Новости светодиодная подсветка для телевизора

резко упала надежность. Преимущество жидкокристаллического телевизора — светодиодная подсветка, есть у всех LED моделей.

Принципы работы LED-телевизора и светодиодной подсветки

Но, естественно, и тут не обошлось без ложки дёгтя. Несмотря на все положительные моменты, устройство получилось ну уж слишком дорогим. Готовы ли Вы выложить 5. Вариант блока управления подсветкой с версией HDMI 1.

А усовершенствованную модель с HDMI 2. Инструкция по установке При монтаже светодиодной ленты стоит обратить внимание, что в комплектах с блоками управления, LED лента, как правило, разделена на две: верхнюю side и нижнюю bottom. Каждая из которых подключается к отдельному USB порту.

Далее, уже с помощью HDMI порта, блок управления соединяется с устройством ввода например, ТВ приставкой и устройством вывода например, проектором. Работает вся эта система от обычного блока питания, который нужно не забыть подключить к розетке. Из общей схемы подключения видно, что излишки светодиодной ленты оказываются на краю экрана, в завершении монтажа их нужно обрезать по аналогии с установкой обычной статичной LED подсветки по зоне контакта.

После того, как Вы запустите блок управления подсветкой нажатием кнопки питания, он самостоятельно определит подключенные устройства и адаптирует динамическую подсветку к происходящему на экране. Выводы В обзоре представлены лишь самые популярные, в настоящий момент времени, варианты установки и настройки аналогов подсветки Ambilight.

Может показаться, что большой экран — это хорошо.

Но, во-первых, не каждый может позволить себе поставить в комнату телевизор с большой диагональю — просто не хватит места. Во-вторых, желательно, чтобы у большого экрана было высокое разрешение. Формат HD обычно встречается в небольших бюджетных моделях, которые покупают для кухни или на дачу.

Если вам необходимо высокое качество изображения, оптимальным выбором будет Full HD или 4K. Второй вариант обеспечивает лучшую детализацию, картинка выглядит особенно реалистично. Толщина корпуса и вес Выше уже говорилось, что технология LED в современном телевизора дает возможность сделать корпус сравнительно тонким.

Но они могут быть потоньше и потолще. Это не имеет значения, если вы планируете разместить телевизор на тумбе или специальной стойке. Но если вы хотите повесить его на стену, лучше отдать предпочтение более тонкой и легкой модели.

При выборе настенного крепления обязательно обратите внимание на то, какой вес оно способно выдержать. Частота развертки Что значит этот параметр? Он показывает, насколько часто обновляется изображение на экране.

Например, если этот показатель — 60 Гц, значит, картинка в течение минуты обновится 60 раз. Если вы планируете покупку телевизора для просмотра фильмов и ТВ-передач, более высокая частота и не требуется. Модели с частотой развертки 120 Гц могут заинтересовать геймеров и тех, кто часто смотрит трансляции спортивных соревнований — на их экранах быстрые движения воспроизводятся особенно плавно.

Но если частота развертки превышает 120 Гц, можете быть уверены, что это — рекламная уловка. Покрытие экрана Есть два варианта — глянцевое и матовое. Глянцевое покрытие способствует передаче ярких, сочных, насыщенных цветов.

Функция подсветки LocalDimming меняет всё Однажды ЖК телевизоры сильно приблизились к светодиодным по уровню чёрного и контрастности. Сейчас практически всё, кроме EdgeLED, обладает этой функцией. Изначально эта функция была только в профессиональных ЖК дисплеях, но потом попала в потребительский сектор и просто перевернула рынок: ЖК вплотную подобрались к OLED почти по всем характеристикам и обогнали их по яркости. Идея проста: давайте, раз уж у нас тут в подсветке куча лампочек, управлять ими отдельно — превратим подсветку в такой себе недодисплей низкого разрешения, который будет помогать жидким кристаллам делать дело. Подсветка будет грубо накидывать картинку крупными мазками, а дальше мы будем её уточнять жидкими кристаллами и раскрашивать. Мы затемняем подсветку в тех областях, где изображение тёмное естественно, в меру возможности.

Например, у нас луна на фоне черного неба — давайте включим подсветку только под луной, а в остальных местах её ослабим. Такое поведение очень хорошо борется с проблемой плохого контраста и недочёрного цвета у ЖК дисплеев. Нет света — нет проблем со светом. Хотя подсветка и может затемняться где нужно, «подражая» яркости картинки в разных местах, разрешение у этой подсветки, мягко говоря, небольшое, даже у MiniLED с его десятками тысяч зон. Пикселей-то на дисплее миллионы, а не тысячи. Поэтому подсветка будет либо откусывать участки ярких объектов, занижая подсветку вблизи их краёв, либо наоборот, создавать толстые размытые ореолы вокруг ярких объектов на темном фоне.

MiniLED пытается в контраст. Эти смачные синие ореолы вокруг микроперсиков — артефакт дисплея, на самой картинке их нет. На DirectLED всё было бы ещё суровее Например, такой дисплей хорошо справится с луной на темном фоне, но вот со звездным небом — кучей маленьких белых точек — у него будут проблемы: вокруг звезд будут ореолы и разводы. Между близко расположенными звездами и вовсе будет не чёрный, а темно серый. Изделие будет отчаянно метаться между недобелым и светящимся чёрным, в итоге, завалит и то, и другое, и до кучи похоронит контраст с цветовым охватом. Но проблемы всё равно не уйдут, пока светодиодов меньше, чем пикселей.

А если будет столько же, сколько пикселей — то зачем нам вообще ЖК слой, у нас тут уже светодиодный телевизор. Локальное затемнение бывает у всех подсветок, кроме ртутных — эти слишком древние. Хотя, имхо, было бы забавно поставить в жидкокристаллический 8K дисплей вместо подсветки цветную плазменную панель FullHD. Жидкокристаллический плазменный телевизор не путать с PALC — там подсветка не плазменная. Спектр, цвета, контраст, яркость — всё это должно получиться идеальным. А если ещё сделать два слоя ЖК кристаллов, а цвета получать квантовыми точками...

На EdgeLED локальное затемнение ставят, но от там от него толку маловато. Благодаря этой функции, они могут держать уровень чёрного на уровне OLED, обгоняя, при этом, его по яркости. Мухлёж выдают только противные ореолы, засветки, и провал контраста в местах соседства ярких и тёмных областей, особенно, если они маленькие и их много. Но, справедливости ради, все эти ореолы и провалы подсветки заметны не так сильно. В случае локального затемнения в SLED технологии, то здесь цветные светодиоды дополнительно помогают картинке окрашиваться нужным образом, а не просто меняют яркость. Дальше цвет проходит через жидкие кристаллы и докрашивается дополнительно светофильтрами.

Теоретически, у такой подсветки тоже проблемы с ореолами, причём, эти ореолы цветные, а у двух соседних областей с яркими, но разными цветами, на месте резкого перехода с цветами происходит цирк. Однако, в большинстве случаев, это малозаметно — разрешение глаза по цвету ниже, чем по яркости. Здесь можно отследить забавную закономерность: по мере приближения качества картинки жидкокристаллического дисплея к светодиодному, количество светодиодов в подсветке ЖК экрана возрастает настолько, что эта подсветка сама постепенно превращается в светодиодный дисплей. Жидкие кристаллы Жидкие кристаллы используются как электронная версия жалюзи, чтобы заслонять или не заслонять свет в определённых пикселях, как-бы меняя прозрачность. Это жидкость, состоящая из очень вытянутых молекул, с одной стороны, воздействующих на свет, с другой — поддающихся управлению с помощью электрического поля. ЖК используют не только в дисплеях — из них, например, делают детекторы химических соединений, измерители давления и датчики ультразвука.

Оболочки живых клеток — это тоже лиотропные жидкие кристаллы. На деле эту аббревиатуру вешают только на старые-старые, первые, самые примитивные толстые ЖК телевизоры с подсветкой на ртутных лампах. Сами по себе жидкие кристаллы прозрачность менять не умеют, вместо этого они умеют поворачивать поляризацию света. В комбинации с поляризационными фильтрами это свойство можно использовать для регулировки прозрачности. Что такое поляризация понятным языком и понятными картинками Поляризация — это одно из свойств света. Люди поляризацию не различают, потому что у нас нет нужных органов чувств.

По этой причине феномен поляризации не является интуитивно понятным, и чтобы его объяснить, нужно много букв. Свет — это электромагнитные волны. Любые электромагнитные волны состоят из электрического и магнитного полей, которые колеблются с какой-то частотой, и при этом распространяются со скоростью света. В случае с видимым светом, эти колебания происходят сотни триллионов раз в секунду. Поля колеблются не «сильнее-слабее», а «выше-ниже», «левее-правее», то есть они ориентированы в пространстве. Направление колебаний электрического поля всегда перпендикулярно направлению колебаний магнитного поля.

Оба направления колебаний одновременно перпендикулярны направлению их распространения. В общем, все три направления перпендикулярны. Отсюда растут ноги таких картинок в учебнике физики. Типичные электромагнитные волны в типичном учебнике Электромагнитное поле, тем более волны электромагнитного поля — довольно сложный объёмный объект. Представьте себе, что из каждой точки некоторого объёмного трёхмерного пространства торчит сразу два вектора-стрелочки, при этом стрелочки не замерли, а шевелятся: колеблются волнами по определённым законам, как волна из болельщиков на стадионе. Если теперь взять какую-нибудь прямую, параллельную направлению распространения электромагнитных волн в этом объёмном пространстве, и скрыть все векторы-стрелочки, кроме тех, начальная точка которых лежит на этой прямой, то получится картинка выше.

Но это не важно. Важно другое: направление колебания поля — это и есть поляризация. Именно направление колебания, а не направление распространения. Например, поляризация может быть горизонтальной, или вертикальной. Или диагональной. Поляризация относительна и зависит от того, под каким углом смотришь — повернёшь голову на бок, и поляризация уже другая.

Может даже существовать вариант, когда направление поляризации постоянно меняется вместе с колебаниями электромагнитного поля — тогда получается закрученная электромагнитная волна. Светящийся объект обычно состоит из очень большого количества источников электромагнитных волн говоря упрощённо, каждая молекула выступает «антенной» — самостоятельным источником волн видимого спектра. При этом, направления колебания поля — поляризация — у каждого источника-молекулы случайные. Поэтому суммарно светящийся объект излучает электромагнитные волны сразу под всеми возможными углами поляризации. Из всех имеющихся колебаний мы можем отсечь только те, которые происходят в определённом направлении. Для этого существуют поляризационные фильтры.

Например, можно оставить только горизонтальную поляризацию, или вертикальную: Разумеется, возможны и промежуточные углы. В любом случае, поляризационный фильтр отсеет только волны, которые колеблются в определённом направлении. Остальные он не удалит полностью, вместо этого он будет их подавлять, и чем больше направление колебаний волны отклонено от направления поляризации в фильтре, тем сильнее он их подавит. В пределе подавление света будет максимальным, если волна колеблется перпендикулярно направлению поляризации фильтра. Свет, отражённый от воды, поляризован — его легко убрать поляризационным фильтром Поляризационные фильтры активно используют на объективах фотоаппаратов. Свет, отражающийся от неметаллических поверхностей, поляризуется.

При этом свет, падающий по касательной к поверхности, поляризуется сильнее, чем тот, который падает прямо. Этот эффект используется для удалений всяких бликов, туманов, дымок с отражениями на воде. В век вычислительной фотографии большую часть задач хорошо делают алгоритмы , но некоторые вещи оптика всё ещё делает лучше. Жидкие кристаллы не умеют менять прозрачность, вместо этого они поворачивают поляризацию света, проходящего через них. Или не поворачивают. Если поместить жидкие кристаллы в электрическое поле — то есть, подать напряжение — то так можно управлять, насколько именно они повернут или не повернут поляризацию.

Из двух поляризационных фильтров и жидких кристаллов между ними мы можем создать бутерброд с изменяемой прозрачностью — те самые электронные жалюзи: Берём свет. Горизонтальным поляризатором оставляем только горизонтальные волны. ЖК поворачиваем или не поворачиваем поляризацию вертикально. Вертикальным поляризатором удаляем всё, что не было повёрнуто вертикально. После горизонтального фильтра остаются горизонтальные волны — они не пробьются через стоящий дальше вертикальный фильтр. Но если в промежутке между горизонтальным и вертикальным фильтрами мы повернём волны с помощью жидких кристаллов — тогда они смогут пройти через второй фильтр.

Гипотетически жидкие кристаллы можно заменить поляризационным фильтром с двигателем, который бы его поворачивал, но на сегодняшний день это слишком сложно, дорого, ненадёжно и неэффективно, даже если использовать MEMC. Жидкие кристаллы инертны, и поворачиваются не мгновенно, поэтому у жидкокристаллических дисплеев есть проблема со шлейфами от быстро движущихся обьектов. Время полного переключения кристалла между двумя крайними состояниями называется временем отклика. Раньше оно измерялось десятками миллисекунд, сейчас некоторые дисплеи вплотную подобрались к показателю в 1 мс. Теперь разберём виды жидких кристаллов. Жидкие кристаллы TN TN англ.

При подаче напряжения спиральки распрямляются, и перестают разворачивать поляризацию — свет начинает блокироваться вторым поляризационным фильтром. В настоящее время единственный плюс TN — скорость. Бешеные геймерские мониторы с разверткой 500 Гц сделаны как раз из таких кристаллов, просто потому, что другие так быстро переключаться не умеют. С остальными характеристиками всё плохо — контрастность ужасная, углы обзора ужасные, точность ужасная, яркость ужасная. Распрямление скрученных кристаллов тяжело контролировать точно, поэтому матрицы TN, зачастую, имеют 6-битный цвет, а 8 бит достигается путём той самой ШИМ — кристалл «дрожит» между двумя положениями, и достигается промежуточная яркость. Интересно, когда доберутся до 1 КГц.

Впрочем, одна из возможных реализаций дисплеев светового поля потребует частоты обновления экрана в десятки МГц Когда говорят «TFT дисплей», зачастую, подразумевают именно TN-кристаллы. Напомню: TFT — это не тип дисплея, и не вид ЖК, а способ управления пикселями, он есть в любых дисплеях, даже в светодиодных. Чтобы хоть как-то улучшить углы обзора TN, на них стали наносить специальную плёнку. Её так и называют — film. Кроме того, при увеличении разрешения углы обзора TN матриц улучшаются, поэтому в современных дисплеях дела с углами обзора обстоят не так плохо, как раньше. Кристаллы не скручиваются, а просто поворачиваются в плоскости экрана.

Их положение можно очень точно регулировать, поэтому экраны с IPS-кристаллами имеют очень хорошие, точные и сочные цвета с 8-ми или даже 10-битной градацией. К недостаткам можно отнести медлительность и проблемы с чёрным цветом. Первые матрицы имели время отклика порядка 50 мс. Сейчас самые быстрые умеют переключаться за 5 мс — по современным меркам это не предел мечтаний, но неплохо. IPS в закрытом положении плохо блокирует свет, поэтому такие дисплеи вместо чёрного показывают серо-сине-фиолетовое марево. IPS дисплей может выручить подсветка с локальным затемнением, выключающая свет в областях, где он не нужен — тогда проблемы чёрного остаются только в виде ореолов вокруг ярких объектов.

Samsung выпускает свою, немного улучшенную версию IPS, и называет её PLS — расстояние между субпикселями чуть меньше, сами они чуть больше, поэтому такой дисплей чуть ярче, чем IPS, и плотность пикселей у него может быть выше. Это вещество немного сдвигает спектр в правильную сторону, благодаря чему цвета и улучшаются легче «пролезают» через светофильтры. Эти кристаллы тоже поворачиваются, только не в плоскости экрана, а перпендикулярно ему. Изначально кристаллы находятся в плоскости экрана вертикально. При подаче напряжения они поворачиваются перпендикулярно экрану, то есть как-бы смотрят торцом на наблюдателя. Долгое время VA означало, что у экрана средняя хуже, чем у TN, но лучше IPS скорость, средний уровень цветопередачи, отличный уровень чёрного и отличный контраст.

Потом VA развилась, победили проблему углов обзора, научились добиваться высокой точности цветопередачи — у субпикселей появились субсубпиксели , выключая и включая их можно достичь большего числа промежуточных состояний — а это повышает точность цвета. Сейчас это одни из самых распространённых типов матриц и в мониторах и телевизорах. Как покрасить свет? ЖК у нас или светодиодный телевизор — свет получен и дозирован. Теперь надо его покрасить. Красящие светофильтры Элементарно — это цветные стёкла.

Если стараться не погружаться в толщу физики, смысл такой: белая подсветка — это смесь всех возможных цветов. Светофильтр может пропустить какой-то один цвет из этого света, а все остальные нет. При этом, всё, что не пропущено, не исчезает, а трансформируется в тепло. Закон сохранения энергии никто не отменял. У светофильтров может быть не только разный цвет, но и разная плотность Например, если мы светим белым светом сквозь красное стекло, то из белого цвета стекло пропустит красный, а зелёный и синий цвет превратит в тепло. В результате получаем два недостатка: плохая энергоэффективность и низкая яркость — мы тут большую часть света просто гасим.

Если мы хотим сделать цвета точнее и насыщеннее, нам нужно сильнее фильтровать свет — для этого фильтр должен быть плотнее. Так мы сильнее погасим ненужные нам цвета, и оставим только то, что нужно. Но это влечёт за собой большую потерю яркости. Если хотим сделать такой дисплей ярче, мы должны светить белым светом ярче, чтобы после светофильтра больше оставалось. От этого больше кушаем энергии, светофильтр больше греется и греет остальные куски дисплея и т. Либо энергоэффективность и яркость, либо неплохие цвета.

Древнющее, дешёвое, прожорливое, очевидное и сердитое решение. Встречается как в ЖК, так и в светодиодных телевизорах. Красящие квантовые точки Свет — это электромагнитные волны. Оранжевый свет имеет частоту около 480 000 ГГц Квантовые точки — это особое вещество, каждая частица которого работает как антенна для электромагнитных волн. Частица-точка устроена так, что может поймать волны с одной частотой, преобразовать их в волны с другой частотой, и излучить обратно. В зависимости от размера частицы, она будет излучать ту или иную частоту.

И происходит это всё в видимом спектре — то есть с теми электромагнитными волнами, которые наши органы чувств умеют ловить, а наш мозг интерпретирует сигналы от этих органов чувств как цвет. На этих наномасштабах уже сильно заметно, что электромагнитная энергия не непрерывна — она квантуется на фотоны.

Установить монитор следует подальше от прямых источников света и на определенном расстоянии от стены. В противном случае подсветка не будет столь полезной и эффективной. Также экран обязательно должен находиться на уровне глаз.

Телевизор практичнее прикрепить к стене. В этом случае пространство вокруг него будет полностью свободным. Ничего не будет мешать работе подсветки. Дополнительным плюсом будет стена светлых оттенков. А стоит ли вообще устанавливать подсветку Конечно, каждый принимает решение самостоятельно.

Однако регулярный просмотр телевизора в темноте приводит к определенным неприятным последствиям. Начинает ухудшаться зрение, появляются головные боли. Установка потолочной подсветки делает обстановку комфортнее, но просмотр телевизора комфортнее не становится. Экран засвечивается, бликует, что приводит только к увеличению нагрузки на глаза. Решить проблему вечернего просмотра ТВ можно только одним способом, установить подсветку на заднюю поверхность устройства.

Заключение Современная система подсветки для телевизора и монитора — это практичное решение. Снижается нагрузка на глаза, не портится зрение. Изображение становится объемным и более интересным для восприятия. Даже заурядный фильм или игра превращаются в шедевр.

Самостоятельно ремонтируем LED подсветку в телевизоре LG

Почти двадцать лет назад компания Philips разработала и запатентовала технологию фоновой подсветки Ambilight для телевизоров. Чтобы модернизировать LCD-телевизоры начали использовать подсветку с помощью светоимитирующего диода – Light-Emitting Diode (сокращено LED). резко упала надежность. У современного OLED-телевизора 55″ Philips 55OLED807/12 четырехсторонняя подсветка Ambilight с динамической сменой цвета светодиодов под изображение на экране или ритм музыки. В телевизорах с этим типом подсветки не предусмотрены ЖК-экраны над массивами диодов.

Технологии подсветки в телевизоре

Почти двадцать лет назад компания Philips разработала и запатентовала технологию фоновой подсветки Ambilight для телевизоров. LED подсветка в современных телевизорах с экранами на жидких кристаллах на сегодня имеет несколько технологических решений. Решив купить качественную светодиодную ленту, вы можете существенно сократить расходы на электроэнергию, получив необходимое освещение. Светодиодные ленты в нашем каталоге предназначены для подсветки телевизоров и имеют подробные описания со всеми характеристиками.

Какие виды подсветки бывают в телевизорах

В светодиодной подсветке тоже не все просто, дело в том, что есть несколько типов ее, значительно разнящихся по принципу действия. Подскажите пожалуйста как переделать подсветку ЖК телевизора с LED подсветкой на светодиодную ленту? Выбирая же тип светодиодной подсветки для своего будущего телевизора, необходимо четко определиться с приоритетами. ЖК-панели со светодиодной подсветкой матрицы: как она устроена, каков принцип её работы?

Содержание:

  • Фоновая подсветка телевизора своими руками
  • Светодиодная led подсветка в телевизоре — что это?
  • Задать вопрос
  • Ложные субпиксели
  • Как устроена работа QLED-матрицы в экране телевизора
  • Подсветка телевизора в стиле "Ambilight"

Умный Свет - Ambilight подсветка телевизора

Светодиодная лента для подсветки клеится сзади телевизора по всему периметру. Характерные общие черты современной подсветки в мониторах и телевизорах. Специфические параметры технологии Edge LED. Светодиодная подсветка с функцией Ambilight работает на версии HDMI 2.0. Светодиодные ленты в нашем каталоге предназначены для подсветки телевизоров и имеют подробные описания со всеми характеристиками. USB светодиодная лента 5 В SMD 2835 светодиодная фоновая подсветка для телевизора 1 м 2 м 3 м 4 м 5 м теплый белый гибкий светодиодный светильник Рождественская лампа для домашнего декора.

Умный Свет - Ambilight подсветка телевизора

И на сегодня такие телеприемники составляют самый массовый и доступный сегмент телевизоров. Плазменные модели уже уходят с рынка, осталось всего несколько фирм продолжающих выпуск плазменных телевизоров и то это всего несколько новых моделей в 2014 году и при этом это не флагманские модели. А вот аппараты с OLED экранами экраны на светоизлучающих светодиодах относятся как раз к флагманским моделям, и их цена пока не позволяет перевести эти телевизоры в разряд массовых. Отличия LED от обычных LCD При использовании ламп для подсветки матриц было невозможно регулировать подсветку отдельно взятых участков экрана. Это приводило к тому, что контрастность LCD экранов была не достаточно высокой, что бы конкурировать с плазмой или даже еще живыми на то время кинескопами. Поэтому и пришли к решению использовать светодиоды для подсветки матрицы.

Например, некоторые образцы подсвечивают экран неравномерно, а по краям видны засветы. Виды и способы размещения Бытует мнение, что изготовление светодиодной ленты в домашних условиях не особо отличается с точки зрения финансовых затрат от приобретения готового варианта, а для тех, кто «не дружит» с физикой или паяльником, самостоятельное изготовление ленты может быть непосильной ношей. Также существует вариант установки готовой LED-лампы, она не будет требовать изобретательных операций с паяльником и программным обеспечением. Наиболее простой вариант размещения готовой светодиодной ленты для подсвечивания телевизора — по оборотной стороне крышки. Лента «садится» на клей по краю крышки, фиксация происходит не реже, чем каждые через 15 см для обеспечения прочности крепления. Более широкий шаг спровоцирует отлипание ленты при нагревании.

В углу ленту следует припаять или вам помогут угловые соединители. Иногда ленту подклеивают тонким скотчем для удобства использования, после приклеивания самой ленты к корпусу монитора скотч можно убрать. Следующим шагом будет соединение с блоком питания оптимальной мощности. Будет необходимо реле. Если его нет, то подойдет преобразователь на 12 вольт при наличии USB-выхода. Если происходит обеспечение питанием через USB-разъем с компьютера, то потребуется установить драйверы, пакет AmbiBox.

Это может вызвать некоторые трудности у тех, кто не имеет опыта работы с программным обеспечением. Также можно приобрести готовый вариант светодиодной ленты в интернет-магазине или обычном супермаркете. Такой вариант будет проще, но лента должна подходить по размеру под ваш телевизор, под его диагональ. Работает такая лента от обычной вилки, подключаемой к розетке. Система PaintPack будет представлять собой оптимальный вариант для монтирования к корпусу телевизора. Она имеет двустороннее подключение светодиодной ленты.

В ней имеются индикатор, разъемы для питания и последовательного подключения.

Технология локального затемнения обладает единственным минусом — эффектом местного помутнения, который образуется когда часть света из более ярких зон просачивается в соседние более темные, что в последствии осветляет на границе темный цвет. Заметить эффект помутнения на большинстве моделей довольно трудно, так как недостаток непосредственно связан с количеством зон локального затемнения позади экрана, а производители предоставляют подобную информацию далеко не всегда.

При использовании стандартной подсветки с использованием CCFL ламп и в большинстве LCD телевизоров с боковой LED подсветкой, все источники подсветки светлеют или тускнеют одновременно так называемое «глобальное затемнение» , но среди моделей телевизоров Samsung и LG редко встречаются дисплеи с боковой LED подсветкой, которые также могут работать по принципу локального затемнения » precision dimming » у Samsung и «LED Plus» у LG. Говоря проще, это бутафория локального затемнения. Тонкие модели с боковой LED подсветкой конечно страдают от неравномерности засветки экрана, но далеко не все.

Основная особенность телевизоров с боковой LED подсветкой — тонкий корпус, в связи с этим трудно обеспечить равномерность распределения светового потока по всей плоскости экрана. При покупке телевизора воспроизведите на экране дисплея с боковой LED подсветкой изображение белой поверхности, чтобы проверить отсутствие по краям экрана более яркие областей. Аналогично, когда экран заполнен черным полем, края не должны выглядеть более светлыми серыми.

Уровень черного цвета при использовании LED подсветки и возможном смещении угла зрения на 1-2 метра влево или вправо падает. Нельзя забывать и о энергоэффективности LED подсветки. Конечно, на потребление любой модели значительно влияют размер экрана и яркость источников подсветки.

LCD модели телевизоров обеих разновидностей LED подсветки значительно более энергоэкономичны, в сравнении с плазменными моделями.

ТВ-каналы не подключены и не нужны. Сначала нужна светодиодная лента, я так подумал и решил брать на 12в, чтобы ток был меньше, и нагрузка на провода тоже меньше. Стоит примерно 1300р в сумме.

Начинаем пайку Задумка такая — соединить 4 сегмента ленты. При соединении важно учитывать "направление" — отмечено стрелкой на ленте. Провод сигнальный подпаивается к "началу" ленты и далее идёт последовательно по всем сегментам, последний сегмент с первым не соединять! Сигнальный провод втыкается в ардуину.

Лучше припаять, но я просто залудил и воткнул в панельку, сидит плотно.

Отзывы, вопросы и статьи

  • Что такое LED-телевизоры и в чем их преимущество для телезрителя
  • Моя первая покупка: светодиодная подсветка для телевизора
  • Как заменить светодиод в подсветке телевизора?
  • Подсветка для TV своими руками
  • Умный Свет - Ambilight подсветка телевизора
  • LED (Light Emitting Diode) – Что это такое в телевизорах и принцип работы экранов на светодиодах

Похожие новости:

Оцените статью
Добавить комментарий