Нервные импульсы поступают непосредственно. Нервный Импульс по аксону. По аксонам нервные импульсы поступают к. Взаимосвязь нейронов. длинный отросток нервных клеток, по которым и выполняется эта работа. Чем сложнее и разветвлённее дендриты, тем больше входных нервных импульсов может получить нейрон.
Информация
Нервная система. Общие сведения | Железы внутренней секреции не имеют протоков, поэтому гормоны поступают непосредственно в кровь. |
Тест «Нервная система» — 4ЕГЭ | Нервные импульсы поступают непосредственно к железам по. 1)аксонам двигательных нейронов. |
Нервная ткань. Нейрон. Синапс. Нервы — урок. Биология, 9 класс. | Нервные импульсы, поступающие из мозга, преобразуется гипоталамусом в эндокринные стимулы. |
Химическая передача нервного импульса
Консультацию по вопросам и домашним заданиям может получить любой школьник или студент. Нервные импульсы поступают непосредственно к железам по1 аксонам двигательных Сердитые импульсы поступают конкретно к железам по 1.
Его клетки, ткани и органы должны работать слаженно и гармонично. Это условие обеспечивается благодаря работе двух сигнальных систем: эндокринной и нервной. Их взаимосвязь обеспечивает несколько важных условий: гомеостаз — способность организма сохранять постоянные характеристики; адаптация — возможность изменять некоторые факторы внутренней среды в зависимости от перемены внешних условий; клеточный рост; размножение. Нервная система — это совокупность органов, которые обеспечивают иннервацию всех органов и тканей.
Ее центральный отдел включает головной и спинной мозг, а периферический — нервы. Информация улавливается рецепторами, далее движется в виде импульсов по нервным клеткам и достигает головного мозга. Он обеспечивает быструю реакцию в виде движения мышц либо другого ответа на раздражитель. Также нервная система регулирует работу эндокринной системы, контролируя интенсивность выработки гормонов. Эндокринная система — совокупность желез, которые выделяют гормоны в кровь. К ней относятся гипоталамус, гипофиз, а также периферические железы: щитовидная, поджелудочная, половые, надпочечники.
К железам нервные импульсы поступают по нервным нитям. Например: мы видим опасность, мозг анализирует, что это действительно опасность и отправляет импульс в надпочечники, где выделяется адреналин. Знаешь ответ?
Обмен энергии в нейроне в состоянии покоя и возбуждения различен. После возбуждения количество нуклеиновых кислот в цитоплазме нейронов иногда уменьшается в 5 раз. Собственные энергетические процессы нейрона его сомы тесно связаны с трофическими влияниями нейронов, что сказывается, прежде всего, на аксонах и дендритах.
В то же время нервные окончания аксонов оказывают трофические влияния на мышцу или клетки других органов. Так, нарушение иннервации мышцы приводит к ее атрофии, усилению распада белков, гибели мышечных волокон. Тема 3. Нейросекреторные клетки. Регенерация нейронов. Нейросекреторные нервные клетки.
В определенных отделах мозга беспозвоночных и позвоночных животных имеются нейроны, содержащие гранулы секрета. Такие секретирующие нейроны называются нейросекреторными. Они имеют физиологические признаки нейрона, но обладают выраженными признаками железистых клеток. Нейросекрет синтезируются в связи с тигроидной субстанцией гранулярной ЭПС, оформляется в виде секрета в системе аппарата Гольджи. Секрет продвигается по аксону и выделяется из клеток в области их концевых разветвлений. В отличие от обычных нейронов секрет высвобождается не в области синапса, а в кровь или ликвор мозговую жидкость.
Аксоны нейросекреторных клеток направляется в нейрогипофиз и промежуточную долю аденогипофиза, образуя с ними единую систему. Выделяемый нейросекреторными клетками продукт рассматривают как гормон, регулирующий деятельность некоторых желез внутренней секреции и гонад, где нервная регуляция оказывается редуцированной. Природа закладывает в развивающийся мозг очень высокий запас прочности: при эмбриогенезе образуется большой избыток нейронов. Человеческий мозг продолжает терять нейроны и после рождения, на протяжении всей жизни. Такая гибель клеток генетически запрограммирована. Как же люди умудряются сохранить интеллект до весьма преклонных лет, если нервные клетки погибают и не обновляются?
Этот факт часто приводится в популярной и даже научной литературе. Однако такое мнение научно не обосновано и потому не может считаться достоверным. На самом же деле любая клетка одновременно и живет и "работает". В каждом нейроне все время происходят обменные процессы, синтезируются белки, генерируются и передаются нервные импульсы. Поэтому целесообразным будет обратить внимание к одному из свойств нервной системы, а именно - к ее исключительной пластичности. Смысл пластичности в том, что функции погибших нервных клеток берут на себя их оставшиеся в живых нервные клетки, которые увеличиваются в размерах и формируют новые связи, компенсируя утраченные функции.
Высокую, но не беспредельную эффективность подобной компенсации можно проиллюстрировать на примере болезни Паркинсона, при которой происходит постепенное отмирание нейронов. Значит, одна живая нервная клетка может заменить девять погибших. Но пластичность нервной системы - не единственный механизм, позволяющий сохранить интеллект до глубокой старости. У природы имеется и запасной вариант - возникновение новых нервных клеток в головном мозге взрослых млекопитающих и человека, или нейрогенез. Первое сообщение о нейрогенезе появилось в 1962 году в статье "Формируются ли новые нейроны в мозге взрослых млекопитающих? Ее автор, профессор Ж.
Он с помощью электрического тока разрушал латеральное коленчатое тело крысы и вводил туда радиоактивное вещество, проникающее во вновь возникающие клетки. Через несколько месяцев ученый обнаружил новые радиоактивные нейроны в таламусе и коре головного мозга. В дальнейшем аналогичное явление было установлено и другими исследователями в головном мозге птиц. В конце 1980-х годов нейрогенез был также обнаружен у взрослых амфибий в лаборатории ленинградского ученого профессора А. Откуда берутся новые нейроны, если нервные клетки не делятся? Источником новых нейронов и у птиц, и у амфибий оказались нейрональные стволовые клетки стенки желудочков мозга.
Во время развития зародыша именно из этих клеток образуются клетки нервной системы: нейроны и клетки глии. Но не все стволовые клетки превращаются в клетки нервной системы - часть из них "затаивается" и ждет своего часа. Новые нейроны появляются из стволовых клеток взрослого организма и у низших позвоночных. Аналогичный процесс происходит и в нервной системе млекопитающих рис. Основные пути дифференцировки клеток ганглионарной пластинки и нервной трубки Развитие нейробиологии в начале 1990-х годов привело к обнаружению "новорожденных" нейронов в головном мозге взрослых крыс и мышей. Их находили большей частью в эволюционно древних отделах головного мозга: обонятельных луковицах и коре гиппокампа, которые отвечают главным образом за эмоциональное поведение, реакцию на стресс и регуляцию половых функций млекопитающих.
Так же, как у птиц и низших позвоночных, у млекопитающих нейрональные стволовые клетки располагаются поблизости от боковых желудочков мозга. Их перерождение в нейроны идет очень интенсивно. Продолжительность жизни таких нейронов очень высока - до 112 дней. Стволовые нейрональные клетки преодолевают длинный путь около 2 см. Они также способны мигрировать в обонятельную луковицу, превращаясь там в нейроны. Стволовые клетки можно извлечь из мозга и пересадить в другой участок нервной системы, где они превратятся в нейроны.
Профессор Гейдж с коллегами провел несколько подобных экспериментов, наиболее впечатляющим среди которых был следующий. Участок мозговой ткани, содержащий стволовые клетки, пересадили в разрушенную сетчатку глаза крысы. Пересаженные стволовые клетки мозга превратились в нейроны сетчатки, их отростки достигли зрительного нерва, и крыса прозрела! Нейрогенез идет не только у грызунов, но и у человека. В этом убедились на основе анализа результатов эксперимента. В одной из американских онкологических клиник группа больных, имеющих неизлечимые злокачественные новообразования, принимала химиотерапевтический препарат бромдиоксиуридин.
У этого вещества есть важное свойство - способность накапливаться в делящихся клетках различных органов и тканей. Бромдиоксиуридин включается в ДНК материнской клетки и сохраняется в дочерних клетках после деления материнской. Патологоанатомическое исследование показало, что нейроны, содержащие бромдиоксиуридин, обнаруживаются практически во всех отделах мозга, включая кору больших полушарий. Значит, эти нейроны были новыми клетками, возникшими при делении стволовых клеток. Находка безоговорочно подтвердила, что процесс нейрогенеза происходит и у взрослых людей. Но если у грызунов нейрогенез идет только в гиппокампе, то у человека, вероятно, он может захватывать более обширные зоны головного мозга, включая кору больших полушарий.
Исследования показали, что новые нейроны во взрослом мозге могут образовываться не только из нейрональных стволовых клеток, но и из стволовых клеток крови. Оказалось, что стволовые клетки действительно проникают в мозг, но они не превращаются в нейроны, а сливаются с ними, образую двуядерные клетки. Затем «старое» ядро нейрона разрушается, а его замещает «новое» ядро стволовой клетки крови. Согласно одной из гипотез, стволовые клетки несут новый генетический материал, который, попадая в «старую» клетки мозжечка, продлевает его жизнь. Итак, новые нейроны могут возникать из стволовых клеток даже в мозге взрослого человека. Этот феномен уже достаточно широко применяется для лечения различных нейродегенеративных заболеваний заболеваний, сопровождающихся гибелью нейронов головного мозга.
Препараты стволовых клеток для трансплантации получают двумя способами. Первый - это использование нейрональных стволовых клеток, которые и у эмбриона, и у взрослого человека располагаются вокруг желудочков головного мозга. Второй подход - использование эмбриональных стволовых клеток. Эти клетки располагаются во внутренней клеточной массе на ранней стадии формирования зародыша. Они способны превращаться практически в любые клетки организма. Наибольшая сложность в работе с эмбриональными клетками — заставить их трансформироваться в нейроны.
Новые технологии позволяют сделать это. Трансплантация стволовых клеток, несомненно, будет одним из главных подходов в терапии таких нейродегенеративных заболеваний, как болезни Альцгеймера и Паркинсона. Термин «нейроглия» ввел в обиход немецкий патологоанатом Рудольф Вирхов для описания связывающих элементов между нейронами. Эти клетки составляют половину объема мозга. Нейроны — это высокоспециализированные клетки, существующие и функционирующие в строго определенной среде. Такую среду им обеспечивает нейроглия.
Нейроглия — вспомогательная и очень важная составная часть нервной ткани, связанная с нейронами. По мере специализации нейрона как индивидуальной клетки в процессе эволюции возникла организация более высокого порядка — межклеточное «сообщество» нейрона и нейроглии. Нейроглия не принимает непосредственного участия генерации и проведении нервных импульсов и, тем не менее, нормальное функционирование нейрона невозможно в отсутствии или при повреждении глии. Нейроглия выполняет следующие функции: опорную, трофическую, разграничительную, поддержание постоянства среды вокруг нейронов, защитную, секреторную. Клетки нейроглии не образуют синапсов. Различают глию центральной и периферической нервной системы.
Клетки глии центральной нервной системы делятся на макроглию и микроглию. Макроглия развивается из глиобластов нервной трубки и включает: эпендиму, астроглию и олигодендроглию. Эпендимоциты выстилают желудочки головного мозга и центральный канал спинного мозга. Эти клетки цилиндрической формы. Они образуют слой типа эпителия, носящий название эпендимы. Между соседними клетками эпендимы имеются щелевидные соединения и пояски сцепления, но плотные соединения отсутствуют, так что цереброспинальная жидкость может проникать между эпендимоцитами в нервную ткань.
Большинство эпендимоцитов имеют подвижные реснички, вызывающие ток цереброспинальной жидкости. Базальная поверхность большинства эпендимоцитов ровная, но некоторые клетки имеют длинный отросток, идущий глубоко в нервную ткань. Такие клетки называются таницитами. Они многочисленны в дне III желудочка. Считается, что эти клетки передают информацию о составе цереброспинальной жидкости на первичную капиллярную сеть воротной системы гипофиза. Эпендимный эпителий сосудистых сплетений желудочков продуцирует цереброспинальную жидкость ликвор.
Астроглию образуют астроциты. Астроциты — клетки отростчатой формы, бедные органеллами. Они выполняют в основном опорную и трофическую функции. Различают два типа астроцитов - протоплазматические и волокнистые. Протоплазматические астроциты локализуются в сером веществе центральной нервной системы, а волокнистые астроциты - преимущественно в белом веществе. Протоплазматические астроциты характеризуются короткими сильно ветвящимися отростками и светлым сферическим ядром.
Отростки астроцитов тянутся к базальным мембранам капилляров, к телам и дендритам нейронов, окружая синапсы и отделяя изолируя их друг от друга, а также к мягкой мозговой оболочке, образуя пиоглиальную мембрану, граничащую с субарахноидальным пространством. Подходя к капиллярам, их отростки образуют расширенные «ножки», полностью окружающие сосуд. Астроциты накапливают и передают вещества от капилляров к нейронам, захватывают избыток экстрацеллюлярного калия и других веществ, таких как нейромедиаторы, из экстрацеллюлярного пространства после интенсивной нейрональной активности. Олигодендроглию образуют олигодендроциты. Олигодендроциты — имеют более мелкие по сравнению с астроцитами и более интенсивно окрашивающиеся ядра. Их отростки немногочисленны.
Олигодендроглиоциты присутствуют как в сером, так и в белом веществе. В сером веществе они локализуются вблизи перикарионов. В белом веществе их отростки образуют миелиновый слой в миелиновых нервных волокнах, причем, в противоположность аналогичным клеткам периферической нервной системы — нейролеммоцитам, один олигодендроглиоцит может участвовать в миелинизации сразу нескольких аксонов. Микроглия образуют микроглиоциты, которые представляют собой фагоцитирующие клетки, относящиеся к системе мононуклеарных фагоцитов и происходящие из стволовой кроветворной клетки возможно, из премоноцитов красного костного мозга. Функция микроглии — защита от инфекции и повреждения, и удаление продуктов разрушения нервной ткани. Клетки микроглии характеризуются небольшими размерами, телами продолговатой формы.
Их короткие отростки имеют на своей поверхности вторичные и третичные ответвления, что придает клеткам «колючий» вид. Описанная морфология характерна для типичной ветвистой, или покоящейся микроглии полностью сформированной центральной нервной системы. Она обладает слабой фагоцитарной активностью. Ветвистая микроглия встречается как в сером, так и в белом веществе центральной нервной системы. В развивающемся мозгу млекопитающих обнаруживается временная форма микроглии — амебоидная микроглия. Клетки амебоидной микроглии формируют выросты — филоподии и складки плазмолеммы.
В их цитоплазме присутствуют многочисленные фаголизосомы и пластинчатые тельца. Амебоидные микроглиальные тельца отличаются высокой активностью лизосомальных ферментов. Активно фагоцитирующая амебоидная микроглия необходима в раннем постнатальном периоде, когда гематоэнцефалический барьер еще не вполне развит и вещества из крови легко попадают в центральную нервную систему. Считают также, что она способствует удалению обломков клеток, появляющихся в результате запрограммированной гибели избыточных нейронов и их отростков в процессе дифференцировки нервной системы. Полагают, что, созревая, амебоидные микроглиальные клетки превращаются в ветвистую микроглию. Реактивная микроглия появляется после травмы в любой области мозга.
Она не имеет ветвящихся отростков, как покоящаяся микроглия, не имеет псевдоподий и филоподий, как амебоидная микроглия. В цитоплазме клеток реактивной микроглии присутствуют плотные тельца, липидные включения, лизосомы. Есть данные о том, что реактивная микроглия формируется вследствие активации покоящейся микроглии при травмах центральной нервной системы. Рассмотренные выше глиальные элементы относятся к центральной нервной системе. Глия периферической нервной системы в отличие от макроглии центральной нервной системы происходит из нервного гребня. К периферической нейроглии относятся: нейролеммоциты или шванновские клетки и глиоциты ганглиев или мантийные глиоциты.
Нейролеммоциты и шванновские клетки формируют оболочки отростков нервных клеток в нервных волокнах периферической нервной системы. Мантийные глиоциты ганглиев окружают тела нейронов в нервных узлах и участвуют в обмене веществ этих нейронов. В отличие от нейронов нейроглия содержит малодифференцированные клетки способные к регенерации, размножению и развитию в течении всей жизни. Тема 4. Нервные узлы. Нервные волокна.
Нервные стволы нервы Нервные узлы ганглии. Нервные узлы, или ганглии, это скопления нейронов вне центральной нервной системы. Нервные узлы, расположенные в пределах центральной нервной системы, называются ядрами. Выделяют чувствительные и вегетативные нервные узлы. Чувствительные нервные узлы лежат по ходу задних корешков спинного мозга и по ходу черепно-мозговых нервов. Афферентные нейроны в спиральном и вестибулярном ганглии являются биполярными, в остальных чувствительных ганглиях - псевдоуниполярными.
Спинномозговой узел спинальный ганглий. Спинномозговой узел имеет веретеновидную форму, окружен капсулой из плотной соединительной ткани. От капсулы в паренхиму узла проникают тонкие прослойки соединительной ткани, в которой расположены кровеносные сосуды.
КР Нервная система 8 класс. Вариант Часть Нервные импульсы поступают непосредственно к железам по
Какая железа относится к железам внутренней секреции? Получается такая последовательность прохождения нервного импульса в анализаторе: 213. Эффектор — это нервное окончание эфферентного нейрона, передающее нервный импульс к рабочему органу (мышца, железа). Информация улавливается рецепторами, далее движется в виде импульсов по нервным клеткам и достигает головного мозга. Нервные импульсы поступают непосредственно к железам по 1) аксонам двигательных нейронов.
Нервные импульсы поступают непосредственно
Нервные импульсы поступают непосредственно к мышцам и железам по1)аксонам вставочных. По дендритам импульсы поступают к телу нервной клетки, а по аксонам от тела нервной клетки к другим нейронам или органам. Б. По аксону нервные импульсы поступают к телу другой нервной клетки. медиаторов нервного импульса.
Нервные импульсы поступают непосредственно к железам по
COM - образовательный портал Наш сайт это площадка для образовательных консультаций, вопросов и ответов для школьников и студентов. Наша доска вопросов и ответов в первую очередь ориентирована на школьников и студентов из России и стран СНГ, а также носителей русского языка в других странах. Для посетителей из стран СНГ есть возможно задать вопросы по таким предметам как Украинский язык, Белорусский язык, Казакхский язык, Узбекский язык, Кыргызский язык.
Путь нейрона по рефлекторной дуге.
Путь нервного импульса по рефлекторной дуге. Рефлекторная дуга по порядку нервного импульса. Порядок элементов рефлекторной дуги.
Чувствительный вставочный и двигательный Нейроны. Чувствительный Нейрон вставочный Нейрон двигательный Нейрон. Дыигалетные, чувствительные вставочнвставочные Нейроны.
Чувствительный вставочный и двигательный Нейроны функции. Мембрана нервной клетки схема. Схема передачи импульса нейрона.
Распределение зарядов и ионов на мембране нервной клетки. Схема проведения импульса в нейроне. Рефлекторная дуга чувствительный Нейрон.
Рецепторная рефлекторная дуга. Рефлекторная дуга вставочный Нейрон чувствительный Нейрон. Коленный рефлекс вставочный Нейрон.
Строение рефлекторной дуги кратко. Строение рефлекторной дуги чувствительности. Рефлекторная дуга нервной системы анатомия.
Рефлекторная дуга строение и функции. Схема сложной рефлекторной дуги соматического рефлекса. Рефлекторная дуга сгибательного рефлекса схема.
Структура и функции рефлекторной дуги. Схема рефлекторной дуги соматического рефлекса. Нейрон структурная и функциональная единица нервной системы.
Нейроны центральной нервной системы. Нервная клетка Нейрон. Строение рефлекторной дуги строение.
Рефлекс ЕГЭ рефлекторная дуга. Строение двухнейронной рефлекторной дуги. Соматическая рефлекторная дуга схема.
Нейроны спинного мозга схема. Строение спинного мозга Нейроны. Двигательный Нейрон в заднем корешке спинного мозга.
Спинной мозг строение рефлекторная. Схема сложной рефлекторной дуги спинномозгового рефлекса. Схема рефлекторной дуги головного мозга.
Схема дуги соматического спинального рефлекса. Строение рефлекторной дуги схема. Двигательные ядра переднего рога спинного мозга.
Функция нейронов боковых Рогов спинного мозга. Рефлекторная функция отделов спинного мозга. Рефлекторная дуга ЦНС.
Центральная и периферическая рефлекторные дуги. Нервно-рефлекторный метод. Рефлекторная дуга периферической нервной системы.
Строение рефлекторной дуги анализатора. Двигательный анализатор рефлекторная дуга. Аксон двигательного нейрона в рефлекторной дуге.
Общая схема строения рефлекторных дуг анализаторов.. Чувствительные Нейроны спинного мозга расположены. Где располагаются чувствительные Нейроны.
Тело чувствительного нейрона Аксон чувствительного нейрона. Где находится первый чувствительный Нейрон. Рефлекторная функция спинного мозга схема.
Функции рефлекторной дуги спинного мозга. Рефлекторная функция спинного мозга рефлекс. Рефлекторная дуга гемодинамического рефлекса.
Связь между нейронами. Нейронные механизмы. Схема рефлекторной дуги.
Рефлекторная дуга структура двигательной нервной клетки. Строение рефлекторной дуги спинного мозга. Схема Рецептор чувствительный Нейрон.
Рецептор чувствительный Нейрон ЦНС схема. Схема спинного мозга чувствительный Нейрон. Тип нейрона 1 двигательный 2 вставочный.
Чувствительный Нейрон ЦНС вставочный. Схема передачи двигательных импульсов между нейронами. Нейромедиаторы стресса.
Нейротрансмиттеры и нейромедиаторы.
Составные части пищеварительных соков — хлористоводородная кислота, желчные кислоты — также усиливают моторную функцию кишечника. При отсутствии пищеварения илеоцекальный сфинктер закрыт. В результате пищевая кашица небольшими порциями поступает в слепую кишку. Основной функцией проксимальной части толстых кишок является всасывание воды. Роль дистального отдела толстого кишечника состоит в формировании каловых масс и удалении их из организма. Всасывание питательных веществ в толстом кишечнике незначительно. Существенная роль в процессе пищеварения принадлежит микрофлоре — кишечной палочке и бактериям молочнокислого брожения. Бактерии в процессе своей жизнедеятельности выполняют полезные для организма функции.
Бактерии молочнокислого брожения образуют молочную кислоту, которая обладает антисептическим свойством. Бактерии синтезируют витамины группы В, витамин К, пантотеновую и амидникотиновую кислоты, лактофлавин. Микроорганизмы подавляют размножение патогенных микробов. Отрицательная роль микроорганизмов кишечника состоит в том, что они образуют эндотоксины, вызывают брожение и гнилостные процессы с образованием ядовитых веществ индол, скатол, фенол и в определенных случаях могут стать причиной заболеваний. Моторная функция толстого кишечника. Моторная функция толстого кишечника обеспечивает накапливание каловых масс и периодическое их удаление из организма. Кроме того, моторная активность кишечника способствует всасыванию воды. В толстом кишечнике наблюдаются перистальтические, антиперистальтические и маятникообразные движения. Все они осуществляются медленно.
Обеспечивают перемешивание, разминание содержимого, способствуют его сгущению и всасыванию воды. Толстому кишечнику присущ особый вид сокращения, который получил название масс-сокращение. Возникает масс-перистальтика редко, до 3—4 раз в сутки. Сокращения захватывают большую часть толстой кишки и обеспечивают быстрое опорожнение значительных ее участков. Регуляция моторной функции толстого кишечника. Толстый кишечник имеет интрамуральную и экстрамуральную иннервацию. Последняя представлена симпатическими нервами, которые выходят из верхнего и нижнего брыжеечных сплетений, и парасимпатическими, входящими в состав блуждающих и тазового нервов. Рефлекторные воздействия на двигательную активность толстого кишечника осуществляются во время еды, в результате возбуждения хемо- и механорецепторов желудка, двенадцатиперстной кишки и тонкого кишечника. Моторная функция толстого кишечника определяется и характером принимаемой пищи.
Чем больше в пище клетчатки, тем выраженнее моторная активность толстого кишечника. Формированию кала способствуют комочки слизи кишечного сока, которые склеивают непереваренные частицы пищи Дефекация — сложнорефлекторный акт опорожнения дистального отдела толстой кишки через задний проход. Дефекация наступает при растягивании прямой кишки каловыми массами. Осуществлению дефекации способствуют сокращения мышц диафрагмы и передней брюшной стенки, мышцы, поднимающей задний проход. Все это ведет к уменьшению объема брюшной полости и повышению внутрибрюшного давления. Центр рефлекса дефекации находится в пояснично-крестцовом отделе спинного мозга. Он обеспечивает непроизвольный акт дефекации. На этот центр оказывают влияние продолговатый мозг, гипоталамус, кора большого мозга. Нервные импульсы, поступающие от этих отделов центральной нервной системы к центру рефлекса дефекации, могут ускорить или замедлить акт дефекации.
Всасывание — универсальный физиологический процесс, который связан с переходом разного рода веществ через слой каких-либо клеток во внутреннюю среду организма. Благодаря всасыванию в желудочно-кишечном тракте организм получает всё необходимое для жизнедеятельности. Всасывание происходит на всем протяжении пищеварительного канала, но основным местом является тонкий кишечник. В ротовой полости всасываются некоторые лекарственные вещества. В желудке всасываются вода, минеральные соли, моносахара, алкоголь, лекарственные вещества, гормоны, альбумозы, пептоны. В двенадцатиперстной кишке также осуществляется всасывание воды, минеральных веществ, гормонов и продуктов расщепления белка. Основной процесс всасывания происходит в тонком кишечнике. Углеводы всасываются в кровь в виде глюкозы и отчасти в виде других моносахаров галактоза, фруктоза. Белки всасываются в кровь в виде аминокислот и простых пептидов.
Нейтральные жиры расщепляются ферментами до глицерина и жирных кислот. Вода, минеральные соли, витамины всасываются в кровь на всем протяжении тонкого кишечника. В толстом кишечнике также происходит всасывание воды и минеральных солей. Структурные и функциональные особенности тонкого кишечника, обеспечивающие его всасывательную активность. В слизистой оболочке тонкого кишечника обнаруживаются многочисленные круговые складки складки Керкринга , огромное количество ворсинок и микроворсинок. В центре каждой ворсинки имеется лимфатический сосуд млечное пространство или синус ворсинки. При отсутствии пищи в кишечнике ворсинки малоподвижны. Во время пищеварения ворсинки ритмически сокращаются, что облегчает всасывание питательных веществ. Механизм всасывания.
В обеспечении всасывания большую роль играют физические процессы — диффузия, фильтрация, осмос. Эпителий кишечника обладает односторонней всасывательной способностью. Всасывание различных веществ осуществляется только из кишечника в кровь или лимфу независимо от их концентрации по обе стороны мембраны. Пищевой центр — сложное образование, компоненты которого локализуются в продолговатом мозге, гипоталамусе и в коре большого мозга и функционально объединены между собой. Большая роль в регуляции всех этапов процесса пищеварения принадлежит ядрам гипоталамуса. Вентро-медиальные ядра гипоталамуса получили название «центра насыщения», латеральные — «центра питания». В регуляции процессов питания и пищеварения существенная роль принадлежит коре большого мозга, особенно тем ее отделам, которые являются мозговыми концами вкусового и обонятельного анализаторов.
Схема передачи нервного импульса к мозгу. Различают два вида отростков нервной клетки. Нервный Импульс от аксона к дендриту. Нервный Импульс по аксону проводится. По аксону Импульс проводится к телу нервной клетки. Передача импульса по аксону нейрона. Строение двигательного нейрона. Аксон нейрона. Природа нервного импульса. Механизм образования нервного импульса. Длина аксона. Аксон нейрит. Направление нервного импульса от аксона к телу клетки. Направлении проведения нервного импульса аксоном и дендритами. Нейрон проводящий нервный Импульс. Нервные импульсы от тела. Нервный Импульс генерируют Нейроны. Схема передачи нервных импульсов по нейронам. Скорость передачи нервных импульсов в теле человека. Скорость передачи импульса в нейронах. Нейроны афферентных путей. Нейрон структурно-функциональная единица нервной системы. Функциональное строение нервной системы. Структурно-функциональная характеристика нейронов. Нейрон строение и функции. Нейрон направление нервного импульса. Нейромедиатор это гормон. Нейромедиаторы представители. Нейромедиаторы мозга. Медиаторы и нейромедиаторы. Распространение нервного импульса по аксону. Нервные импульсы к телу нейрона идут по. Медиаторы нервных клеток. Медиаторы нервного импульса. Роль медиаторов в передаче импульсов.. Передача нервного импульса биохимия. Нервная клетка. Нейроны головного мозга. Двигательный Нейрон. Проводниковая функция спинного мозга. Проводниковая функция спинного мозга схема. Проводниковой функции спинного мозга. Схема проводниковой функции спинного мозга. Функции вставочного нейрона рефлекторной дуги. Рефлекс вставочные Нейроны. Нейрон, проводящий нервный Импульс от рецептора к ЦНС. Путь рефлекторной дуги. Рефлекторная и проводниковая функции спинного мозга. Рефлекторная и проводниковая функции. Рефлекторная функция спинного мозга. Строение нейрона. Строение тела нейрона. Отросток нервной клетки. Строение отростков нейрона. Передача импульса с нейрона на Нейрон. Передача нервного импульса в клетке. Этапы и механизмы синаптической передачи. Синаптическая передача нервного импульса механизм. Синапс этапы синаптической передачи. Структурные компоненты и функциональные участки нейрона. Структурно-функциональной единицей нервной ткани является. Схема строения двигательного нейрона. Нейрон основная структурно-функциональная единица нервной системы. Путь нейрона по рефлекторной дуге. Путь нервного импульса по рефлекторной дуге. Рефлекторная дуга по порядку нервного импульса. Порядок элементов рефлекторной дуги. Чувствительный вставочный и двигательный Нейроны. Чувствительный Нейрон вставочный Нейрон двигательный Нейрон. Дыигалетные, чувствительные вставочнвставочные Нейроны. Чувствительный вставочный и двигательный Нейроны функции.
Тест «Нервная система»
Нервная система. Общие сведения • Биология, Анатомия и физиология человека • Фоксфорд Учебник | Нервные импульсы поступают непосредственно к мышцам и железам по 1)аксонам вставочных нейронов 2)аксонам двигательных нейронов 3)белому веществу спинного мозга 4)серому веществу спинного мозга. |
Нервные импульсы поступают непосредственно к железам по - ВПР 2024 | Нервные импульсы поступают непосредственно к железам по1)аксонам двигательных. |
нервные импульсы поступают непосредственно к железам по 1)аксонам двигательных нейронов2)аксонам | Войти Регистрация. Биология. Нервные импульсы поступают непосредственно. |
Нервные импульсы поступают непосредственно | По какому нейрону нервные импульсы поступают из ЦНС к рабочему органу? |
ГДЗ по биологии 8 класс Драгомилов | Страница 47 | По аксонам нервные импульсы поступают к. Нервный Импульс в нейронах. |
КР Нервная система 8 класс. Вариант Часть Нервные импульсы поступают непосредственно к железам по
Нервная система. Общие сведения • Биология, Анатомия и физиология человека • Фоксфорд Учебник | 1. Нервные импульсы поступают непосредственно к железам по. |
Нервные импульсы поступают непосредственно к железам по | е импульсы поступают непосредственно к железам по. |
Как нервная система регулирует работу эндокринной системы?
2293 ответа - 29508 раз оказано помощи. Нервные импульсы поступают непосредственно к железам по 1) аксонам двигательных нейронов. е импульсы поступают непосредственно к железам по. Какая железа относится к железам внутренней секреции? Б) Передача нервных импульсов от внутренних органов в мозг. Половые железы (семенники у мужчин, яичники у женщин) относятся к железам со смешанной функцией, внутрисекреторная функция проявляется в образовании и секреции половых гормо-нов, которые непосредственно поступают в кровь.
Нервная система. Общие сведения
Информация улавливается рецепторами, далее движется в виде импульсов по нервным клеткам и достигает головного мозга. длинный отросток нервных клеток, по которым и выполняется эта работа. Получается такая последовательность прохождения нервного импульса в анализаторе: 213. Нервные импульсы поступают непосредственно к железам по 1) аксонам двигательных нейронов 2) аксо. Нервные импульсы поступают непосредственно к железам по. 1)аксонам двигательных нейронов. 2. Нервные импульсы поступают непосредственно к железам по.