Новости почему поверхностное натяжение зависит от рода жидкости

#ФизикаЖидкостиKhanAcademyВ этом видео мы поговорим о том, почему иголка может свободно плавать на поверхности воды, но тут же утонет, если на неё надавать. Коэффициент поверхностного натяжения не зависит от площади свободной поверхности жидкости, хотя может быть рассчитан с ее помощью. Правильный ответ здесь, всего на вопрос ответили 1 раз: Почему поверхностное натяжение зависит от рода жидкости?

Почему поверхностное натяжение зависит от рода

В отличие от молекул в глубине жидкости, молекулы, располагающиеся в пограничном ее слое, окружены другими молекулами этой же жидкости не со всех сторон. В среднем воздействующие на одну из молекул внутри жидкости со стороны соседних молекул силы межмолекулярного взаимодействия взаимно скомпенсированы. Каждая отдельно взятая молекула в пограничном слое притягивается находящимися внутри жидкости молекулами. При этом, силами, которые оказывают воздействие на такую молекулу жидкости со стороны молекул газа можно пренебречь.

По сути мы не найдем в воде одиноких ионов водорода — вокруг каждого из них располагается четыре молекулы воды, причем атомы кислорода притянуты к этому иону водорода, а на внешней оболочке такого комплекса находятся восемь атомов водорода, несущих положительный заряд. Ясно, что водородных связей между такими комплексами уже нет. Этот ион называется ионом гидроксония. Атом кислорода в таком ионе окружен тремя эквивалентными атомами водорода. И между такими ионами гидроксония уже нет никаких водородных связей, а появляются лишь силы отталкивания. Источник Поверхностное натяжение жидкости — формулы и определение с примерами Содержание: Поверхностное натяжение жидкости: В отличие от газов жидкости имеют свободную поверхность.

Молекулы, расположенные на поверхности жидкости, и молекулы внутри жидкости находятся в разных условиях: a молекулы внутри жидкости окружены другими молекулами жидкости со всех сторон. Молекула 1 внутри жидкости испытывает действие соседних молекул со всех сторон, поэтому равнодействующая сил притяжения, действующих на нее, равна нулю f; молекула 1 ; Читайте также: Талая вода для животных b молекулы на поверхности жидкости испытывают действие со стороны соседних молекул жидкости только сбоку и снизу. Притяжение со стороны молекул газа пара жидкости или воздуха над жидкостью во много раз слабее, чем со стороны молекул жидкости, поэтому не принимаются во внимание f; молекула 2. В результате каждая из равнодействующих сил Сила поверхностного натяжения Сила поверхностного натяжения — это сила, направленная по касательной к поверхности жидкости, перпендикулярно к линии, ограничивающей поверхность жидкости, и стремящаяся сократить площадь поверхности жидкости. Сила поверхностного натяжения прямо пропорциональна длине границы соприкосновения свободной поверхности жидкости с твердым телом: Здесь — длина границы соприкосновения свободной поверхности жидкости с твердым телом, сигма — коэффициент поверхностного натяжения: Коэффициент поверхностного натяжения Коэффициент поверхностного натяжения — численно равен силе поверхностного натяжения, приходящейся на единицу длины линии, ограничивающей поверхность жидкости: Значение коэффициента поверхностного натяжения зависит от вида жидкости и ее температуры, то есть с увеличением температуры жидкости коэффициент его поверхностного натяжения уменьшается и при критической температуре равен нулю. Единица коэффициента поверхностного натяжения в СИ: Смачивающая и несмачивающая жидкость. При внимательном рассмотрении можно увидеть искривление поверхности жидкости на границе между жидкостью и твердым телом. Мениск — это искривление свободной поверхности жидкости в месте ее соприкосновении с поверхностью твердого тела или другой жидкости. Угол между поверхностью мениска и поверхностью твердого тела называется краевым углом.

Значение краевого угла тетта зависит от того, является ли жидкость смачивающей или несмачивающей твердое тело: Смачивающая жидкость —это жидкость, у которой краевой угол острый. Сила взаимного притяжения между молекулами смачивающей жидкости и твердого тела больше, чем силы взаимного притяжения между молекулами самой жидкости. В результате свободная поверхность жидкости в сосуде становится вогнутой, например, вода в стеклянном сосуде — смачивающая жидкость g. Несмачивающая жидкость — это жидкость, у которой краевой угол тупой. Сила взаимного притяжения между молекулами несмачивающей жидкости и твердого тела меньше, чем сила взаимного притяжения между молекулами самой жидкости. В результате свободная поверхность жидкости в сосуде бывает выпуклой, например, ртуть в стеклянном сосуде — несмачивающая жидкость i. Капиллярные явления В повседневной жизни встречаются и используются тела, с легкостью впитывающие в себя воду, например, полотенце, промокательная бумага, сахар, кирпич, растения и др. Это свойство в телах объясняется существованием в них большого количества очень узких трубочек — капилляров. Капилляр — это узкая трубка канал диаметром меньше м.

Уровень жидкости внутри капилляра, опущенного в жидкость, в зависимости от ее свойств смачивающая или несмачивающая , отличается от общего уровня жидкости: Капиллярными явлениями называют явления подъема смачивающей и опускания несмачивающей жидкости по капилляру относительно общего уровня жидкости под действием сил поверхностного натяжения j.

Различные жидкости имеют разные типы молекулярных взаимодействий между собой и с окружающей средой, таких как ван-дер-ваальсовы силы, диполь-дипольное взаимодействие и водородные связи. Эти силы определяют, насколько тесно молекулы жидкости связаны между собой на поверхности, что влияет на её поверхностное натяжение. Поверхностное натяжение Свойства поверхностного слоя жидкости.

Однако это состояние существенно отличается от натяжения упругой резиновой пленки. Упругая пленка растягивается за счет увеличения расстояния между частицами, при этом сила натяжения возрастает, при растяжении же жидкой пленки расстояние между частицами не меняется, а увеличение поверхности достигается в результате перехода молекул из толщи жидкости в поверхностный слой. Поэтому при увеличении поверхности жидкости сила поверхностного натяжения не изменяется она не зависит от площади поверхности. Поведение жидкости будет зависеть от того, что больше: сцепление между молекулами жидкости или сцепление молекул жидкости с молекулами твердого тела. Смачивание — явление, возникающее вследствие взаимодействия молекул жидкости с молекулами твердых тел.

Если силы притяжения между молекулами жидкости и твердого тела больше сил притяжения между молекулами жидкости, то жидкость называют смачивающей; если силы притяжения жидкости и твердого тела меньше сил притяжения между молекулами жидкости, то жидкость называют несмачивающей это тело. Одна и та же жидкость может быть смачивающей и несмачивающей по отношению к разным телам. Так, вода смачивает стекло и не смачивает жирную поверхность, ртуть не смачивает стекло, а смачивает медь. Смачивание или несмачивание жидкостью стенок сосуда, в котором она находится, влияет на форму свободной поверхности жидкости в сосуде. Если большое количество жидкости налито в сосуд, то форма ее поверхности определяется силой тяжести, которая обеспечивает плоскую и горизонтальную поверхность. Однако у самых стенок явление смачивания и несмачивания приводят к искривлению поверхности жидкости, так называемые краевые эффекты. Внутри краевого угла всегда находится жидкость рис. При смачивании он будет острым рис. В случае вогнутой поверхности результирующая сила направлена, наоборот, в сторону газа, граничащего с жидкостью рис.

Если смачивающая жидкость находится на открытой поверхности твердого тела рис.

Как можно объяснить поверхностное натяжение жидкостей?

В таблицах обычно приводят значение поверхностного натяжения на границе жидкости и воздуха при определенной температуре табл. То есть вдоль поверхности жидкости действуют силы, которые пытаются стянуть эту поверхность. Эти силы называют силами поверхностного натяжения. Наличие сил поверхностного натяжения делает поверхность жидкости похожей на натянутую резиновую пленку, однако упругие силы в резиновой пленке зависят от площади ее поверхности от того, насколько пленка деформирована , а поверхность жидкости всегда «натянута» одинаково, то есть силы поверхностного натяжения не зависят от площади поверхности жидкости. Наличие сил поверхностного натяжения можно доказать с помощью такого опыта. Если проволочный каркас с закрепленной на нем нитью опустить в мыльный раствор, каркас затянется мыльной пленкой, а нить приобретет произвольную форму рис. Если осторожно проткнуть иглой мыльную пленку по одну сторону от нити, сила поверхностного натяжения мыльного раствора, действующая с другой стороны, натянет нить рис. Опустим в мыльный раствор проволочную рамку, одна из сторон которой подвижна.

На рамке образуется мыльная пленка рис. Будем растягивать эту пленку, действуя на перекладину подвижную сторону рамки с некоторой силой. Заказать решение задач по физике Где проявляется поверхностное натяжение В жизни вы постоянно сталкиваетесь с проявлениями сил поверхностного натяжения. Так, благодаря ему на поверхности воды удерживаются легкие предметы рис. Монетка удерживается на поверхности воды благодаря силе поверхностного натяжения. Чтобы провести такой опыт, монетку нужно потереть между пальцев и осторожно опустить на поверхность воды. Когда вы ныряете, ваши волосы расходятся во все стороны, но как только вы окажетесь над водой, волосы слипнутся, так как в этом случае площадь свободной поверхности воды намного меньше, чем при раздельном расположении прядей в воде.

По этой же причине можно лепить фигуры из влажного песка: вода, обволакивая песчинки, прижимает их друг к другу.

В отличие от молекул в глубине жидкости, молекулы, располагающиеся в пограничном ее слое, окружены другими молекулами этой же жидкости не со всех сторон. В среднем воздействующие на одну из молекул внутри жидкости со стороны соседних молекул силы межмолекулярного взаимодействия взаимно скомпенсированы. Каждая отдельно взятая молекула в пограничном слое притягивается находящимися внутри жидкости молекулами. При этом, силами, которые оказывают воздействие на такую молекулу жидкости со стороны молекул газа можно пренебречь.

Опустим в мыльный раствор проволочную рамку, одна из сторон которой подвижна рис. Будем растягивать мыльную пленку, действуя на подвижную сторону рамки силой. Таким образом, на перекладину действуют три силы — внешняя сила и две силы поверхностного натяжения , действующие вдоль каждой поверхности пленки.

Воспользовавшись вторым законом Ньютона, можем записать, что Рис. Вычисление силы поверхностного натяжения Если под действием внешней силы перекладина переместится на расстояние , то эта внешняя сила совершит работу. Естественно, что за счет совершения этой работы площадь поверхности пленки увеличится, а значит, увеличится и поверхностная энергия, которую мы можем определить через коэффициент поверхностного натяжения:. Изменение площади, в свою очередь можно определить следующим образом: , — длина подвижной части проволочной рамки. Учитывая это, можно записать, что работа внешней силы равна. Таким образом, коэффициент поверхностного натяжения численно равен силе поверхностного натяжения, которая действует на единицу длины линии, ограничивающей поверхность Проявления сил поверхностного натяжения в природе Итак, мы еще раз убедились в том, что жидкость стремится принять такую форму, чтобы площадь ее поверхности была минимальной. Можно показать, что при заданном объеме площадь поверхности будет минимальной у шара. Таким образом, если на жидкость не действуют другие силы или их действие мало, жидкость будет стремиться принимать сферическую форму.

Так, например, будет вести себя вода в невесомости рис. Вода в невесомости Рис. Мыльные пузыри Наличием сил поверхностного натяжения также можно объяснить то, почему металлическая иголка «лежит» на поверхности воды рис. Иголка, которую аккуратно положили на поверхность, деформирует ее, увеличивая тем самым площадь этой поверхности.

Когда вода находится в контакте с воздухом, возникает напряженная плотная пленка на ее поверхности, которая имеет свойство сокращаться. При наличии слабых межмолекулярных взаимодействий на поверхности жидкости образуется слабая плёнка и, следовательно, меньшее поверхностное натяжение. В то же время, сильные межмолекулярные связи приводят к образованию более плотной пленки и большему поверхностному натяжению. Знание роли межмолекулярных взаимодействий в поверхностном натяжении позволяет улучшить понимание физико-химических явлений в природе и создать инновационные материалы с желаемыми свойствами. Изучение и изменение межмолекулярных взаимодействий могут привести к разработке новых жидкостей с оптимальными поверхностными свойствами для конкретных приложений, таких как промышленность, медицина и наука.

Эффект температуры на поверхностное натяжение разных родов жидкостей Влияние температуры на поверхностное натяжение может быть разным для разных родов жидкостей. Обычно поверхностное натяжение уменьшается с увеличением температуры. Это связано с тем, что при повышении температуры увеличивается кинетическая энергия молекул, что приводит к увеличению количества молекул, обладающих достаточной энергией для преодоления межмолекулярных сил и выхода на поверхность жидкости. Однако у разных родов жидкостей этот эффект может проявляться по-разному. Например, у некоторых жидкостей, таких как вода, эффект температуры на поверхностное натяжение может быть наиболее выраженным и значительным. При повышении температуры вода может «распадаться» на отдельные молекулы и образовывать пар, что приводит к увеличению доступных для образования поверхностного слоя молекул и, как следствие, уменьшению поверхностного натяжения.

Поверхностное натяжение жидкости

Поверхностное натяжение это физическая величина, равная отношению силы поверхностного натяжения F, приложенной к границе поверхностного слоя жидкости и направленной по касательной к поверхности, к длине L этой границы. Коэффициент поверхностного натяжения зависит от рода жидкости в силу межмолекулярных взаимодействий. Эти силы называются силами поверхностного натяжения. Сила поверхности натяжения зависит от плотности жидкости.(следовательно и от рода жидкости). Гипотеза подтверждается, поверхностное натяжение жидкости зависит от рода жидкости, т. е. от сил притяжения между молекулами данной жидкости. Поверхностное натяжение различных жидкостей неодинаково, оно зависит от их мольного объёма, полярности молекул, способности молекул к образованию водородной связи между собой и др.

Поверхностное натяжение и его зависимость от температуры и рода жидкости

На границе жидкость-воздух газ 1. Как направлены силы поверхностного натяжения в месте отрыва капли? По окружности этой перетяжки действуют силы поверхностного натяжения, препятствующие отрыву капли. Эти силы направлены по касательной к поверхности жидкости и перпендикулярно границе перетяжки, т. В то же время к жидкости в капилляре со стороны капли приложены силы поверхностного натяжения, направленные вниз. Что называется силой поверхностного натяжения? Силой поверхностного натяжения называют силу, которая действует вдоль поверхности жидкости перпендикулярно к линии, ограничивающей эту поверхность, и стремится сократить ее до минимума. Поверхностное натяжение имеет двойной физический смысл — энергетический термодинамический и силовой механический. Куда направлены силы поверхностного натяжения?

Какую величину называют коэффициентом поверхностного натяжения в каких единицах его измеряют? Другими словами, коэффициентом поверхностного натяжения называется сила, приложенная к единице длины отрезка контура на поверхности жидкости и направленная по касательной к этой поверхности перпендикулярно к данному отрезку. Что такое поверхностный слой жидкости? Поверхностный слой, тонкий слой вещества близ поверхности соприкосновения двух фаз тел, сред , отличающийся по свойствам от веществ в объёме фаз. Почему у всех веществ поверхностное натяжение уменьшается с ростом температуры? Поверхностное натя- Page 7 7 жение с повышением температуры уменьшается, так как увеличива- ются средние расстояния между молекулами жидкости.

Это позволяет контролировать поверхностное натяжение, что может быть полезно при разработке новых материалов, улучшении процессов фильтрации и создании новых технологий взаимодействия с жидкостями. Влияние рода жидкости на поверхностное натяжение Различные жидкости имеют разные значения поверхностного натяжения. Поверхностное натяжение зависит от молекулярной структуры и межмолекулярных сил вещества. Также влияние на поверхностное натяжение оказывает температура. Различные роды жидкостей обладают различными значениями сил притяжения между частицами. Например, вода имеет относительно высокое поверхностное натяжение из-за сильных водородных связей между молекулами. Это делает воду такой «липкой» и способной образовывать капли на поверхности. С другой стороны, некоторые жидкости, такие как спирты, имеют более низкое поверхностное натяжение из-за отсутствия или слабости водородных связей. Это позволяет им распространяться по поверхностям и проникать в более тонкие межмолекулярные промежутки. Также некоторые жидкости, например, масла, обладают очень низким поверхностным натяжением, что делает их еще более распространенными и гладкими по поверхности. Это связано с отсутствием водородных связей и большей подвижностью молекул.

Поэтому поверхностное натяжение в разных жидкостях разное. Почему площадь свободной поверхности жидкости минимальна? На молекулы, расположенные в поверхностном слое, действует направленная внутрь жидкости равнодействующая сила и сжимает ее.

Фланаган с успехом подобрал кристаллы всех сортов и вос-1 произвел эффекты натяжения водных поверхностей, которые, как оказалось, были известны древним тибетским физикам. Тысячелетиями в Гималаях врачи предлагали пациентам микстуры с дозированными по видам болезней жидкими кристаллами. И все-таки не было ответа на вопрос: где кристаллы берут энергию, необходимую для поверхностного натяжения воды? Существовало предположение, частично вынесенное из тибетских источников, о том, что резонаторами космической энергии являются сверхновые звезды, испускающие импульсы и другие пространственные воздействия. Чуть выше уже говорилось, что по предложению Фланагана были синтезированы вещества класса детергентов, с помощью которых он по сути понижал поверхностное натяжение жидкостей т. А мы уже знаем, что поверхностное натяжение стремится уменьшить площадь поверхности жидкости, а поэтому, чтобы увеличить эту поверхность при неизменном поверхностном натяжении, мы должны затратить определенную энергию. Снижение же поверхностного натяжения равноценно по своему результату увеличению поверхности жидкости затрате некоторого количества энергии, чего на самом деле не происходит. Это можно сравнить с перемещением груза на санях в разное время года. Летом для перевозки на санях единицы груза придется затратить намного больше энергии, чем зимой, так как разная при этом будет сила трения полозьев о поверхность. Точно так же обстоят дела и при использовании поверхностно-активных веществ — они уменьшают водородные связи между молекулами воды и поверхность последней при этом увенчивается. Но тибетские физики или только Фланаган полагали, что снижение поверхностного натяжения происходило в результате затраты некоей энергии, поэтому они и ставили такой вопрос — откуда берется эта энергия. Ответ был так же прост, как и бездоказателен — энергию поставляют сверхновые звезды. Мне кажется, что всем давно уже должно быть ясно, что все мы живем за счет энергии одного лишь Солнца. А от сверхновых звезд к нам приходит столько энергии, что в лучшем случае благодаря этому они сами на некоторое время становятся видимыми, а поэтому вряд ли такое количество энергии может как-то повлиять на поверхностное натяжение жидкостей. Поэтому этот исследователь и стремился в дальнейшем найти приемлемый способ понижения поверхностного натяжения воды, не поясняя механизма связи этого фактора со здоровьем человека. И если мы отбросим в сторону весь тот частокол из слов, которым Кристофер Бёрд окружил исследования Фланагана, то станет ясно, что последний нашел в хунзакутской воде одно только необычное качество — ее поверхностное натяжение было ниже поверхностного натяжения обычной воды. И все последующие исследования Фланагана велись уже только в этом направлении. Слишком даже живая. Ею можно стирать белье без мыла, отбеливателей, без стиральной машины. Но она не опьяняет человека, а дает огромный прилив сил — замечает исследователь. То, что в такой воде можно стирать без мыла, легко понять — мыло снижает поверхностное натяжение воды, а в указанном выше случае поверхностное натяжение значительно снижается не с помощью мыла, а с помощью каких-то иных веществ. Ну и что с того — для стирки ведь важен сам фактор снижения поверхностного натяжения. Объяснение, на мой взгляд, самое простое. Такое быстрое действие алкогольных напитков объясняется очень быстрым проникновением их в кровь благодаря низкому поверхностному натяжению, а точнее — благодаря ослабленным водородным связям в этих жидкостях. Старик приобретает прыткость молодого.

Поверхностное натяжение жидкости

RU - помощь студентам и школьникам Почему поверхностное натяжение зависит от рода жидкости? В 19:58 поступил вопрос в раздел Физика, который вызвал затруднения у обучающегося. Вопрос вызвавший трудности Почему поверхностное натяжение зависит от рода жидкости? Ответ подготовленный экспертами Учись. Ru Для того чтобы дать полноценный ответ, был привлечен специалист, который хорошо разбирается требуемой тематике "Физика". Ваш вопрос звучал следующим образом: Почему поверхностное натяжение зависит от рода жидкости? После проведенного совещания с другими специалистами нашего сервиса, мы склонны полагать, что правильный ответ на заданный вами вопрос будет звучать следующим образом: Из механики известно, что равновесным состояниям системы соответствует минимальное значение ее потенциальной энергии.

Жидкости стремятся принять форму, которая требует минимальной площади поверхности. Силы поверхностного натяжения Силы поверхностного натяжения работают вдоль поверхности жидкости перпендикулярно контуру. Сокращают ее площадь. Это похоже на пленку, которая стягивает объем. На сам объем силы не оказывают влияние. Вычислите коэффициент поверхностного натяжения.

При увеличении температуры он уменьшается. Примеси в основном уменьшают некоторые увеличивают коэффициент поверхностного натяжения. Таким образом, поверхностный слой жидкости представляет собой как бы эластичную растянутую пленку, охватывающую всю жидкость и стремящуюся собрать ее в одну «каплю». Такая модель эластичная растянутая пленка позволяет определять направление сил поверхностного натяжения. Например, если пленка под действием внешних сил растягивается, то сила поверхностного натяжения будет направлена вдоль поверхности жидкости против растяжения. Однако это состояние существенно отличается от натяжения упругой резиновой пленки. Упругая пленка растягивается за счет увеличения расстояния между частицами, при этом сила натяжения возрастает, при растяжении же жидкой пленки расстояние между частицами не меняется, а увеличение поверхности достигается в результате перехода молекул из толщи жидкости в поверхностный слой. Поэтому при увеличении поверхности жидкости сила поверхностного натяжения не изменяется она не зависит от площади поверхности. Поведение жидкости будет зависеть от того, что больше: сцепление между молекулами жидкости или сцепление молекул жидкости с молекулами твердого тела. Смачивание — явление, возникающее вследствие взаимодействия молекул жидкости с молекулами твердых тел. Если силы притяжения между молекулами жидкости и твердого тела больше сил притяжения между молекулами жидкости, то жидкость называют смачивающей; если силы притяжения жидкости и твердого тела меньше сил притяжения между молекулами жидкости, то жидкость называют несмачивающей это тело. Одна и та же жидкость может быть смачивающей и несмачивающей по отношению к разным телам. Так, вода смачивает стекло и не смачивает жирную поверхность, ртуть не смачивает стекло, а смачивает медь. Смачивание или несмачивание жидкостью стенок сосуда, в котором она находится, влияет на форму свободной поверхности жидкости в сосуде. Если большое количество жидкости налито в сосуд, то форма ее поверхности определяется силой тяжести, которая обеспечивает плоскую и горизонтальную поверхность.

Для границы раздела фаз вода - воздух это соли, щелочи, минеральные кислоты, то есть любые соединения, образующие в растворе только неорганические ионы. Это видно из рис. Способность уменьшать поверхностное натяжение называется поверхностной активностью 2. Условное изображение молекулы ПАВ Полярные группы в воде гидратируются, неполярная часть молекул ПАВ представляют собой гидрофобную углеводородную цепь или радикал.

Свойства жидкостей. Поверхностное натяжение

Свойства жидкостей. Поверхностное натяжение Коэффициент поверхностного натяжения зависит от химического состава жидкости и от ее температуры.
Почему поверхностное натяжение зависит от состава и свойств жидкости По причине воздействия сил поверхностного натяжения на капли жидкости и их действия внутри мыльных пузырей появляется некоторое избыточное давление.
Поверхностное натяжение — Юнциклопедия Проанализировав зависимость поверхностного натяжения жидкости от ее температуры, приходим к выводу, что поверхностное натяжение уменьшается с ростом температуры (с увеличением скорости движения молекул).
Почему поверхностное натяжение зависит от рода Температурная зависимость поверхностного натяжения между жидкой и паровой фазами чистой воды Температурная зависимость поверхностного натяжения бензола Поверхностное натяжение зависит от температуры.
Почему поверхностное натяжение зависит от рода жидкости: удивительные свойства поверхностного слоя Почему у воды поверхностное натяжение больше, чем у других жидкостей?

ПОЧЕМУ ПОВЕРХНОСТНОЕ НАТЯЖЕНИЕ ЗАВИСИТ ОТ РОДА ЖИДКОСТИ

Почему поверхностное натяжение зависит от вида жидкости? Зависимость поверхностного натяжения от температуры Плотность газа и жидкости в критической точке.
Поверхностное натяжение жидкости - формулы и определение с примерами Поскольку поверхностное натяжение определяется на молекулярном уровне, любое изменение компонентов жидкости, поверхностно-активных веществ, топлива или соединений в жидкости может привести к изменению поверхностного натяжения.
Почему зависит поверхностное натяжение от рода жидкости Почему поверхностное натяжение зависит от Рода Жидкости. Жидкости с маленькими и сферическими молекулами обычно имеют более высокое поверхностное натяжение, чем жидкости с большими и несферическими молекулами.

Поверхностное натяжение жидкости

#ФизикаЖидкостиKhanAcademyВ этом видео мы поговорим о том, почему иголка может свободно плавать на поверхности воды, но тут же утонет, если на неё надавать. Род жидкости также оказывает влияние на зависимость поверхностного натяжения от температуры. Поверхностное натяжение и температура Поверхностное натяжение жидкости зависит от различных факторов, включая род жидкости и температуру.

Поверхностное натяжение жидкости - формулы и определение с примерами

Иными словами, в зависимости от силы взаимодействия молекул жидкостного раствора зависит значение сила натяжения поверхности. Будет жидкость собираться в «бусинки» или ровным слоем растекаться по твердой поверхности, зависит от соотношения сил межмолекулярного взаимодействия в жидкости, вызывающих поверхностное натяжение. Например, из-за сил поверхностного натяжения формируется капля, лужица, струя и т.д. Летучесть (испаряемость) жидкости тоже зависит от сил сцепления молекул. Также поверхностное натяжение зависит от наличия примесей в жидкости, потому что, чем сильнее концентрация примесей в жидкости, тем слабее силы сцепления между молекулами жидкости. Поверхностное натяжение это физическая величина, равная отношению силы поверхностного натяжения F, приложенной к границе поверхностного слоя жидкости и направленной по касательной к поверхности, к длине L этой границы.

Похожие новости:

Оцените статью
Добавить комментарий