На рубеже 19-20 веков изучение природы фракталов носило эпизодический характер.
Онлайн-курсы
- Математика в природе: самые красивые закономерности в окружающем мире
- Самое популярное
- Загадочный беспорядок: история фракталов и области их применения / Offсянка
- Исследовательская работа: «Фракталы в нашей жизни».
- Исследовательская работа: «Фракталы в нашей жизни». | Образовательная социальная сеть
Фракталы: что это такое и какие они бывают
В природе мы встречаем фракталы в изломах береговой линии, ветвях деревьев, прожилках листьев. Это значит, что плоский фрактал в некотором смысле «проще» настоящей плоскости, но «сложнее» прямой. Фракталы также встречаются в природе. Парк онлайн весной 2021. Фракталы в природе. Автор Мануйленко Никита. 97 фото | Фото и картинки - сборники.
Физики нашли фракталы в лазерах
А ведь эту конструкцию без чертежей и прогнозов строят множество пчел, которые одновременно работают и как-то координируют свои попытки сделать соты одинаковыми. Если вы подуете на пузырьки на поверхности воды, чтобы согнать их вместе, то они приобретут форму шестиугольников — или, по крайней мере, приблизятся к ней. Вы никогда не увидите скопище квадратных пузырей: если даже четыре стенки соприкоснутся, они немедленно перестроятся в конструкцию с тремя сторонами, между которыми будут примерно равные углы в 120 градусов. Почему так происходит? Пена — это множество пузырей. В природе существуют пенопласты из разных материалов. Пена, состоящая из мыльных пленок, подчиняется законам Плато, согласно которым три мыльные пленки соединяются под углом 120 градусов, а четыре грани соединяются в каждой вершине тетраэдра под углом 109,5 градусов. Затем по законам Плато требуется, чтобы пленки были гладкими и непрерывными, а также имели постоянную среднюю кривизну в каждой точке.
Например, пленка может оставаться почти плоской в среднем, имея кривизну в одном направлении например, слева направо , и в то же время искривляться в обратном направлении например сверху вниз. Лорд Кельвин сформулировал задачу упаковки клеток одного объема наиболее эффективным способом в виде пены в 1887 году; его решение — кубическая сота со слабо изогнутыми гранями, удовлетворяющими законам плато. Впоследствии эта структура была адаптирована для внешней стены Пекинского национального плавательного комплекса, построенного для проведения летних Олимпийских игр 2008 года. Природа озабочена экономией. Пузыри и мыльная пленка состоят из воды и слоя мыльных молекул , и поверхностное натяжение сжимает поверхность жидкости таким образом, чтобы она занимала наименьшую площадь. Поэтому капли дождя при падении принимают форму, близкую к сферической: у сферы наименьшая площадь поверхности по сравнению с другими фигурами того же объема. На восковом листке капли воды сжимаются в маленькие бусинки по той же причине.
Поверхностное натяжение объясняет и тот узор, который образуют пузыри или пена. Пена стремится к такой конструкции, при которой общее поверхностное натяжение будет минимальным, а значит, минимальной должна быть и площадь мыльной мембраны.
А они, в свою очередь, тоже принимают облик логарифмической спирали. Это «повторение за самим собой» воспроизводится несколько раз. По понятным причинам этот природный фрактал прекращается на более мелких уровнях: иначе цены бы не было этой «бесконечной капусте». Так выглядит природный фрактал — капуста сорта романеско: только посмотрите на её причудливую форму! Поэтому королевская бегония пользуется популярностью благодаря своим листьям. Они тоже имеют структуру фрактала.
Иногда листья образуют спирали — поэтому это необычное растение привлекает взгляд. Главное — не дать бегонии себя загипнотизировать! Природный фрактал может даже жить у вас на подоконнике: например, комнатная королевская бегония — отличный вариант nashzelenyimir. Да, здесь нет ничего самоподобного. Но если разрезать кочан напополам, вы увидите удивительный узор-спираль. Не один вид капусты стремится к такой математической форме — может, эти растения сговорились и планируют фрактальный захват мира? Красная капуста в разрезе тоже напоминает фрактальное подобие floweryvale. Все мы знаем, как выглядит часть этого растения — треугольник, состоящий из листьев они называются вайи , которые в свою очередь тоже образуют треугольник, подобный самому большому.
Существуют даже математические фракталы в виде папоротника. Например, британский математик Майкл Барнсли в своем труде «Фракталы повсюду» описал «фрактал-папоротник», который при приближении даёт воспроизведение начальной формы. Лист папоротника — типичный фрактал в природе mirzhvetov. А ведь этот «мягкий настил» — тоже фрактал! Особенно хорошо это видно на длинном мхе: его структура самоподобна. Попробуйте заняться макро-съёмкой: вы увидите, что фракталы не только рядом, но и у нас под ногами. Посмотрите, как мох разветвляется: этот природный фрактал, пожалуй, один из самых красивых krasivoe-foto. Однако на листьях фрактальность теряется — хотя, если не брать в счёт «мякоть» листа и оставить только прожилки, это можно считать продолжением «древесного» фрактала.
Кстати, а корневая система — это уже другое самоподобное множество. Но у всех них в основе строения лежит фрактальное подобие lensscaper.
Надо улучшить знания о начальных условиях - и все будет в порядке, и с монетой и с предсказанием погоды.
Сказал же Лаплас: дайте мне начальные условия для всей Вселенной, и я вычислю ее будущее. Лаплас ошибался: ему и его современникам не были известны примеры детерминированных динамических систем, прогноз поведения которых на длительное время нельзя осуществить. Лишь в конце XIX столетия французский математик Анри Пуанкаре впервые почувствовал, что такое возможно.
Однако прошло еще три четверти века, прежде чем началась эпоха бурного изучения детерминированного хаоса. Динамические системы можно условно разделить на два типа. У первых траектории движения устойчивы и не могут быть значительно изменены малыми возмущениями.
Такие системы предсказуемы - именно потому мы знаем, что Солнце взойдет завтра, через год и через сто лет. Для определения будущего в этом случае достаточно знать уравнения движения и задать начальные условия. Небольшие изменения в значениях последних приведут лишь к несущественной ошибке в прогнозе.
К другому типу относятся динамические системы, поведение которых неустойчиво, так что любые сколь угодно малые возмущения быстро в масштабе времени, характерном для этой системы приводят к кардинальному изменению траектории. Как отметил Пуанкаре в своей работе "Наука и метод" 1908 , в неустойчивых системах "совершен но ничтожная причина, ускользающая от нас по своей малости, вызывает значительное действие, которое мы не можем предусмотреть. Предсказание становится невозможным, мы имеем перед собой явление случайное".
Таким образом прогнозирование на длительные времена теряет всякий смысл. Пример с нелинейным колебательным контуром, рассмотренный выше, показывает, что хаотическое поведение с непредсказуемым будущим может иметь место даже в очень простых системах. Реконструкция прошлого Итак, прогноз будущего не всегда возможен.
А как обстоит дело с прошлым? Всегда ли можно реконструировать "предсказать", однозначно истолковать прошлое? Казалось бы, здесь проблем быть не должно.
Раз траектории удаляются одна от другой при движении вперед, они должны сближаться при движении назад. Так оно и есть. Однако направлений, по которым может происходить схождение или расхождение траекторий в фазовом пространстве, не одно, а несколько.
При движении как вперед, так и назад траектории могут сближаться по одной части направлений, но расходиться по другой. Прошлое "не предсказывается"? Бред какой-то!
Ведь что-то уже произошло. Все известно... Но давайте подумаем.
Если бы с реконструкцией прошлого все было так просто, как тогда могло случиться, что для одних Николай II по-прежнему кровавый, а для других святой? И кто все-таки Сталин: гений или злодей? Отвлечемся пока от проблемы, насколько вольны они были принимать те или иные решения, насколько эти решения предопределялись обстоятельствами и каковы могли быть последствия альтернативных решений.
Рассмотрим исторический процесс как динамику некоторой гипотетической хаотической системы. Тогда при попытке реконструкции прошлого мы столкнемся с быстро увеличивающимся числом вариантов траекторий , отвечающих нынешнему состоянию системы. Только один из них соответствует реальному течению событий.
Если выбрать не его, а какой-то другой, то получится уже искаженная "версия" истории. На основании чего выбирается правильная траектория "версия"? Информация, на которую мы можем опереться, - совокупность имеющихся конкретных фактов.
Траектории, несовместимые с ними, отбрасываются. В результате при наличии достаточного количества надежных фактов останется одна траектория, определяющая единственную версию истории. Однако даже для недалекого прошлого траекторий может оказаться значительно больше, чем достоверных сведений, - тогда однозначная трактовка исторического процесса уже не может быть произведена.
И все это при добросовестном и уважительном отношении к истории и к фактам. Теперь добавьте сюда пристрастия первичных источников, потерю части информации со временем, манипуляции с фактами на этапе интерпретации замалчивание одних, выпячивание других, фальсификация и др. И что интереснее всего, при необходимости те же самые интерпретаторы через некоторое время могут без труда утверждать противоположное.
Знакомая картина? Итак, динамическая природа "непредсказуемости" прошлого сходна с природой непредсказуемости будущего: неустойчивость траекторий динамической системы и быстрое нарастание числа возможных вариантов по мере удаления от точки отсчета. Чтобы реконстру ировать прошлое, кроме самой динамической системы нужна достаточная по количеству и надежная по качеству информация из этого прошлого.
Следует отметить, что на разных участках исторического процесса степень его хаотичности различна и может даже падать до нуля ситуация, когда все существенное предопределено. Естественно, что чем менее хаотична система, тем проще реконструируется ее прошлое. Управляем ли хаос?
Хаос часто порождает жизнь. Адамс На первый взгляд природа хаоса исключает возможность управлять им. В действительности все наоборот: неустойчивость траекторий хаотических систем делает их чрезвычайно чувствительными к управлению.
Пусть, например, требуется перевести систему из одного состояния в другое переместить траекторию из одной точки фазового пространства в другую. Требуемый результат может быть получен в течение заданного времени путем одного или серии малозаметных, незначительных возмущений параметров системы. Каждое из них лишь слегка изменит траекторию, но через некоторое время накопление и экспоненциальное усиление малых возмущений приведут к существенной коррекции движения.
При этом траектория останется на том же хаотическом аттракторе. Таким образом, системы с хаосом демонстрируют одновременно и хорошую управляемость , и удивительную пластичность: чутко реагируя на внешние воздействия, они сохраняют тип движения. Как считают многие исследователи, именно комбинация этих двух свойств служит причиной того, что хаотическая динамика характерна для поведения многих систем живых организмов.
Например, хаотический характер ритма сердца позволяет ему гибко реагировать на изменение физических и эмоциональных нагрузок, подстраиваясь под них. Известно, что регуляризация сердечного ритма приводит через некоторое время к летальному исходу. Одна из причин заключается в том, что сердцу может не хватить "механической прочности" для того, чтобы скомпенсировать внешние возмущения.
На самом деле ситуация более сложная. Упорядочение работы сердца служит индикатором снижения хаотичности и в других, связанных с ним системах. Регулярность свидетель ствует об уменьшении сопротивляемости организма случайным воздействиям внешней среды, когда он уже не способен адекватно отследить изменения и достаточно гибко на них отреагировать.
Очевидно, что подобной пластичностью и управляемостью должны обладать любые сложные системы, функционирующие в изменчивой среде. В этом залог их сохранности и успешной эволюции. От хаоса - к упорядоченности Как же обеспечивается целостность и устойчивость живых организмов и других сложных систем, если отдельные их части ведут себя хаотически?
Оказывается, кроме хаоса в сложных нелинейных системах возможно и противоположное явление, которое можно было бы назвать антихаосом. В том случае, если хаотические подсистемы связаны друг с другом, может произойти их спонтанное упорядочение "кристаллизация" , в результате чего они обретут черты единого целого. Простейший вариант такого упорядочения - хаотическая синхронизация , когда все связанные друг с другом подсистемы движутся хотя и хаотически, но одинаково, синхронно.
Процессы хаотической синхронизации могут происходить не только в организме животных и человека, но и в более крупных структурах - биоценозах, общественных организациях, государствах, транспортных системах и др. Чем определяется возможность синхронизации? Во-первых, поведением каждой отдельной подсистемы: чем она хаотичнее, "самостоятельнее" , тем труднее заставить ее "считаться" с другими элементами ансамбля.
Во-вторых, суммарной силой связи между подсистемами: ее увеличение подавляет тенденцию к "самостоятельности" и может, в принципе, привести к упорядочению. При этом важно, чтобы связи были глобальными , то есть существовали не только между соседними, но и между отстоящими далеко друг от друга элементами. В реальных системах, включающих большое число подсистем, связь осуществляется за счет материальных или информационных потоков.
Чем они интенсивнее, тем больше шансов, что элементы будут вести себя согласованно, и наоборот. Например, в государстве роль связующих потоков играют транспорт, почта, телефонная связь и др.
Фрактал — термин, означающий геометрическую фигуру, обладающую свойством самоподобия, то есть составленную из нескольких частей, каждая из которых подобна всей фигуре целиком. Многие объекты в природе обладают фрактальными свойствами, например, побережья, облака, кроны деревьев, кровеносная система и система альвеол человека или животных. Первые примеры самоподобных множеств с необычными свойствами появились в XIX веке. Термин «фрактал» был введён Бенуа Мандельбротом в 1975 году и получил широкую популярность с выходом в 1977 году его книги «Фрактальная геометрия природы».
Бесконечность фракталов. Как устроен мир вокруг нас
Когда вы думаете о фракталах, вам могут прийти на ум плакаты и футболки Grateful Dead, пульсирующие всеми цветами радуги и вызывающие завихрение сходства. Поскольку в природе мы часто наблюдаем фрактальные узоры, то искусственно созданный фрактальный трехмерный объект кажется невероятно реалистичным и даже «живым». Самым известным примером фракталов в природе является снежинка. Смотрите 65 фотографии онлайн по теме фракталы в природе животные.
Открытие первой фрактальной молекулы в природе — математическое чудо
Примеры фракталов в природе встречаются повсеместно: от ракушек до сосновых шишек. Красота фракталов состоит в том, что их "бесконечная" сложность сформирована относительно простыми линиями. Автор пина:Katrine. Находите и прикалывайте свои пины в Pinterest! Прекрасные фракталы в природе (18 фото) Морские раковины Nautilus является одним из наиболее известных примеров фрактала в природе. Одна из вещей, которые привлекли меня к фракталам, это их повсеместное распространение в природе.
Фракталы в природе
Превосходные бесплатные инструменты для создания трехмерных фракталов, таких как устрашающая Оболочка Мандельброта , загадочная «коробка» Мандельбокс и др. Mandelbulber несколько более функционален и быстр, но Mandelbulb3D чуть проще в использовании. По ссылке вы найдете множество других программ. Заключение Исследование фракталов началось в 1975 году. То есть фактически мы только приступили к изучению этой огромной и неизведанной территории. Фракталы выходят за рамки чистой математики, искусства, схожего с музыкой и поэзией, или практического инструмента решения прикладных задач. Они могут дать гораздо больше: например, объяснить явления, находящиеся вне нашего понимания при текущем развитии науки.
Стоило изменить масштаб графика, и картина каждый раз повторялась. При жизни Бенуа Мандельброт неоднократно говорил, что он не занимается формулами, а просто играет с картинками. Этот человек мыслил очень образно, а любую алгебраическую задачу переводил в область геометрии, где, по его словам, правильный ответ всегда очевиден. Неудивительно, что именно человек с таким богатым пространственным воображением стал отцом фрактальной геометрии. Ведь осознание сути фракталов приходит именно тогда, когда начинаешь изучать рисунки и вдумываться в смысл странных узоров — завихрений. Фрактальный рисунок не имеет идентичных элементов, но обладает подобностью в любом масштабе. Построить такое изображение с высокой степенью детализации вручную ранее было просто невозможно, на это требовалось огромное количество вычислений. Один из первых рисунков фрактала был графической интерпретацией множества Мандельброта, которое родилось благодаря исследованиям Гастона Мориса Жюлиа Gaston Maurice Julia приложение 6. Многие объекты в природе обладают фрактальными свойствами, например, побережья, облака, кроны деревьев, снежинки, кровеносная система и система альвеол человека или животных. Классификация фракталов Фракталы делятся на группы. Самые большие группы это: - геометрические фракталы; - стохастические фракталы. Геометрические фракталы Фракталы этого класса самые наглядные. Именно с них и начиналась история фракталов. Этот тип фракталов получается путем простых геометрических построений. В двухмерном случае их получают с помощью некоторой ломаной или поверхности в трехмерном случае , называемой генератором. За один шаг алгоритма каждый из отрезков, составляющих ломаную, заменяется на ломаную - генератор, в соответствующем масштабе. В результате бесконечного повторения этой процедуры, получается геометрический фрактал. Примерами геометрических фракталов могут служить: 1 Кривая Коха — фрактальная кривая , описанная в 1904 году шведским математиком Хельге фон Кохом. Три копии кривой Коха, построенные остриями наружу на сторонах правильного треугольника , образуют замкнутую кривую бесконечной длины, называемую снежинкой Коха приложение 7. Предложен французским математиком П. Инициатором является отрезок , а генератором является ломаная из восьми звеньев два равных звена продолжают друг друга приложение 9. Пифагор , доказывая свою знаменитую теорему , построил фигуру , где на сторонах прямоугольного треугольника расположены квадраты. Впервые дерево Пифагора построил А. Босман 1891 — 1961 во время Второй мировой войны , используя обычную чертёжную линейку приложение 11.
Но только Мандельброт увидел что-то общее в этих примерах и дал им описание. Бенуа Мандельброт. Фото: Yale University, www. В начале 60-х годов Мандельброт занимался экономикой, изучал динамику цен на хлопок. В то время почти все экономисты считали, что в долгосрочной перспективе цены зависят от внешних факторов, а в краткосрочной колеблются случайным образом. Однако Мандельброт сумел разглядеть в динамике цен закономерность — она практически не зависела от масштаба! Говоря другими словами, изменения цен за год и за месяц на графиках выглядели как две практически одинаковые кривые, несмотря на прошедшие за рассматриваемый период две мировые войны. Множество Жюлиа, www. В то же время научным сообществом его исследования воспринимались как нечто недостойное внимания. Отчасти это происходило из-за недостаточной на тот момент формальности теории, отчасти — из-за ее разрозненности. Большинство ученых просто не понимали, как и для чего можно применять эту теорию. Однако это не помешало ее дальнейшему развитию. Функция Вейерштрасса. Иллюстрация: Eeyore22, www. Сама же теория проделала долгий путь от рисования занимательных и необычных фигур и поиска их аналогов в реальном мире до практического использования при решении серьезных научных задач. Например, одно из свойств фракталов основано на их способности иметь дробную размерность. Рассмотрим в качестве примера необычную кривую Гильберта с размерностью, очень близкой к 2, и нарисуем ее на плоскости. Она будет настолько извилистой, что полностью займет всю предоставленную ей плоскость, при этом оставаясь кривой с бесконечной длиной. Аналогично можно представить объемную структуру с небольшим объемом и бесконечной площадью — это человеческие легкие. Способность поглощать кислород напрямую зависит от площади дыхательной поверхности легких, но при этом они должны занимать относительно небольшой объем. Именно поэтому небольшие человеческие легкие имеют дыхательную поверхность большую, чем стандартный теннисный корт. Теорию фракталов используют в материаловедении. Шероховатости и неровности, остающиеся на поверхности любого металла после его полировки или изготовления, имеют фрактальную природу. И более того, по ним можно предсказать прочностные характеристики металла — существует прямая зависимость между фрактальной размерностью и энергией, необходимой для разрушения металла. Аналогичные результаты были в исследованиях полимеров.
Почему так происходит? Пена — это множество пузырей. В природе существуют пенопласты из разных материалов. Пена, состоящая из мыльных пленок, подчиняется законам Плато, согласно которым три мыльные пленки соединяются под углом 120 градусов, а четыре грани соединяются в каждой вершине тетраэдра под углом 109,5 градусов. Затем по законам Плато требуется, чтобы пленки были гладкими и непрерывными, а также имели постоянную среднюю кривизну в каждой точке. Например, пленка может оставаться почти плоской в среднем, имея кривизну в одном направлении например, слева направо , и в то же время искривляться в обратном направлении например сверху вниз. Лорд Кельвин сформулировал задачу упаковки клеток одного объема наиболее эффективным способом в виде пены в 1887 году; его решение — кубическая сота со слабо изогнутыми гранями, удовлетворяющими законам плато. Впоследствии эта структура была адаптирована для внешней стены Пекинского национального плавательного комплекса, построенного для проведения летних Олимпийских игр 2008 года. Природа озабочена экономией. Пузыри и мыльная пленка состоят из воды и слоя мыльных молекул , и поверхностное натяжение сжимает поверхность жидкости таким образом, чтобы она занимала наименьшую площадь. Поэтому капли дождя при падении принимают форму, близкую к сферической: у сферы наименьшая площадь поверхности по сравнению с другими фигурами того же объема. На восковом листке капли воды сжимаются в маленькие бусинки по той же причине. Поверхностное натяжение объясняет и тот узор, который образуют пузыри или пена. Пена стремится к такой конструкции, при которой общее поверхностное натяжение будет минимальным, а значит, минимальной должна быть и площадь мыльной мембраны. Но конфигурация стенок пузырей должна быть прочной и с точки зрения механики: натяжение в разных направлениях на «перекрестке» должно быть идеально сбалансировано по тому же принципу нужен баланс при строительстве стен собора. Трехстороннее соединение в пленке из пузырьков и четырехстороннее — в пене — комбинации, которые достигают этого баланса. Читать далее.
Фракталы в природе: красота бесконечности вокруг нас
Фракталы - это геометрические фигуры, которые могут быть разделены на несколько частей, каждая из которых является копией всего фрактала. Таким образом, фракталы имеют бесконечно много деталей и масштабируются до любого размера. Одним из наиболее известных и влиятельных исследователей фракталов является Беноит Мандельброт, который в 1975 году ввел термин "фрактал" и разработал концепцию самоподобия. Самым известным примером фракталов в природе является снежинка. Как мы уже узнали, снежинки имеют сложную и красивую геометрию, которая состоит из множества лучей, каждый из которых имеет форму зигзага и петель. Эти лучи также могут быть разделены на множество более мелких лучей, каждый из которых является копией всего луча. Таким образом, снежинка является прекрасным примером фрактала в природе. Также примером фракталов в природе являются деревья.
Ветви деревьев имеют сложную структуру, которая может быть разделена на множество более мелких ветвей, каждая из которых является копией всего дерева.
Это позволило сжимать изображения, тысячи их упаковывать и хранить на компактных дисках. Фрактальные технологии дали возможность децентрализовать сети интернета, что делает их работу максимально устойчивой. Фрактальные формы в природе Где встречаются фракталы в природе? Фракталы как узоры и формы, повторяющие себя в разных масштабах, находим в живой и неживой природе. Это — деревья, реки, горы, растения, системы живых организмов и структуры Вселенной.
В живой природе каждому известны проявления фракталов: Кроны деревьев разветвляются на все более мелкие и тонкие ветви. Похожи на них сети жилок листьев. Аналогичное разветвление наблюдается в строении кровеносной, нервной, дыхательной системы человека и многих животных. Фрактальные формы ярко проявляются в строении ананасов, цветной капусты романеско, а также в спиралевидных бутонах цветов. Повторяются в себе множество раз формы кораллов, морских звезд, ракушек, улиток.
К примеру, у пациента, длительное время страдающего частичной закупоркой стенозом сосуда, со временем наблюдается появление новой сети мелких сосудов коллатералей , которые начинают доставлять кровь к обделённому участку в обход закупоренного.
Именно поэтому последствия инфаркта миокарда у возрастных больных с историей хронических сердечно-сосудистых заболеваний намного легче, чем у молодых пациентов. У возрастных больных кровоснабжение быстрей восстановится благодаря имеющимся коллатералям. Другими словами инфаркт в молодом возрасте опасней, чем в пожилом. Благодаря фрактальному строению коронарной системы, обеспечивающей кровоснабжение сердечной мышцы, во многих случаях удаётся избежать инфаркта миокарда. К тому же именно фрактальное строение сердечных мышечных волокон при повреждении какой-либо её части инфаркт миокарда зачастую позволяет сердцу продолжать свою работу. Фрактальное строение сердечной мышцы и коронарных сосудов.
Дыхательная система Дыхательная система ещё один яркий пример фрактала. Её структурными элементами являются трахея, бронхи, бронхиолы, которые в совокупности образуют бронхиальное дерево; а также альвеолы, соединяющиеся в пирамидальные дольки, из которых и состоит лёгкое. Удивительно, но благодаря фрактальному принципу строения лёгких, в человеческой грудной клетке возможно разместить площадь теннисного корта. Именно столько занимает дыхательная поверхность лёгких. Сами же дыхательные пути искусно пронизаны артериями и венами в виде лабиринтов. Строением бронхиальное дерево напоминает H-фрактал, о котором мы говорили в предыдущей части «Что такое фракталы?
Мир вокруг нас. Часть первая»: Рис. Изображение Н-фрактала и бронхиального дерева На рисунке 14 мы видим переплетение двух фрактальных систем — лёгочной слева и кровеносной справа. Говорить про фрактальное строение человеческого организма можно много. Мы приведем еще несколько примеров. В тканях пищеварительного тракта одна волокнистая поверхность встроена в другую.
Фрактальные ответвления или складки значительно увеличивают площадь поверхности, необходимой для всасывания в тонком кишечнике. Желчные протоки в печени и мочеполовая система, иммунная система и вестибулярный аппарат, сетчатка глаза, а также почки — всё это является фрактальными структурами, которые прекрасно организованы и хорошо подготовлены к различного рода повреждениям.
В 1872 году ученый представил свою работу в Королевской Академии наук в Пруссии. Используя определение производной как предела, он доказал, что отношение приращения функций к приращению аргумента становится сколь угодно большим при увеличении индекса суммирования. Данное открытие считалось новаторским для математических наук того времени, так как математики привыкли к тому, что функции задают гладкие кривые. Вторым ученым, который занимался исследованиями по данной тематике, является Георг Кантор. Именно этот ученый стал основоположником будущих открытий Мандельброта.
Будучи студентом Берлинского университета, Георг Кантор посещал лекции Вейерштрасса. Позднее данное множество получило название «множество Кантора». Следующим ученым, который сделал шаг на пути к открытию фрактальной геометрии, является Хельге фон Кох, построил кривую Коха, а в результате — снежинку Коха, которая является ярким примером фрактала. Хотя в то время ученые не оперировали такими определениями и фрактальной геометрии, как таковой, не существовало. Далее в марте 1918 года Ф. Хаусдорф ввел понятие хаусдорфовой размерности, которое стало значительным в исследовании фракталов.
Феномен жизни во фрактальной Вселенной
Бесконечность фракталов. Как устроен мир вокруг нас | Капитал страны | Посмотрите больше идей на темы «фракталы, природа, эрнст геккель». |
Фракталы вокруг нас | Посмотрите потрясающие примеры фракталов в природе. |
Фракталы в природе. | На рубеже 19-20 веков изучение природы фракталов носило эпизодический характер. |
Фрактальная вселенная. Цицин Ф.А. | Дельфис | Несмотря на то, что фрактальные фигуры были замечены в природе и сконструированы математиками уже довольно давно, впервые научно обосновать существование фракталов смог Бенуа Мандельброт лишь в 1970-х годах. |
Фракталы в природе презентация - 97 фото
неупо-рядоченные системы, для которых самоподобие выполняется только в среднем. Часто говорят, что мать-природа чертовски хороший дизайнер, а фракталы можно рассматривать как принципы дизайна, которым она следует, собирая вещи вместе. Поскольку в природе мы часто наблюдаем фрактальные узоры, то искусственно созданный фрактальный трехмерный объект кажется невероятно реалистичным и даже «живым».
Что такое фрактал, как он проявляется в природе и что еще о нем нужно знать
Природный фрактал | Пикабу | неупо-рядоченные системы, для которых самоподобие выполняется только в среднем. |
Созерцание великого фрактального подобия | Фракталы представляют собой довольно сложные для определения математические объекты, но в общих чертах их можно охарактеризовать как геометрические формы, состоящие из меньших структур, которые, в свою очередь, напоминают исходную целостную конфигурацию. |
Откройте свой Мир! | Смотрите 51 фото онлайн по теме фракталы в природе фото. |
Что такое фрактал? Фракталы в природе | Чтобы доказать свое утверждение, он вводит ключевое для теории фракталов понятие фрактальной размерности. |
Любопытные фото природы, которые успокоят | По определению Википедии фрактал — это бесконечно самоподобная геометрическая фигура, каждый фрагмент которой повторяется при уменьшении масштаба. |
Фракталы вокруг нас
Авторство: Sendker, F. Данный факт подчёркивает важность стохастических процессов в эволюции, демонстрируя, что сложные фенотипы могут возникать без явной адаптивной функции. Молекулярная основа фрактальной сборки Авторство: Sendker, F. Асимметрия и случайность могут играть ключевую роль в формировании структур с уникальными свойствами. Переосмысление эволюции: возникновение фрактальной структуры как нейтрального признака ставит под сомнение принцип адаптационизма, согласно которому все биологические структуры должны иметь эволюционное преимущество. Случайность и нейтральные мутации могут быть не менее важными факторами эволюционного процесса.
Так, например, изобретение вакцины может спасти множество людей, а создание нового вооружения приводит к убийству. Буквально вчера в масштабе истории человек «укротил» электричество, а сегодня уже не может представить свою жизнь без него. Однако существуют и такие открытия, которые, что называется, остаются в тени, причем несмотря на то, что они также оказывают то или иное влияние на нашу жизнь. Одним из таких открытий стал фрактал. Большинство людей даже не слышали о таком понятии и не смогут объяснить его значение. В этой статье мы попробуем разобраться с вопросом о том, что такое фрактал, рассмотрим значение этого термина с позиции науки и природы.
Порядок в хаосе Для того чтобы понять, что такое фрактал, следовало бы начать разбор полетов с позиции математики, однако прежде чем углубляться в точные науки, мы немного пофилософствуем. Каждому человеку присуща природная любознательность, благодаря которой он и познает окружающий мир. Зачастую в своем стремлении познания он старается оперировать логикой в суждениях. Так, анализируя процессы, которые происходят вокруг, он пытается вычислить взаимосвязи и вывести определенные закономерности. Самые большие умы планеты заняты решением этих задач. Грубо говоря, наши ученые ищут закономерности там, где их нет, да и быть не должно.
И тем не менее даже в хаосе есть связь между теми или иными событиями. Вот этой связью и выступает фрактал. В качестве примера рассмотрим сломанную ветку, валяющуюся на дороге. Если внимательно к ней присмотреться, то мы увидим, что она со всеми своими ответвлениями и сучками сама похожа на дерево. Вот эта схожесть отдельной части с единым целым свидетельствует о так называемом принципе рекурсивного самоподобия. Фракталы в природе можно найти сплошь и рядом, ведь многие неорганические и органические формы формируются аналогично.
Это и облака, и морские раковины, и раковины улиток, и кроны деревьев, и даже кровеносная система. Данный список можно продолжать до бесконечности. Все эти случайные формы с легкостью описывает фрактальный алгоритм. Вот мы подошли к тому, чтобы рассмотреть, что такое фрактал с позиции точных наук. Немного сухих фактов Само слово «фрактал» с латыни переводится как "частичный", "разделенный", "раздробленный", а что касается содержания этого термина, то формулировки как таковой не существует. Обычно его трактуют как самоподобное множество, часть целого, которая повторяется своей структурой на микроуровне.
Этот термин придумал в семидесятых годах ХХ века Бенуа Мандельброт, который признан отцом фрактальной геометрии. Сегодня под понятием фрактала подразумевают графическое изображение некой структуры, которая при увеличенном масштабе будет подобна сама себе. Однако математическая база для создания этой теории была заложена еще до рождения самого Мандельброта, а вот развиваться она не могла, пока не появились электронные вычислительные машины. Историческая справка, или Как все начиналось На рубеже 19-20 веков изучение природы фракталов носило эпизодический характер. Это объясняется тем, что математики предпочитали изучать объекты, поддающиеся исследованию, на основе общих теорий и методов. В 1872 году немецким математиком К.
Вейерштрассом был построен пример непрерывной функции, нигде не дифференцируемой.
При таком подходе компьютер хранит не готовый объект, а лишь формулу его отрисовки, что значительно экономит память. Таким образом, появляется возможность рисовать конкретные объекты и абстрактные 3D-модели, описывая лишь часть итогового изображения. Например, можно сгенерировать известный папоротник Барнсли, указав формулу для построения одной ветви, количество итераций и добавив хаотичные изменения на последующих итерациях: Закон, описывающий папоротник Барнсли Изображение: Лев Сергеев для Skillbox Media Изображение, сгенерированное по формуле Барнсли Изображение: Лев Сергеев для Skillbox Media Фракталы в физике Принципы построения фракталов используются в физике, в таких разделах, как гидродинамика, физика плазмы, электродинамика и радиоэлектроника. Одно из самых заметных изобретений в этой области — фрактальная антенна, которая была разработана американским инженером Натаном Коэном в 1995 году. Главное преимущество такой антенны заключается в её широком диапазоне рабочих частот. А ещё она занимает намного меньший размер, чем аналоги классической формы, и может выступать в качестве основы для подводных антенн.
А чуть позже инженеры научились строить антенны на основе фракталов Серпинского, кривых Пеано и того же фрактала Коха. Фракталы в природе Как уже было сказано ранее, стохастические фракталы подарили науке новый подход к описанию природных объектов и явлений. А всё потому, что горы, облака, молнии, реки, растения, клетки живых организмов и даже галактики обладают общим свойством самоподобия. Скажем, дерево Пифагора неслучайно получило своё название, ведь ветви деревьев ярче всего демонстрируют принцип самоподобия: Фото: Лев Сергеев для Skillbox Media Вот ещё несколько примеров стохастических фракталов в листьях и растениях: Фото: Лев Сергеев для Skillbox Media Вместо вывода: применение фракталов в жизни Сегодня фракталы широко используются в самых разных областях — от математики до искусства: С их помощью описывают различные явления классической механики, гидродинамики, электродинамики и геофизики. В телекоммуникациях они позволяют моделировать электромагнитные поля в сотовой и спутниковой связи. В биологии — точно описывать структуру природных объектов, моделировать и предсказывать их поведение. Медицина использует фракталы для исследования внутренних процессов в организме человека, изучения сердечного ритма, работы кровеносных сосудов и нервной системы.
В экономике на основе фракталов проводят анализ рынков и выявляют закономерности в поведении цен. В трёхмерной графике их используют для создания сложных текстур и моделей, таких как деревья, облака и морские волны. В искусстве и дизайне — когда нужно создать нестандартную «психоделическую» композицию, погрузить зрителя в новые измерения. Это лишь одни из многих способов применения фракталов. Область математики, которая занимается их изучением, довольно молодая, поэтому мы продолжаем наблюдать новые открытия по сей день. Больше интересного про код — в нашем телеграм-канале. Читайте также:.
Физика и другие естественные науки[ ] В физике фракталы естественным образом возникают при моделировании нелинейных процессов, таких, как турбулентное течение жидкости, сложные процессы диффузии-адсорбции, пламя, облака и т. Фракталы используются при моделировании пористых материалов, например, в нефтехимии. В биологии они применяются для моделирования популяций и для описания систем внутренних органов система кровеносных сосудов. Литература[ ] Среди литературных произведений находят такие, которые обладают текстуальной, структурной или семантической фрактальной природой.
Что такое фрактал?
- Художники интуитивно понимают привлекательность фракталов
- Случайность как художник: учёные обнаружили первую фрактальную молекулу / Оффтопик / iXBT Live
- Что такое фрактал, как он проявляется в природе и что еще о нем нужно знать
- Открытие первой фрактальной молекулы в природе — математическое чудо
- Идеи для фен-шуй
- Бесконечность фракталов. Как устроен мир вокруг нас | Капитал страны
Фракталы — потрясающая красота математики в природе
- Фракталы вокруг нас
- Уникальная сборка
- Рекомендуем
- Фракталы в природе
Прибыльная торговля с помощью фрактальности существует?
Это и есть яркое проявление фрактальной геометрии в природе. Роль её печени играют камни и песок, через который фильтруются макро загрязнения, и круговорот воды в природе, который отделяет молекулы воды от микро мусора. Природный фрактал Минералы, Родохрозит, Кристаллы, Природа, Фракталы, Из сети, Фотошоп мастер, Фейк. По определению Википедии фрактал — это бесконечно самоподобная геометрическая фигура, каждый фрагмент которой повторяется при уменьшении масштаба.