклеточных форм к паразитическому способу жизни; отсоединение отдельных участков ДНК или РНК клеточных организмов с сохранением зависимости. У каждой теории существуют недостатки, не позволяющие ее принять за единую правильную версию. Изменчивость и наследственность вирусов Эволюцию вирусов ученые пытаются проследить, проводя анализ геномов современных микроорганизмов. Выяснено, что развитие вирусов происходит в результате изменения последовательностей соединения участков ДНК или РНК под воздействием различных внешних факторов.

Это приводит к возникновению более адаптированных к создавшимся условиям мутантов, способным сразу же воспроизводить себе подобных. Такая быстрота генетических изменений ускоряет эволюцию данных микроорганизмов, способствует появлению новых заболеваний, повышает устойчивость вирусов к неблагоприятным воздействиям. Особенности эволюции вирусов на современном этапе Возникающие штаммы обладают большей вирулентностью, способностью противостоять антимикробным препаратам и дезинфицирующим средствам, а также заражать другие виды макроорганизмов. Почему вирусы называют двигателями эволюции Изучение роли вирусов в эволюции жизни на Земле привело ученых к выводу, что их жизнедеятельность спровоцировала треть всех изменений, оказывающих влияние на геном животных и человека. Постоянное противостояние этим микроорганизмам привело к формированию всех органов и тканей, выполняющих различные функции. Поэтому вирусы еще называют стихийным злом эволюции. Однако считается, что живой мир планеты не был бы таким, какой он есть сейчас, если бы не вирусы. Влияние вирусов на эволюцию человека происходило во время инфицирования клеток, участвующих в процессе размножения.

Образовавшиеся провирусы внедрялись в геном, становясь частью наследственной информации.

Эти биополимеры состоят из мономеров, называемых нуклеотидами. Каждый нуклеотид состоит из трех компонентов, соединенных прочными химическими связями. Нуклеотиды, входящие в состав РНК, содержат пяти-углеродный сахар — рибозу, одно из четырех органических соединений, которые называют азотистымиоснованиями: аденин, гуанин, цитозин, урацил А, Г, Ц, У — и остаток фосфорной кислоты.

Нуклеотиды, входящие в состав ДНК, содержат пяти-углеродный сахар — дезоксирибозу, одно из четырех азотистых оснований: аденин, гуанин, цитозин, тимин А, Г, Ц, Т —и остаток фосфорной кислоты. В составе нуклеотидов к молекуле рибозы или дезокси-рибозы с одной стороны присоединено азотистое основание, а с другой — остаток фосфорной кислоты. Нуклеотиды соединяются между собой в длинные цепи. Остов такой цепи образуют регулярно чередующиеся остатки сахара и органических фосфатов, а боковые группы этой цепи — четыре типа нерегулярно чередующихся азотистых оснований.

Молекула ДНК представляет собой структуру, состоящую из двух нитей, которые по всей длине соединены друг с другом водородными связями. Такую структуру, свойственную только молекулам ДНК, называют двойной спиралью. Особенностью структуры ДНК является то, что против азотистого основания А в одной цепи лежит азотистое основание Т в другой цепи, а против азотистого основания Гвсегда расположено азотистое основаниеЦ. А аденин — Т тимин Т тимин — А аденин Г гуанин — Ц цитозин Ц цитозин -Г гуанин Эти пары оснований называют комплиментарными основаниями дополняющими друг друга.

Нити ДНК, в которых основания расположены комплементарно друг другуФ называют комплиментарными нитями. Расположение четырех типов нуклеотидов в цепях ДНК несет важную информацию. Порядок расположения нуклеотидов в молекулах ДНК определяет порядок расположения аминокислот в линейных молекулах белков, то есть их первичную структуру. Набор белков ферментов, гормонов и др.

Молекулы ДНК хранят сведения об этих свойствах и передают их в поколения потомков. Другими словами, ДНК является носителем наследственной информации. Молекулы ДНК в основном находятся в ядрах клеток. Однако небольшое их количество содержится в митохондриях и хлоропластах.

Основные виды РНК. Наследственная информация, хранящаяся в молекулах ДНК, реализуется через молекулы белков. Информационная РНК переносится в цитоплазму, где с помощью специальных органоидов — рибосом — идет синтез белка. Именно информационная РНК, которая строится комплементарно одной из нитей ДНК, определяет порядок расположения аминокислот в белковых молекулах.

Молекула РНК в отличие от молекулы ДНК представлена одной нитью; вместо дезоксирибозы — рибоза и вместо тимина — урацил. Значение РНК определяется тем, что они обеспечивают синтез в клетке специфических для нее белков. Удвоение ДНК. Перед каждым клеточным делением при абсолютно точном соблюдении нуклеотидной последовательности происходит самоудвоение редупликация молекулы ДНК.

Редупликация начинается с того, что двойная спираль ДНК временно раскручивается. Это происходит под действием фермента ДНК-полимеразы в среде, в которой содержатся свободные нуклеотиды. Каждая одинарная цепь по принципу химического сродства А-Т, Г-Ц притягивает к своим нуклеотидным остаткам и закрепляет водородными связями свободные нуклеотиды, находящиеся в клетке. Таким образом, каждая полинуклеотидная цепь выполняет роль матрицы для новой комплиментарной цепи.

В результате получаются две молекулы ДНК, у каждой из них одна половина происходит от родительской молекулы, а другая является вновь синтезированной, то есть две новые молекулы ДНК представляют собой точную копию исходной молекулы. Несоответствие между возможностью видов к беспредельному размножению и ограниченностью ресурсов — главная причина борьбы за существование. Виды борьбы за существование. Внутривидовая борьба.

Дарвин указывал, что борьба за жизнь особенно упорна между организмами в пределах одного вида, и обосновывал свое утверждение тем, что они обладают сходными признаками и испытывают одинаковые потребности. Широкое распространение в природе конкуренции организмов за ограниченные ресурсы — типичный способ естественного отбора, благоприятствующего победителям в конкуренции. Кроме того, естественный отбор может осуществляться и без непосредственной конкуренции, например вследствие действия неблагоприятных факторов среды. Способность переносить низкие и высокие температуры, воздействие других параметров среды также приводит к выживанию более приспособленных или к их более успешному размножению.

Иногда косвенные формы борьбы за существование дополняются прямой борьбой. Примером могут служить турнирные бои самцов за право обладать гаремом. Взаимоотношения особей в пределах вида не ограничиваются борьбой и конкуренцией, существует также и взаимопомощь. Межвидовая борьба.

Под межвидовой борьбой следует понимать конкуренцию особей разных видов. Особой остроты межвидовая борьба достигает в тех случаях, когда противоборствуют виды, обитающие в сходных экологических условиях и использующие одинаковые источники питания. В результате межвидовой конкуренции происходит либо вытеснение одного из противоборствующих видов, либо приспособление видов к разным условиям в пределах единого ареала, либо, наконец, их территориальное разобщение. Межвидовая борьба ведет к экологическому и географическому разобщению видов.

При попытках переселения в новые зоны обитания большинство не выдерживает влияния других видов и факторов внешней среды, лишь некоторые способны закрепиться и выдержать конкуренцию. Сложные взаимоотношения хищника и жертвы, хозяина и паразита — тоже примеры межвидовой борьбы. Борьба с неблагоприятными условиями среды. В ходе естественного отбора основное значение имеет фенотип организма: окраска, способность быстро перемещаться, устойчивость к действию высоких или низких температур и многое другое.

Поэтому верно утверждение, что естественный отбор оценивает прежде всего фенотип особи. Поскольку за одинаковыми фенотипами могут скрываться различные генотипы например, АА и Аа при полном доминировании , то сходные фенотипы, наиболее приспособленные к конкретной ситуации, могут формироваться на различной генетической основе. Широкое распространение инсектицидов привело к возникновению у многих видов насекомых устойчивости к ним. Однако генетические механизмы устойчивости оказались неодинаковыми в различных популяциях.

В одних случаях устойчивость определялась доминантным геном, в других — рецессивным, отмечено не только аутосомное наследование, но и наследование, сцепленное с полом. Обнаружены, кроме того, случаи полигенного и цитоплазматического наследования. Соответственно и физиологические механизмы устойчивости к инсектицидам оказались различными. Среди них накопление яда кутикулой; повышенное содержание липидов, способствующих растворению инсектицида; повышение устойчивости нервной системы к действию ядов; снижение двигательной активности и др.

Направление, в котором действует естественный отбор, и его интенсивность в природных популяциях не являются строго фиксированным, неизменным показателем. Они существенно изменяются как во времени, так и в пространстве. У обыкновенного хомяка обнаруживаются две основные формы окраски — бурая и черная. Их распространение от Украины до Урала показывает, что существует как большое разнообразие в сезонной изменчивости черных и бурых форм, так и значительные различия в их концентрации на видовом ареале.

Итак, естественный отбор — единственный фактор эволюции, осуществляющий направленное изменение фенотипического облика популяции и ее генотипического состава вследствие избирательного размножения организмов с разными генотипами. Аденозинфосфорные кислоты. Особо важную роль в биоэнергетике клетки играет адениловый нуклеотид, к которому присоединены два остатка фосфорной кислоты. Такое вещество называют аденозинтрифосфорной кислотой АТФ.

Энергию АТФ все клетки используют для процессов биосинтеза, движения, производства тепла, нервных импульсов, свечений например, у люминесцентных бактерий , то есть для всех процессов жизнедеятельности. АТФ — универсальный биологический аккумулятор энергии. Световая энергия Солнца и энергия, заключенная в потребляемой пище, запасается в молекулах АТФ. Запас АТФ в клетке невелик.

Так, в мышце запаса АТФ хватает на 20—30 сокращений. При усиленной, но кратковременной работе мышцы работают исключительно за счет расщепления содержащейся в них АТФ. После окончания работы человек усиленно дышит — в этот период происходит расщепление углеводов и других веществ происходит накопление энергии и запас АТФ в клетках восстанавливается. Митохондрии окружены наружной мембраной и, следовательно, уже являются компартментом, будучи отделенными от окружающей цитоплазмы; кроме того, внутреннее пространство митохондрий также подразделено на два компартмента с помощью внутренней мембраны.

Наружная мембрана митохондрий очень похожа по составу на мембраны эндоплазматической сети; внутренняя мембрана митохондрий, образующая складки кристы , очень богата белками - пожалуй, эта одна из самых насыщенных белками мембран в клетке; среди них белки Удыхательной цепиФ, отвечающие за перенос электронов; белки-переносчики для АДФ, АТФ, кислорода, СО у некоторых органических молекул и ионов. Продукты гликолиза, поступающие в митохондрии из цитоплазмы, окисляются во внутреннем отсеке митохондрий. Белки, отвечающие за перенос электронов, расположены в мембране так, что в процессе переноса электронов протоны выбрасываются по одну сторону мембраны - они попадают в пространство между наружной и внутренней мембраной и накапливаются там. Это приводит к возникновению электрохимического потенциала вследствие разницы в концентрации и зарядах.

Эта разница поддерживается благодаря важнейшему свойству внутренней мембраны митохондрии - она непроницаема для протонов. То есть при обычных условиях сами по себе протоны пройти сквозь эту мембрану не могут. Но в ней имеются особые белки, точнее белковые комплексы, состоящие из многих белков и формирующие канал для протонов. Протоны проходят через этот канал под действием движущей силы электрохимического градиента.

Энергия этого процесса используется ферментом, содержащимся в тех же самых белковых комплексах и способным присоединить фосфатную группу к аденозиндифосфату АДФ , что и приводит к синтезу АТФ. Митохондрия, таким образом, исполняет в клетке роль Уэнергетической станцииФ. Принцип образования АТФ в хлоропластах клеток растений в общем тот же - использование протонного градиента и преобразование энергии электрохимического градиента в энергию химических связей. Направления эволюции На макроэволюционном уровне можно проследить главные направления органической эволюции: биологический и морфофизиологический прогрессы.

Поскольку направление эволюции определяется естественным отбором, то пути эволюции совпадают с путями формирования приспособлений, определяющих те или иные преимущества одних групп перед другими. Появление таких признаков обусловливает прогрессивность данной группы. Биологический прогресс, то есть расширение ареала, увеличение количества особей данного вида и количества новых систематических единиц внутри вида или более крупной систематической единицы, достигается различными путями. Можно выделить несколько путей эволюции : — арогенез ароморфоз или морфофизиологический прогресс аллогенез идиоадаптацию — гипергенез Арогенез — такой путь эволюции, который характеризуется повышением организации, развитием приспособлений широкого значения, расширением среды обитания данной группы организмов.

На арогенный путь развития группа организмов вступает, вырабатывая определенные приспособления, называемые в таком случае ароморфозами. Примером ароморфоза у млекопитающих является разделение сердца на левую и правую половины с развитием 2 кругов кровообращения, что привело к увеличению легких и улучшению снабжения кислородом органов. Дифференцировка органов пищеварения, усложнение зубной системы, появление тепло кровности — все это уменьшает зависимость организма от окружающей среды. У млекопитающих и птиц появилась возможность переносить снижение температуры среды значительно легче, чем, например, у рептилий, которые теряют активность с наступлением холодной ночи и холодного времени года.

В связи с этим ночная активность рептилий в среднем ниже, чем дневная. Теплокровность млекопитающих и птиц позволила им овладеть поверхностью всего земного шара. Дифференцировка зубного аппарата у млекопитающих, приспособление его к жевательной функции, чего не было ни у одного из предшествовавших классов хордовых, обеспечили большую возможность использования пищи. У них хорошо развиты большие полушария головного мозга, которые обеспечивают поведение Уразумного типаФ, позволяют организмам приспосабливаться к быстрым изменениям среды без изменения своей морфологической организации.

Ароморфозы сыграли важную роль в эволюции всех классов животных. Например, в эволюции насекомых большое значение имело появление трахейной системы дыхания и преобразование ротового аппарата. Трахейная система обеспечила резкое повышение активности окислительных процессов в организме, что вместе с появлением крыльев обеспечило им выход на сушу. Благодаря необычайному разнообразию ротового аппарата у насекомых сосущий, колющий, грызущий они приспособились к питанию самой разнообразной пищей Немалую роль сыграло в их эволюции и развитие сложной нервной системы, а также органов обоняния, зрения, осязания.

Аллогенез — путь эволюции без повышения общего уровня организации. Организмы эволюционируют путем частных приспособлений к конкретным условиям среды. Такой тип эволюции ведет к быстрому повышению численности и многообразию видового состава. Все многообразие любой крупной систематической группы является результатом аллогенеза.

Достаточно вспомнить многообразие млекопитающих, чтобы увидеть, насколько разнообразны пути их приспособления к самым различным факторам среды. Аллогенезы осуществляются благодаря мелким эволюционным изменениям, повышающим приспособление организмов к конкретным условиям обитания. Эти изменения называются идиоадаптацией. Хорошим примером идиоадаптаций служат защитная окраска у животных, разнообразные приспособления к перекрестному опылению ветром и насекомыми, приспособление плодов и семян к рассеиванию, приспособление к придонному образу жизни уплощение тела у многих рыб.

Аллогенез часто приводит к узкой специализации отдельных групп. Общая дегенерация катагенез. В ряде эволюционных ситуаций, когда окружающая среда стабильна, наблюдается явление общей дегенерации, то есть резкого упрощения организации, связанного с исчезновением целых систем органов и функций. Очень часто общая дегенерация наблюдается при переходе видов к паразитическому образу существования.

У крабов известен паразит саккулина, имеющая вид мешка, набитого половыми продуктами, и обладающая как бы корневой системой, пронизывающей тело хозяина. Эволюция этого организма такова. Родоначальная форма принадлежала к усоногим ракам и прикреплялась не к водным камням, а к крабам и постепенно перешла к паразитическому способу существования, утратив во взрослом состоянии почти все органы. Несмотря на то, что общая дегенерация приводит к значительному упрощению организации виды, идущие по этому пути, могут увеличивать численность и ареал, то есть двигаться по пути биологического прогресса.

Гипергенез — путь эволюции, связанный с увеличением размеров тела и непропорциональным пере развитием органов. В различные периоды в различных классах организмов появлялись гигантские формы. Но, как правило, они довольно быстро вымирали и наступало господство более мелких форм. Вымирание гигантских форм чаще всего объясняется нехваткой пищи, хотя некоторое время такие организмы могут иметь преимущество вследствие своей огромной силы и отсутствия по этой причине врагов.

Соотношение направлений эволюции. Пути эволюции органического мира сочетаются друг с другом либо сменяют друг друга, причем ароморфозы происходят значительно реже идиоадаптаций. Но именно ароморфозы определяют новые этапы в развитии органического мира. Возникнув путем ароморфоза, новые, высшие по организации группы организмов занимают другую среду обитания.

Далее эволюция идет по пути идиоадаптаций, иногда и дегенерации, которая обеспечивает организмам обживание новой для них среды обитания. Клетка — элементарная единица живой системы. Элементарной единицей она может быть названа потому, что в природе нет более мелких систем, которым были бы присущи все без исключения признаки свойства живого. Известно, что организмы бывают одноклеточными например, бактерии, простейшие, водоросли или многоклеточными.

Клетка обладает всеми свойствами живой системы: она осуществляет обмен веществ и энергии, растет, размножается и передает по наследству свои признаки, реагирует на внешние раздражители и способна двигаться. Она является низшей ступенью организации, обладающей всеми этими свойствами. Клетка, по существу, представляет собой самовоспроизводящуюся химическую систему. Для того, чтобы поддерживать в себе необходимую концентрацию химических веществ, эта система должна быть физически отделена от своего окружения, и вместе с тем она должна обладать способностью к обмену с этим окружением, то есть способностью поглощать те вещества, которые требуются ей в качестве У сырья Ф, и выводить наружу накапливающиеся У отходы Ф.

Роль барьера между данной химической системой и ее окружением играет плазматическая мембрана. Она помогает регулировать обмен между внутренней и внешней средой и, таким образом, служит границей клетки. Функции в клетке распределены между различными органоидами, такими, как клеточное ядро, митохондрии и т. У многоклеточных организмов разные клетки например, нервные, мышечные, клетки крови у животных или клетки стебля, листьев, корня у растений выполняют разные функции и поэтому различаются по структуре.

Несмотря на многообразие форм, клетки разных типов обладают поразительным сходством главных структурных особенностей. В качестве единого целого клетка реагирует и на воздействие внешней среды. При этом одна из ее особенностей как целостной системы — обратимость некоторых происходящих в ней процессов. Например, после того как клетка отреагировала на внешние воздействия, она возвращается к исходному состоянию.

В ней сосредоточена наследственная информация, обеспечивающая сохранность вида и разнообразие особей. Строение растительной клетки: целлюлозная оболочка, мембрана, цитоплазма с органоидами, ядро, вакуоли с клеточным соком. Наличие пластид — главная особенность растительной клетки. Функции клеточной оболочки — определяет форму клетки, защищает от факторов внешней среды.

Плазматическая мембрана — тонкая пленка, состоит из взаимодействующих молекул липидов и белков, отграничивает внутреннее содержимое от внешней среды, обеспечивает транспорт в клетку воды, минеральных и органических веществ путем осмоса и активного переноса, а также удаляет продукты жизнедеятельности. Цитоплазма — внутренняя полужидкая среда клетки, в которой расположено ядро и органоиды, обеспечивает связи между ними, участвует в основных процессах жизнедеятельности. Эндоплазматическая сеть — сеть ветвящихся каналов в цитоплазме. Она участвует в синтезе белков, липидов и углеводов, в транспорте веществ.

ЭПС и рибосомы — единый аппарат синтеза и транспорта белков. Митохондрии — органоиды, отграниченные от цитоплазмы двумя мембранами. В них окисляются органические вещества и синтезируются молекулы АТФ с участием ферментов. Увеличение поверхности внутренней мембраны, на которой расположены ферменты за счет крист.

АТФ — богатое энергией органическое вещество. Пластиды хлоропласты, лейкопласты, хромопласты , их содержание в клетке — главная особенность растительного организма. Хлоропласты — пластиды, содержащие зеленый пигмент хлорофилл, который поглощает энергию света и использует ее на синтез органических веществ из углекислого газа и воды. Отграничение хлоропластов от цитоплазмы двумя мембранами, многочисленные выросты — граны на внутренней мембране, в которых расположены молекулы хлорофилла и ферменты.

Комплекс Гольджи — система полостей, отграниченных от цитоплазмы мембраной. Накапливание в них белков, жиров и углеводов. Осуществление на мембранах синтеза жиров и углеводов. Лизосомы — тельца, отграниченные от цитоплазмы одной мембраной.

Содержащиеся в них ферменты ускоряют реакцию расщепления сложных молекул до простых: белков до аминокислот, сложных углеводов до простых, липидов до глицерина и жирных кислот, а также разрушают отмершие части клетки, целые клетки. Вакуоли — полости в цитоплазме, заполненные клеточным соком, место накопления запасных питательных веществ, вредных веществ; они регулируют содержание воды в клетке. Ядро — главная часть клетки, покрытая снаружи двух мембранной, пронизанной порами ядерной оболочкой.

Презентация, доклад на тему Методы эволюционной биологии: исследование эволюции бактерий

Например, клубеньковые бактерии, поселяющиеся на корнях бобовых растений клевера, гороха, фасоли , не только используют органические вещества организма-хозяина, но и снабжают растение соединениями азота, принося ему пользу. Дело в том, что клубеньковые бактерии — это уникальные организмы, способные усваивать из воздуха азот и превращать его в доступную растениям форму. Сами растения такой способностью не обладают. Таким образом, из сожительства выгоду извлекают и симбиотические бактерии, и бобовые растения. Не все гетеротрофные бактерии питаются органическими веществами живых организмов.

Множество видов бактерий способны потреблять вещества мёртвых остатков и выделений других организмов. Таковы, например, почвенные бактерии гниения, использующие в качестве пищи органические вещества листового опада, навоза, трупов животных. Эту группу микроорганизмов называют бактериями-сапротрофами от греч. Ещё одну группу микроорганизмов составляют автотрофные бактерии.

Они не нуждаются в органических веществах, но способны сами производить их. Цианобактерии — раньше их называли синезелёными «водорослями» — подобно растениям используют энергию солнечного света и осуществляют фотосинтез. Серобактерии, железобактерии, водородные бактерии способны преобразовывать неорганические вещества, использовать энергию, выделяющуюся при этих химических реакциях, и направлять её на синтез органических веществ. Экологические группы бактерий по типу питания Размножение Бактерии размножаются путём деления клетки пополам, в результате чего образуются две одинаковые клетки — такие же, как материнская.

Такой способ называют бинарным делением. Если условия окружающей среды благоприятны, то бактерии способны размножаться очень быстро. Несложно подсчитать, что потомство одной бактерии за 5 часов превысит 1 тысячу экземпляров, а за 10 часов почти достигнет 1 миллиона. Схема деления бактериальной клетки Узнать больше: передача генетической информации у бактерий Этот материал будет полезен тем, кто готовится к олимпиаде У эукариотических организмов, размножающихся половым путём, потомство сочетает признаки предков, поскольку получает гены от обоих родителей.

У бактерий полового размножения не существует, а при бинарном делении обе образовавшиеся клетки идентичны материнской. Значит ли это, что все клетки бактерий одного вида совершенно одинаковы? Оказывается, это не так. Бактерии способны передавать генетическую информацию друг другу.

Для передачи наследственного материала от одной бактериальной клетки к другой у бактерий существуют специальные половые пили от лат. Одна из бактериальных клеток с помощью такого пиля присоединяется к другой, между цитоплазмами клеток устанавливается контакт, и присоединившаяся бактерия передаёт часть своей генетической информации соседней клетке. Размножения, то есть увеличения численности организмов, при этом процессе передачи генетической информации не происходит. Но благодаря обмену генами в популяции бактерий возникает генетическое разнообразие, как это происходит при половом размножении эукариотических организмов.

Спорообразование Некоторые бактерии способны образовывать споры. Споры у бактерий служат не для размножения, а для перенесения неблагоприятных условий — отсутствия пищи или воды, влияния слишком высокой или низкой температуры и т. Спора образуется внутри клетки. Часть цитоплазмы обособляется вокруг генетического материала клетки, затем отшнуровывается и одевается плотными оболочками, после чего оставшиеся внешние части клетки отмирают.

В таком состоянии споры могут существовать очень долгое время — десятки и даже сотни лет. Когда споры попадают в благоприятные условия, они превращаются в обычные бактериальные клетки. Вначале лопается оболочка споры, клетка выходит из оболочки, начинает питаться, расти, затем делиться. Схема образования бактериальной споры Споры бактерий очень устойчивы к воздействию низких и высоких температур: выдерживают замораживание и нагревание, а иногда даже кипячение.

Уничтожить споры обычно удаётся только путём длительного кипячения, или нагревания под давлением, или прокаливания, или с помощью специальных химических растворов. Уничтожение всех микроорганизмов и их спор называют стерилизацией от лат. Пищевые продукты стерилизуют и герметично упаковывают, чтобы увеличить срок их хранения. Стерилизуют также все медицинские инструменты, чтобы не занести в организм человека инфекцию.

Значение бактерий Значение бактерий в природе Бактерии — древнейшие обитатели Земли. Учёные считают, что первыми появившимися на нашей планете клеточными организмами были именно бактерии. Они распространены всюду.

А потому на смену теории эволюции пришла синтетическая теория эволюции СТЭ , которая объединяет всё, что наука знает об этом процессе. Разработали ее в начале XX века, и за годы своего существования она видоизменилась, впитав еще больше новых фактов и данных. Основные положения СТЭ довольно просты. Во-первых, согласно СТЭ, материалом для эволюции служат наследственные изменения — мутации и их комбинации. Именно мутации служат основным топливом для эволюционной топки, и чем больше их разнообразие, тем быстрее пойдет сам процесс. Во-вторых, основным движущим фактором эволюции считается естественный отбор — процесс, в результате которого особи с более благоприятными с точки зрения окружающей среды мутациями имеют больше шансов на передачу своих генов будущим поколениям. Чарлз Дарвин в дневнике отмечал : «Всякий раз, когда я вижу перо из хвоста павлина, мне делается дурно! Дело в том, что эволюция, хоть и не делает ничего «специально», способствует закреплению в популяции именно тех признаков, которые позволяют активнее размножаться а вовсе не выживать, как можно подумать. Это концепция репродуктивного успеха , причем иногда для него важны абсурдные, как может показаться на первый взгляд, признаки — например, огромный павлиний хвост. Да, такой хвост хорошо виден хищнику и за него птицу легче схватить. Однако в то же время хвост сигнализирует самке о здоровье самца и, грубо говоря, о его генах, обеспечивающих это здоровье. Хвост для павлина равен репродуктивному успеху, но существенно снижает вероятность выживаемости в течение долгого времени. В-третьих, эволюция происходит непрерывно и необратимо. Не существует никаких переходных форм, каждая отдельная особь вида — это и есть переходная форма. Вы — переходная форма между вашими родителями и вашими детьми, и эволюция и изменения идут непрерывным потоком через все поколения. Да, если взять разнесенные во времени виды, то разница будет хорошо заметна, но если временной промежуток мал, изменения могут быть и не очевидны. Это почти как с городским ландшафтом: приехав в город детства через двадцать-тридцать лет, вы увидите, как сильно он изменился. А вернувшись через пару недель или месяц, вы никаких существенных отличий не увидите — они есть, но еще не накопились в таком количестве, чтобы стать заметными. При этом существует такое явление, как эволюционный стазис , при котором вид не изменяется, причем очень долго, иногда на протяжении миллионов лет. Именно таким способом «дожили» до наших времен ископаемые виды, живые реликты вроде мечехвостов, гинкго билоба и выхухоли. Они не менялись тысячи лет, потому что достигли идеального баланса с окружающей средой. Одной из предполагаемых причин стазиса считается внутривидовое разнообразие. Еще некоторые исследователи отмечают существование хромосомного стазиса на уровне генов, например у птиц. Но встречаются и генетический, и обычный стазис, мягко говоря, нечасто — большая часть видов возникает, изменяется и исчезает, давая жизнь видам-потомкам. Необратимость в данном случае не означает, что какое-то событие нельзя «откатить» назад. Китообразные вернулись в море, где жили их предки, — просто сделали это другим путем и благодаря другим мутациям. Проблема эволюционного процесса в том, что он… случайный. Да, по большей части закрепляются нужные для размножения и выживания гены. Но иногда происходит так, что остаются не нужные, а рандомно выбранные. Такое случается, например, при эффекте бутылочного горлышка — резкого и случайного сокращения популяции, например, из-за стихийных бедствий или необычной болезни. Если у нас есть популяция животных, которые никогда не сталкивались с чумой, то с большой вероятностью в живых, после того как чума отступит, останутся несколько особей.

Это временная защитная форма бактерий, когда клетка не двигается и не питается, находясь в состоянии покоя долгое время Рис. Споры бактерий способны пролежать под землей до 20-30 лет. С помощью ветра споры разносятся на большие расстояния, а попав в благоприятные условия, «просыпаются», превращаясь в обычную клетку, способная вновь размножаться. Цианобактерии Именно цианобактерии стали одними из первых представителей живых организмов на Земле. Некоторые ископаемые останки цианобактерий имеют возраст превышающий 3 мдрд лет Рис. У них отсутствует ядро, что объединяет их с бактериями, а возможность фотосинтезировать относит к водорослям. Именно благодаря фотосинтезу, они первыми обогатили атмосферу нашей планеты кислородом, что сделало ее пригодной для существования живых организмов. Цианобактерии представлены как одноклеточными, так и многоклеточными формами. Носток — съедобная синезеленая водоросль, употребляемая в пищу в разных странах Китай, Монголия, Южная Америка Рис. Побочным продуктом такой реакции — кислород. Некоторые цианобактерии не способны выделять кислород, так как при фотосинтезе они не используют воду. К автотрофным бактериям так же относят и хемосинтезирующие формы, использующие энергию химических реакций азотобактерии, железобактерии, серобактерии и др. Гетеротрофные от греч. В свою очередь эти бактерии подразделяются на паразитов и сапрофитов. Паразиты являются болезнетворными формами, которые питаются тканями своих хозяев, вызывая различные заболевания растений бактериозы , животных и человека. Для сапрофитных бактерий характерно питание отмершими остатками или выделениями других живых организмов. Благодаря сапрофитным бактериям происходит процесс гниения и брожения. По сути сапрофиты — это санитары нашей планеты, разлагающие остатки пищи, трупы животных, экскременты, сухие листья, ветки и др.

Нарушение в работе этого сенсора может привести к тому, что свет будет включен все время. Это именно тот тип изменения, о котором идет речь. Другая возможность состоит в том, что существующий ген-транспортер, например, тот, который доставляет тартрат,[3] который обычно не транспортирует цитрат, мутировал и в следствии этого он потерял специфичность и теперь способен к транспортировке цитрата в клетку. Подобная потеря специфичности также является следствием случайных мутаций. Потеря специфичности приравнивается к потере информации, но для эволюции требуется появление новой информации; информация, которая определяет инструкции по созданию ферментов и кофакторов в новых биохимических путях, например, как создавать перья, крылья, кости, нервы или сложные компоненты и способ сборки сложных двигателей, таких как АТФ-синтаза, например. Однако, мутации хорошо способны разрушать, а не созидать. Иногда разрушение может быть полезным адаптационным ,[7] но это не отвечает за создание огромнейшего количества информации в ДНК всех живых существ. Бихи в своей книге «Предел эволюции» приравнял роль мутаций в сопротивляемости антибиотиков и патогенов, к например, окопной войне, в результате которой мутации уничтожают некоторые функции, чтобы преодолеть восприимчивость. Это так, как если бы вы положили жевательную резинку в механические часы; они не могли быть созданы таким образом. Много шумихи без причины снова Бихи прав; здесь нет ничего, что было бы за «пределами эволюции», то есть все это не имеет никакого отношения к происхождению ферментов и каталитических путей, что должна объяснить эволюция. Блаунт обнаружил, что к использованию бактериями цитрата привели три шага: 1. Потенцирование: Шаг, включающий в себе по меньшей мере 2 мутации. Он обнаружил одну возможную мутацию, единичное изменение нуклеотида SNP , повреждающее ген, известный как arcB, который регулирует работу цикла Кербса ЦТК , что могло привести к ускоренному метаболизму цитрата. Актуализация: дупликация гена, производящего белок-транспортер цитрата, что позволило использовать цитрат. Дупликация гена в месте без обычной контролирующей его последовательности позволило его экспрессии в присутствии кислорода поскольку он попал под контроль уже существующего промотора, который был «включен» в присутствии кислорода. Это важнейший шаг, позволивший появиться ограниченной способности использовать цитрат в аэробной среде. Усовершенствование: дальнейшая дупликация этой последовательности два или три раза известна как амплификация. Этот процесс увеличил «дозу генов», что привело к росту количества произведенного белка-транспортера цитрата, таким образом увеличивая общее потребление цитрата. Прежде чем это исследование было проведено, я предположил выше , что скорее всего мутации привели к тому, что бактерия стала способна перерабатывать цитрат в присутствии кислорода. Первым моим предположением было то, что контролирующая система, останавливающая переработку цитрата в присутствии кислорода, была поломана. Несмотря на то, что все намного сложнее, чем просто поломка контролирующей системы останавливающей производство белка-транспортера в присутствии кислорода , все же оказалось, что на самом деле предположение было близким к тому, что произошло, что указывает на то, что мышление о сотворении делает хорошие научные предсказания. В то время как существующие контрольные системы не были сломаны, ген-транспортер был реплицирован скопирован в другое место без контролирующих систем, потому производство транспортера уже больше не было подавлено в присутствии кислорода. Скопированный ген-транспортер попал под контроль уже существующего промотора последовательность промотора rnk , включенного в присутствии кислорода. Потому способность клетки контролировать транспортер цитрата была вправду нарушена клетка уже была не способна отключить производство транспортера.

Лучший ответ:

  • Настоящее разнообразие жизни: что умеют бактерии — все самое интересное на ПостНауке
  • Страница 131
  • Бактерии. Большая российская энциклопедия
  • Старое новыми словами

Вход и регистрация

Бактерии (греч. bakterion — палочка) — царство прокариотных (безъядерных) микроорганизмов, чаще всего одноклеточных или колониальных. В основе всех эволюционных исследований лежат данные, позволяющие возможно более точно установить, насколько близкими друг к другу являются организмы. «Эксперимент Ленски является еще одним тычком в глаз антиэволюционистов», утверждает Джери Койн, эволюционный биолог в Чикагском Университете. Некоторые бактерии, выращиваемые в лаборатории, получили способность использовать цитрат как энергетический ресурс. Получите быстрый ответ на свой вопрос, уже ответил 1 человек: какими организмами являются бактерии с точки зрения эволюции — Знание Сайт. БАКТЕРИИ, обширная группа одноклеточных микроорганизмов, характеризующихся отсутствием окруженного оболочкой клеточного ядра.

11. Бактерии. Эволюция или адаптация?

Как перемещаются бактерии? №1. Каких химических эллементов больше всего в живом организме? №2. Что указывает на почему молекула воды является диполем. Основные аспекты теории эволюции микроорганизмов. Эволюция микроорганизмов началась более 3 миллиардов лет назад. Другие микроорганизмы — и археи, и бактерии — могут использовать водород для восстановления сульфата или серы, в результате чего образуется сероводород. Ответил 1 человек на вопрос: Какими организмами являются бактерии с точки зрения эволюции. Согласно третьей точке зрения, это был химерный организм, образовавшийся в результате слияния клеток нескольких разных архей и бактерий. Другие бактерии, например, цианобактерии и некоторые пурпурные бактерии, являются автотрофами, то есть получают углерод, фиксируя углекислый газ[86].

Похожие новости:

Оцените статью
Добавить комментарий