Ученые хотят использовать Телескоп Горизонта Событий, чтобы заснять на видео, как черная дыра Sagittarius A* в центре нашей галактики затягивает в себя то, что находится вокруг. Об этом в ходе пресс-конференции объявили участники "Телескопа горизонта событий" (Event Horizon Telescope, или EHT).
Черную дыру впервые разглядели в телескоп
Телескоп Event Horizon показал магнитные поля вокруг черной дыры Стрелец А* | Данные проекта «Телескоп горизонта событий» позволили ученым получить изображение тени сверхмассивной черной звезды. |
Впервые в истории опубликована фотография черной дыры галактики — 12.05.2022 — В мире на РЕН ТВ | Их получила обсерватория «Телескоп горизонта событий» (Event Horizon Telescope), объединившая в глобальную сеть несколько крупнейший радиотелескопов, разбросанных по разным континентам. |
Телескоп Event Horizon будет зондировать тайны пространства
Эти данные записывались на высокопроизводительные жесткие диски, наполненные гелием, а затем отсылались на высокоспециализированные суперкомпьютеры — так называемые корреляторы — в Институте радиоастрономии Макса Планка и обсерватории Хэйстек MIT для суммирования. Эти данные после сложнейших процедур обработки с использованием новейших вычислительных методов, разработанных участниками коллаборации, преобразовывались в изображения. Исследования черных дыр — одно из научных направлений физиков Объединенного института ядерных исследований. Пожалуй, самый известный из работающих в этой области дубненских физиков — профессор Дмитрий Фурсаев, сотрудник Лаборатории теоретической физики ОИЯИ и ректор Госуниверситета "Дубна". За свои научные достижения он вошел в топ-5 ректоров российских вузов.
In 2019, EHT reported the first-ever picture of the black hole with the observation of the nuclear black hole in the galaxy M87 EHT Collaboration et al. I carried out the following steps of the receiver development from inception to implementation: 1 electromagnetic simulations of the millimeter receiver components, 2 assembly of specially manufactured components, 3 system testing, and 4 the software development.
Study of the quasar has shown it to be optically violent—and it is also a blazar; a type of quasar that is oriented such that its jets point nearly directly toward the Earth. By combining data from multiple telescopes, the research team was able to create two images. Both show brightness at the southern end of one jet, which the researchers believe is a radio core. The resolution of the images was high enough that two components of the core were visible. The group was also able to calculate the polarization of the light emitted from the different parts of the structures visible in the images they created and to map the magnetic fields in the jets.
The findings are published in The Astrophysical Journal. Quasars are types of active galactic nuclei that are believed to be powered by black holes , generally of the supermassive type. And while black holes do not emit light, the material they pull toward them does as it becomes heated, leading to the brightness typically associated with quasars. Such material, which is converted to plasma, moves past the black hole at a very high rate of speed, which is why they are called jets. Data for this new effort was obtained by the EHT telescope array going back to 2017.
Event Horizon Telescope captures images of NRAO 530 quasar
Эти объекты хорошо изучены в ходе реализации международного проекта «Телескоп горизонта событий» и по данным наблюдений на других интерферометрах со сверхдлинными базами. Первая сверхмассивная черная дыра, изображение окрестностей которой было получено при помощи Телескопа горизонта событий, предоставила также и то, что исследователи называют «однозначным доказательством вращения черных дыр». Консорциум Event Horizon Telescope (EHT) с 2006 года работал над тем, чтобы получить снимок горизонта событий сверхмассивной черной дыры. Результаты 11 новостей.
Search code, repositories, users, issues, pull requests...
С помощью телескопа ученые смогут оценить астробиологический потенциал Энцелада и Титана, под поверхностью которых предположительно есть океаны с условиями, пригодными для живых организмов. Анализ химического состава этих миров поможет ученым исследовать особенности взаимодействия океана с поверхностью спутника и ответить на вопрос, есть ли там жизнь. В погоне за «кротовыми норами» В объектив «Миллиметрона» попадут также центральные области активных ядер галактик. По всей видимости, это сверхмассивные черные дыры, но нельзя исключать, что некоторые из них окажутся «кротовыми норами». Поиск «кротовых нор» — одна из самых интересных и захватывающих задач «Миллиметрона». В отличие от черных дыр, эти таинственные объекты в космосе наблюдателями пока не обнаружены. На сегодняшний день «кротовая нора» — это гипотетическое явление, существование которого допускается общей теорией относительности. Она предположительно состоит из двух входов, своеобразных порталов, которые могут располагаться на значительном удалении друг от друга, возможно, даже в разных Вселенных. Открытие этих объектов произвело бы революцию в наших представлениях о пространстве и окружающем мире. Благодаря своим параметрам «Миллиметрон» сможет приблизиться к разгадке этой тайны.
Статус проекта Как рассказали Сергей Лихачев и Евгений Голубев, в настоящее время создается ряд опытных образцов различных составных частей космической обсерватории. Один из самых высокотехнологичных образцов — система раскрытия главного зеркала. Помимо раскрытия лепестков и их фиксации в рабочем положении с высокой точностью, она выполняет функции силовой конструкции главного зеркала для восприятия нагрузок выведения на ракете-носителе. Когда зеркало «Миллиметрона» раскроется, оно должно будет зафиксироваться с погрешностью не более 1 мм — сложнейшая задача, учитывая его габариты. Однако она выполнима: прежде на конструкторско-технологическом макете главного зеркала была достигнута точность раскрытия 0. Как объяснил Евгений Голубев, последнее слово остается за опытным образцом: «А опытный образец уже должен подтвердить это требование для полной снаряженной массы конструкции зеркала. Испытания опытного образца главного зеркала потребуют создания уникальной системы обезвешивания, предназначенной для компенсации влияния силы тяжести на конструкцию в наземных условиях». Изготовление составных частей, сборка и испытания модуля полезной научной нагрузки будут проводиться на предприятии «Информационные спутниковые системы» имени академика М.
Поляризованный свет помогает уменьшить блики от ярких источников света, что и позволило команде учёных получить более чёткое представление о краях черной дыры и составить карту линий магнитного поля. Благодаря поляризации света эти изображения показывают удивительно подробную и упорядоченную магнитную структуру вокруг чёрной дыры. Мы можем «видеть» и понимать геометрию магнитного поля. А учитывая, что оно играет ключевую роль в процессе выброса ими быстрых и длинных струй, подобные исследования также позволят лучше понимать природу этих экстремальных явлений. На нём можно увидеть структуру магнитного поля вдоль струи.
Как это возможно, астрофизики пока не могут сказать, но они склоняются в пользу того, что выбросы черной дыры действительно могут быть направлены в сторону Земли. В прошлом, как отмечает Иссаун, подобное совпадение казалось им крайне неправдоподобным, однако наблюдения и EHT, и GMVA вполне однозначно говорят в пользу этого сценария. Ученые надеются, что окончательный ответ на эту загадку будет найден в ближайшее время, когда астрономы завершат обработку последней порции данных с EHT. Новые, более детальные снимки, очищенные от помех схожим образом, точно укажут на то, куда смотрит джет черной дыры и есть ли он у нее вообще, заключает астроном.
Чтобы получить ее изображение, астрономы синхронизировали работу восьми радиообсерваторий, расположенных на разных континентах, при помощи атомных часов и суперкомпьютеров. В 2019 году та же команда ученых опубликовала первое в истории фото черной дыры — M87 в галактике Мессье 87. Фотографии двух столь разных по размеру черных дыр позволят ученым сравнить их и найти различия. Также изображения дают новые данные для проверки теорий поведения газа вокруг сверхмассивных черных дыр.
Опубликован первый снимок гигантской черной дыры в Млечном Пути
Это интересно: Что скрывают звезды, вращающиеся вокруг сверхмассивной черной дыры в центре нашей галактики? Телескоп горизонта событий Телескоп горизонта событий EHT улавливает излучение, испускаемое частицами внутри аккреционного диска черной дыры: пятнистое гало на полученных изображениях показывает свет, искривляемый мощной гравитацией черной дыры. Event Horizon Telescope работает как единое целое Event Horizon Telescope — это глобальный радиоинтерферометр со сверхдлинной базой. Свое название EHT получил в честь «горизонта событий» — точки в пространстве, покинуть которую не может даже свет.
И если говорить простым языком, то EHT, по сути, образует единый виртуальный телескоп «размером с Землю». Целью будущих исследований может стать «Единорог» — ближайшая к Земле черная дыра Все восемь радиотелескопов на разных континентах синхронизируются друг с другом при помощи атомных часов и суперкомпьютеров для обработки данных. Стоимость этого уникального проекта составляет около 60 миллионов долларов, 28 из которых поступили от Национального научного фонда США.
Снимок, представленный на официальной пресс-конференции 12 мая, составлен из нескольких тысяч изображений черной дыры. Еще больше интересных статей о звездах, галактиках и тайнах Вселенной читайте на нашем канале в Яндекс. Там регулярно выходят статьи, которых нет на сайте В конечном итоге ученые надеются, что наблюдение за целым рядом черных дыр, как довольно спокойных, так и турбулентных, может помочь ответить на многочисленные вопросы об эволюции галактик — сегодня ответа на вопрос о том, что появилось раньше — галактика или черная дыра — не существует.
Еще один немаловажный аспект нового открытия — это эмоциональная связь с сердцем родной Галактики.
Он может сделать поворот на 90 градусов или даже развернуться и направиться в обратную сторону. Чем ближе траектория луча к черной дыре, тем сильнее изменения. Лучи света движутся мимо черной дыры со всех сторон, но мы видим только те, которые направлены на нас. Таким образом, черная дыра может служить очень мощной линзой.
Следовательно, мы должны видеть тонкий круг света, или фотонное кольцо. Правая сторона кольца будет ярче из-за вращения черной дыры. Размер кольца зависит от массы черной дыры, а яркость более ярких областей зависит от скорости вращения. Однако на изображении черной дыры М87 фотонного кольца нет, потому что пространство между ней и Землей не полностью пустое.
В центральной части такого диска находится тень — тёмное пятно, которое и указывает на присутствие чёрной дыры. Но для подтверждения или опровержения столь радикальных выводов, видимо, нужно подождать мнения большего числа специалистов. Астрономы почти пятьдесят лет подозревали, что сверхмассивный и компактный объект в центральной части Галактики существует. Такой вывод следовал из наблюдений за движением звёзд и квазизвёздных объектов вблизи центра Млечного Пути. На небесной сфере центр нашей Галактики виден в южном созвездии Стрельца и легко узнаваем в виде широкого и яркого «пятна» на этом участке дуги Млечного Пути как на открывающей эту статью картинке. Особенности траекторий указывали, что этот газовый и звёздный материал вращается вокруг некоторого компактного космического тела с огромной массой. Оценки дают массу этого объекта в четыре миллиона масс Солнца, а за его открытие в 2020 году была присуждена Нобелевская премия по физике об этом можно прочитать в более подробном материале. Для получения изображения чёрной дыры в радиодиапазоне использовались массивы радиоантенн в разных точках планеты. Таким образом создаётся виртуальный радиотелескоп размером с Землю: обсерватории на разных континентах работают как части одной антенны-«тарелки», собирающей космическое радиоизлучение. Снимку посвящён специальный выпуск The Astrophysical Journal Letters от мая 2022 года, в котором опубликовано шесть статей коллаборации EHT о разных аспектах наблюдений и обработки данных.
Особый интерес вызывает поиск «кротовых нор» — своеобразных порталов между галактиками, существование которых пока рассматривается только в теории. Космическая обсерватория «Миллиметрон» в каком-то смысле является продолжателем традиций «Спектра-Р» — первого аппарата серии для исследования Вселенной, запущенного на орбиту в 2011 г. И это закономерно, учитывая, что разработчиком обоих проектов является одна организация — Астрокосмический центр АКЦ Физического института имени П. Однако «Миллиметрон», в отличие от предшественника, будет работать в двух режимах — одиночном и режиме интерферометра — в кооперации с наземными телескопами. На каждом этапе инструмент обеспечит непревзойденную зоркость. Высочайшая чувствительность во время «сольной» работы будет достигнута благодаря глубокому охлаждению, которое защитит бортовую аппаратуру от «теплового шума». А режим интерферометра предполагает, что вместе с наземными радиотелескопами «Миллиметрон» сможет образовать систему, работающую как одно огромное чуткое электронное око. Эта связка даст возможность получить гигантское угловое разрешение 3. Что касается диапазона исследований, то у «Миллиметрона» он будет беспрецедентно широким — с длиной волны от 70 мкм тепловое излучение средней длины до 10 мм миллиметровые волны , в то время как предшественник вел наблюдения в чистом радиодиапазоне. В числе отличий и координаты точки назначения: «Спектр-Р» вглядывался в бесконечность, вращаясь вокруг Земли по эллиптической орбите, а «Миллиметрон» для выполнения своей миссии направится в точку Лагранжа L2, находящуюся на прямой линии между Солнцем и нашей планетой на расстоянии 1. Орбита в окрестности точки L2 была выбрана главным образом для обеспечения охлаждения до сверхнизких температур. Из рода «Спектров» Было запланировано создать четыре обсерватории серии «Спектр» для изучения астрономических объектов в различных диапазонах электромагнитных волн. Первый аппарат — «Спектр-Р» — стартовал в 2011 г. Отправленная на орбиту летом 2019 г. В середине десятилетия эстафету подхватит разрабатываемый аппарат «Спектр-УФ», который будет собирать информацию о далеких объектах в ультрафиолете. Завершит масштабный проект обсерватория «Спектр-М», чьей задачей станет исследование Вселенной в миллиметровом и инфракрасном диапазонах. Космический цветок Главное зеркало «Миллиметрона», где отразятся ответы на загадки Вселенной, отправится в космическое путешествие аккуратно сложенным и раскроется как огромный космический цветок сразу по выведении на орбиту. После этого его полет к точке L2 составит еще три месяца.
Джеймс Уэбб поможет найти жизнь в Солнечной системе
- Блазар: цель телескопов, снявших силуэт черной дыры
- Event Horizon 💻 – Telegram
- Новый покупатель
- Астрономы впервые рассмотрели фотонное кольцо черной дыры
- Астрономы показали первое в истории изображение черной дыры
Newsletters
- Опубликован первый снимок гигантской черной дыры в Млечном Пути
- Поделиться
- Комментарии
- A story of overcoming differences between people and telescopes
- Новый телескоп поможет с поиском планет, напоминающих Землю
Photographing a black hole
В прямом эфире астрофизики из проекта Event Horizon Telescope («Телескоп горизонта событий») продемонстрировали изображения чёрной дыры в галактике Messier 87, удалённой от Земли на 50 млн световых лет. Их получила обсерватория «Телескоп горизонта событий» (Event Horizon Telescope), объединившая в глобальную сеть несколько крупнейший радиотелескопов, разбросанных по разным континентам. Телескоп горизонта событий — это проект, объединяющий в глобальную сеть данные нескольких телескопов.
Получен первый в истории снимок сверхмассивной черной дыры
Исследователи проекта Телескоп горизонта событий (Event Horizon Telescope, EHT) представили результаты наблюдения за квазаром NRAO 530, свет от которого двигался до Земли 7,5 млрд лет. Наблюдения с использованием Телескопа горизонта событий в течение нескольких лет подтвердили наше предсказание», — рассказал Захаров. Наблюдения с использованием Телескопа горизонта событий в течение нескольких лет подтвердили наше предсказание», — рассказал Захаров. Коллаборация Телескопа горизонта событий (EHT) показала первое в истории изображение тени сверхмассивной черной дыры в центре Млечного Пути.