Новости термоядерный холодный синтез

Генератор холодного термоядерного синтеза может обеспечить целый поселок энергией, а также очистить озеро, на берегу которого будет расположен. В термоядерном синтезе ядра разгоняются до высоких скоростей (в токамаках и в Солнце — из-за высокой температуры). Холодный ядерный синтез. Поступили новости о том, что американским ученым из Национальной лаборатории Лоуренса удалось повторить термоядерный синтез, высвободив больше энергии, чем было затрачено на запуск реакции.

Холодный синтез: самое известное физическое мошенничество

Министерство энергетики США (DOE) 13 декабря отметило важную веху в освоении энергии термоядерного синтеза, рассказав о том, как ученые впервые смогли произвести больше энергии, чем необходимо для его запуска. Хорошие новости продолжают поступать в области исследований ядерного синтеза. Управляемый термоядерный синтез — голубая мечта физиков и энергетических компаний, которую они лелеют не одно десятилетие. в направлении коммерческого применения холодного синтеза, самые сенсационные новости об этой технологии пришли из Америки. Реакции термоядерного синтеза позволяют получать энергию без радиоактивных отходов и оставления углеродного следа. Но созданный холодный термоядерный синтез своими руками Иван Степанович Филимоненко отказался устанавливать в подземных городах-убежищах для партийных руководителей страны. Статья автора «Живой Космос» в Дзене: Холодный синтез — это мечта, над исполнением которой некоторые учёные трудятся уже несколько десятилетий.

Российские физики рассказали о приручении термоядерного синтеза

О первых успехах учёные отчитались в 2014-м, однако производимая тогда реакцией энергия была крохотной — примерно столько потребляет 60-ваттная лампочка за пять минут. На коммерциализацию и широкое распространение данной технологии могут уйти десятилетия — так сказала Кимберли Будил, директор Ливерморской национальной лаборатории. Технология развивается, и при нужных усилиях и соответствующих инвестициях мы через несколько десятилетий исследований сможем построить электростанцию.

Но это отнюдь не быстрый процесс. К тому же права на ошибку у конструкторов нет. Команда ITER сперва моделирует нагрузки и требования к элементам конструкции, их испытывают на стендах например, под воздействием плазменных пушек, как дивертор , улучшают и дорабатывают, собирают прототипы и опять тестируют перед тем, как выдать финальный элемент.

Первый корпус тороидальной катушки. Первый из 18 гигантских магнитов. Одну половину сделали в Японии, другую — в Корее 18 гигантских магнитов D-образной формы, расставленные по кругу так, чтобы образовать непроницаемую магнитную стену. Внутри каждого из них заключены 134 витка сверхпроводящего кабеля Каждая такая катушка весит примерно 310 тонн Но одно дело собрать. И совсем другое — все это обслуживать. Из-за высокого уровня радиации доступ к реактору заказан.

Для его обслуживания разработано целое семейство роботизированных систем. Часть будет менять бланкеты и кассеты дивертора весом под 10 тонн , часть — управляться удаленно для устранения аварий, часть — базироваться в карманах вакуумной камеры с HD-камерами и лазерными сканерами для быстрой инспекции. И все это необходимо делать в вакууме, в узком пространстве, с высокой точностью и в четком взаимодействии со всеми системами. Задачка посложнее ремонта МКС. Причем это только часть оборудования самого реактора. Добавьте сюда здание криокомбината, где будут вырабатывать жидкий азот и гелий, здание выпрямителей магнитной системы с трансформаторами, трубопроводы системы охлаждения диаметром по 2 метра , систему сброса тепла с 10 вентиляторными градирнями и многое-многое другое.

На все это и идут миллиарды. Токамак ITER станет первым термоядерным реактором, который будет вырабатывать больше энергии, чем необходимо для нагрева самой плазмы. К тому же он сможет поддерживать ее в стабильном состоянии намного дольше ныне существующих установок. Ученые утверждают, что именно для этого и нужен столь масштабный проект. С помощью такого реактора специалисты собираются преодолеть разрыв между нынешними небольшими экспериментальными установками и термоядерными электростанциями будущего. Например, рекорд по термоядерной мощности был установлен в 1997 году на токамаке в Британии — 16 МВт при затраченных 24 МВт, тогда как ITER конструировали с прицелом на 500 МВт термоядерной мощности от 50 МВт вводимой тепловой энергии.

На токамаке будут испытаны технологии нагрева, контроля, диагностики, криогеники и дистанционного обслуживания, то есть все методики, необходимые для промышленного образца термоядерного реактора. Объемов мирового производства трития будет недостаточно для электростанций будущего. А потому на ITER отработают также технологию размножающегося бланкета, содержащего литий. Из него под действием термоядерных нейтронов и будут синтезировать тритий. Однако не стоит забывать, что это пускай и дорогой, но эксперимент. Токамак не будет оборудован турбинами или другими системами конвертации тепла в электричество.

То есть коммерческого выхлопа в виде непосредственной генерации энергии не будет. Потому что это только усложнило бы проект с инженерной точки зрения и сделало бы его еще более дорогим. Схема финансирования довольно запутанная. Большинство компонентов поставляются в ITER напрямую от стран-участниц. Они прибывают во Францию по морю, а из порта к стройплощадке доставляются по дороге, специально переделанной французским правительством.

Образование пузырьков может быть, в частности, спровоцировано прохождением через жидкость звуковых волн. При определенных условиях пузырьки лопаются, выделяя большое количество энергии. Как пузырьки могут помочь в ядерном синтезе? Очень просто: в момент "взрыва" температура внутри пузырька достигает десяти миллионов градусов по Цельсию — что сравнимо с температурой на Солнце, где свободно происходит ядерный синтез. Талейархан и Лейхи пропускали звуковые волны через ацетон, в котором легкий изотоп водорода протий был заменен на дейтерий. Им удалось зарегистрировать поток нейтронов высокой энергии, а также образование гелия и трития — еще одного продукта ядерного синтеза. Несмотря на красоту и логичность экспериментальной схемы, научная общественность восприняла заявления физиков более чем прохладно. На ученых обрушилось огромное количество критики, касающейся постановки эксперимента и регистрации потока нейтронов. Талейархан и Лейхи переставили опыт с учетом полученных замечаний — и снова получили тот же результат. Тем не менее, авторитетный научный журнал Nature в 2006 году опубликовал статью , в которой высказывались сомнения в достоверности результатов. Фактически, ученых обвинили в фальсификации. В Университете Пердью, куда перешли работать Талейархан и Лейхи, было проведено независимое расследование. По его итогам был вынесен вердикт: эксперимент поставлен верно, ошибки или фальсификации не обнаружено. Несмотря на это, пока в Nature не появилось опровержения статьи, а вопрос о признании кавитационного ядерного синтеза научным фактом повис в воздухе. Новая надежда Но вернемся к японским физикам. В своей работе они использовали уже знакомый палладий. Точнее, смесь палладия с оксидом циркония. Ученые пропускали дейтерий через ячейку, содержащую эту смесь. После добавления дейтерия температура внутри ячейки поднялась до 70 градусов по Цельсию. По словам исследователей, в этот момент в ячейке происходили ядерные и химические реакции. После того как поступление дейтерия в ячейку прекратилось, температура внутри нее оставалась повышенной еще в течение 50 часов.

Для начала попробуем разобраться, почему же «группе Google» не удалось запустить холодный ядерный синтез при использовании трёх, казалось бы, классических способов, которые были неоднократно воспроизведены за прошедшие 30 лет и основные условия воспроизводимости результатов для которых были давно установлены. За разъяснением причин этого мы обратились к известному российскому исследователю холодного ядерного синтеза ведущему технологу Института геологии и минералогии СО РАН имени академика В. Соболева, доктору геолого-минералогических наук, член-корреспонденту РАЕН Виталию Алексеевичу Киркинскому о результатах собственных многолетних исследований В. Этот метод можно использовать, если интенсивность ядерных реакций — высокая, на несколько порядков выше, чем при обнаружении продуктов синтеза. Достижение такой интенсивности — значительно более сложная задача. Мартин Флейшман и Стэнли Понс и большинство их последователей при калориметрических измерениях не всегда получали положительные результаты. Выход избыточной энергии происходил спорадически и зависел, в частности, от используемого палладия, поставляемого разными фирмами. Как было выяснено позже, положительное влияние на выход тепла оказывает присутствие некоторых примесей, например бора, и ряд других факторов. Даже при благоприятных условиях при работе с катодами малой площади интегральный коэффициент преобразования энергии был мал, что требовало высокой точности измерений. В ряде экспериментов, проведенных квалифицированными электрохимиками, в растворах на основе тяжелой воды наблюдались всплески нейтронного излучения и выделение избыточной энергии мощностью до нескольких ватт, в то время как в совершенно аналогичных условиях при использовании растворов с обычной водой никакого дополнительного тепловыделения не происходило. Ни в одном из проверочных опытов в статье в Nature не определялся гелий и его изотопный состав — непосредственный продукт ядерного синтеза. Было надежно подтверждено выделение избыточного тепла и его корреляция с выходом трития и гелия. Все эти результаты однозначно свидетельствуют о том, что происходили ядерные реакции слияния атомов дейтерия с образованием гелия. Как было показано Флейшманом и Понсом, а затем в Индийском атомном центре P.

Холодный синтез: желаемое или действительное?

Главная» Новости» Симпозиум по термоядерному синтезу 2024. Если учёным действительно удалось провести реакцию ядерного синтеза с указанными выше условиями, это сулит революцию в энергетике. Термоядерный синтез предполагает, что вместо радиоактивных элементов, таких как уран и плутоний, в качестве топлива в реактор будут загружаться дейтерий и тритий, после чего с помощью электричества конструкция будет разогреваться до температур. Цель ИТЭР — доказать возможность использования термоядерного синтеза в качестве экологически чистого, безопасного и практически неисчерпаемого источника энергии.

Что такое Холодный ядерный синтез?

Уже вторая реакция антипротона с дейтроном или наоборот даёт нестабильный изотоп сверхтяжёлого изотопа водорода — тритон тритий. Это связано с тем, что стабильных ядер легче протона в нашей природе на поверхности Земли быть не может. Однако ядерно-ионные реакции с участием положительных и отрицательных тяжёлых ядер, начиная с титана, идут в природе и в некоторых экспериментах 34. В таких случаях, которые проверены и достоверно установлены, рождается чуть ли не вся таблица элементов из одного элемента меди. Аналогичные процессы с внутриядерной перестройкой вихронов происходят при внутреннем и внешнем возбуждении вихронов, которое приводит к делению и распаду тяжёлых ядер с образованием и вылетом двух более лёгких ядер и нескольких лёгких элементарных частиц. Нейтроны с тепловыми энергиями менее 1 Мэв, также легко, как и в случае с протоном, проникают в ядра всех химических элементов с образованием промежуточного возбуждённого ядра. Облучение веществ тепловыми нейтронами позволяет проводить элементный анализ — это так называемый и широко распространенный нейтронно-активационный анализ образцов. А захват нейтронов ядрами других элементов с последующим бета-распадом, известный под названием быстрый R — и медленный S-процесс, происходящий в звёздах, вносят определённый вклад в производство более тяжёлых химических элементов во всей Вселенной. Таким образом, геометрическую структуру и физические свойства нейтронов и протонов определяют: количество оболочек фото 4—5 — 6 и энергетически-частотный состав внутренних вихронов. А за их стабильность, заряд и спин отвечают внешние оболочки и внутреннее состояние внешнего полярного вихрона в стационарном поле нуклона.

Масса покоя в системе СИ нейтрона и антинейтрона равна 939,57 Мэв. Центральная ядерная оболочка типа К-ноль мезон с наибольшей кривизной и частотой, обладает большей энергией, чем внешние и даёт больший вклад в индукцию заряда массы покоя нейтрона. Сродство структуры фотона с оболочечной структурой нейтрона и протона подтверждают экспериментальные исследования рассеяния жестких электронов и гамма-квантов на протонах, которые позволили обнаружить в них схожее пространственное распределение плотности электрического заряда, а также найти электрическую и магнитную поляризуемости их объёма. Подтверждение указанной структуры нуклонов находим на каждом шагу анализа распадов и взаимодействий, особенно частица-античастица, а также легких и тяжёлых элементарных частиц, следующих из известной таблицы изотопов 35. Так, например, с участием лептонов — мюонный захват протоном с последующим образованием нейтрона и мюонного нейтрино. Другие источники обнаружены во всех генераторах холодного ядерного синтеза LENR при ионизации внешних оболочек ядер тяжёлых элементов. Когда атмосфера пульсара уже перенасыщена нейтронами и плотность слоя прилегающего непосредственно к поверхности ядра звезды достигает критического, то спектр нейтронов начинает обогащаться более тяжёлыми нейтральными ядрами. Другой путь производства и накопления нейтральных ядер происходит при вращении ядер звёзд и планет путём индукции механических гипервихронов, состоящего из гравитационного гипермонополя. Для сохранения средней энергии, в связи с тем, что в таких системах, не может произойти перезарядка индуктированного монополя на противоположный, происходит квантовый переход с образованием электромагнитного гипервихрона, квантовые переходы в котором доступны этой системе массы.

При его квантовых переходах электрический гипермонополь уже способен сбрасывать излишнюю индуктированную энергию в виде излучения мощных «тяжёлых» магнитных монополей, которые взаимодействуя с плотными слоями нейтронов преобразуют их в нейтральные ядра с весом в две, три или четыре атомные единицы и т. Структура этих частиц — центрально-оболочечная из волноводов зёрен-электропотенциалов и гравпотенциалов, причём каждая оболочка вложена одна в другую таким образом, что над отрицательной полусферой внутренней находится внешняя полусфера положительных волноводов, как и в нейтроне — фото 4. Фото 8. Оболочечная структура атомных ядер из оболочек ГЭМД. Каждая внутренняя оболочка заполняется более энергетическими вихронами, по сравнению с предыдущей внешней, то есть в терминах СИ, по мере увеличения атомного веса идёт заполнение центральных оболочек более тяжёлыми мезонами типа ипсилон Y cм. Такой процесс принципиально отличается от заполнения атомных оболочек частицами одного электрического знака электронов, САП с полуцелым спином. Таким образом идёт заполнение центра сферы нейтральной частицы вплоть до ядра кальция. На поверхности ядра звезды нейтральные ядра достаточно стабильны, но по мере заполнения ими атмосферы всего прилегающего пространства, дальнейшего уплотнения и вытеснения по радиусу в наиболее слабые гравитационные пояса звезды, начинается распад внешних оболочек фото 9 с образованием положительных или отрицательных ядер с помощью ядерно-мезонной плазмы. Это обусловлено тем, что появляется возможность у двух магнитных монополей внешней оболочки в отличие от внутренних оболочек пульсировать в свободное пространство.

Ядерно-мезонная плазма. При распаде по каналу бета-плюс образуются отрицательно заряженные ядра, которые практически мгновенно же объединяются синтез ядер с положительными. При энергии такого излучения от 0,4 до 0,9 эв с частотой 1—2 х 10 13 Гц и длине волны 1,4 — 3 микрона, сфера заряда энергии имплозией способна проникать даже в атомное ядро имея размер около 10—14 см. Этот процесс идёт наиболее интенсивно, как показывают результаты «выстрелов» С. Адаменко, при определённых условиях и в твёрдом теле. Фото 9. Деление внешней оболочки и распад После этого следует движение к поверхности и долгая стабилизация-распад с образованием уже известных ядер химических элементов. Подтверждением такой схемы жизни нейтральных ядер свидетельствуют проблемы, возникающие при полной обдирке от атомных электронов тяжёлых ядер при подготовке пучков тяжёлых многозарядных ионов. В этом случае, после неоднократного разделения пучка в магнитном поле на положительный, отрицательный и нейтральный, последний необходимый пучок опять содержит все эти компоненты.

Реакции, которые приводятся в работах А. Кладова на основе капельной модели ядра, а также в работах А. Вачаева, могут идти только как ядерно-ионные, то есть ядра при распаде могут быть как положительные, так и отрицательные. К настоящему времени на поверхности Земли не осталось ни одного типа нейтральных ядер атомов химических элементов кроме нейтрона, что свидетельствует об их весьма коротком периоде полураспада на этом гравитационном поясе. Однако имеется от 3000 до 7000 радиоактивных изотопов, до сих пор находящихся в стадии стабилизации, то есть на пути превращения в стабильные изотопы, путём радиоактивного распада. Распад тяжёлых нейтральных ядер идёт с образованием как положительных, так и отрицательных ядер. Распад лёгких нейтральных ядер идёт по схеме деления внешней оболочки на два замкнутых вихрона с образованием двух оболочек одной внутренней и одной внешней, фото 6 волноводов преимущественно положительных потенциалов, образующих его спин и внешнее электрическое поле ядра, запирающее его дальнейший спонтанный распад. Заряд электрическим потенциалом ядра, определяющий число электронов в нейтральном атоме формируется только внешней оболочкой, которая по мере увеличения тяжести ядра меняется на более тяжёлые мезоны. Внутренние оболочки попарно нейтрализованы противоположно заряженными — фото 4 и своей структурой обновления гравитационных контуров определяют лишь суммарную массу частицы, которая, является продуктом взаимодействия противоположных полей атомного ядра и гравитационного поля Земли.

Во внешнем пространстве атома два магнитных монополя сферы двух внешних оболочек формирует положительное электрическое поле, рождённое с частотой накачки на три десятичных порядка больше, чем это делают электроны на атомных оболочках, что и определяет количество присоединённых электронов в нейтральном атоме, чтобы полностью скомпенсировать на ноль своё собственное внешнее поле. В целом, таким образом сформированная внешняя ядерная оболочка, имеет форму сферы с положительным зарядом электрического потенциала, соответствующим атомному номеру стабильного химического элемента. Этот процесс очень сложный и заключается в том, чтобы каждое положительное зерно-потенциала было уничтожено отрицательным зерном потенциалом волновода электрона. А так как на двух внешних оболочках ядра вблизи узлов нахождения магнитных монополей размещены более мощные по значению величины и дальнодействию потенциалы, превосходящие подобные противоположные зёрна электронов, то и месторасположение точки их нейтрализации находится вблизи волновода электронов, удалённого на расстояние размера атома. Появившиеся в результате распадов нейтральных ядер замкнутые вихроны, ранее входившие в состав внешних нейтральных оболочек, во внешнем пространстве, в результате каскадных распадов и взаимодействий с другими частицами на пути к поверхности, образует, в конечном итоге, стабильные электроны. Так образуются атомные ядра и свободные электроны. В результате несовместимости энергетического сосуществования нейтральных оболочечных микрочастиц и слабых гравитационных полей, первые распадаются на два основных фрагмента — положительно заряженное, несущее основную массу, ядро и отрицательно заряженная часть его внешней оболочки, формируемая второй замкнутой частицей. Перед распадом идет интенсивный процесс разрыхления внешних оболочек ядер в уже свободное пространство, соответствующее слабым окружающим полям. Эта внешняя оболочка со структурой, показанной на фото 6, с замкнутым контуром в структуре атомного ядра и является той поверхностью, на которой пара магнитных монополей ГЭММ квантует на волноводе соответствующие зёрна-потенциалов и определяет его заряд электрическим потенциалом.

При обновлении этот двойной контур излучается в пространство над ядром, формируя внешнее поле этого заряда электрического потенциала ядра — это и есть электрический эфир с положительным знаком заряда. Таким уже объёмным образом порождается, умножается и аккумулируется строительный материал из электрических зёрен-потенциалов, который в отличие от аккумуляции его в линейном треке фотона, порождает бесконечный объём, а количество этой субстанции пропорционально заряду массы ядра. Такой газоподобный электрический эфир удалось Н. Тесла захватить, преобразовать и отделить в кластере меди от электронов в своём резонансном трансформаторе и частично исследовать. Так рождается положительный заряд электрическим потенциалом атомного ядра атома химического элемента, бесконечный по объёму электрический эфир в пространстве вокруг атомного ядра, мерилом которого является количество электронов на оболочках атома, противоположные по знаку внешние поля которых его полностью уничтожают. В поле собственного заряда дальнейший распад остатка ядра замедляется и идет уже по другим схемам распада, как и в случае радиоактивных семейств урана, которые приводят его, наконец, на поверхности планеты к тому или иному стабильному изотопу — процесс ядерной стабилизации, химической релаксации и минерализации, приводящий к образованию 82 стабильных химических элементов в коре, воде и атмосфере на поверхности планеты. Этот процесс конкретно характеризует широко известная таблица распределения радиоактивных изотопов относительно стабильных атомных ядер, то есть процесс распада по бета-плюс каналу предваряет разрыхление с отрывом частицы с положительной полусферой волноводов, а по каналу бета — минус — отрыв частицы с отрицательной полусферой. Образовавшиеся стабильные ядра имеют заряд электрического потенциала и спин, формируемые вихронами полусфер двух внешних оболочек — внешней и внутренней. Электрический заряд ядра создаётся волноводами магнитных монополей этих внешних вихронов, с частотой на три десятичных порядка больше, чем у электронных оболочек атомов.

Эти оболочки в отличие от внутренних квантуют волноводы не в ограниченной сфере оболочек ядра, а в свободном пространстве, и в таком количестве по поверхности, которое соответствует его внутренним параметрам, создавая заряд ядра, который определяется количеством электронов в нейтральном атоме. Атомные ядра входят в состав атомов химических элементов, из которых построено всё видимое Мироздание. Всего стабильных и долгоживущих атомных ядер на Земле около 300, а находящихся на пути стабилизации и пополняющих запасы стабильных путём распада по разным оценкам от 3000 до 7000. Почему столько много радиоактивных нестабильных тяжёлых изотопов? Потому что ядра этих изотопов образовались в результате синтеза тяжёлых противоположно заряженных ядер, то есть положительно заряженное ядро соединилось с отрицательно заряженным ядром. Образовавшаяся двух ядерная система в результате внутренней перестройки ядерных вихронов медленно переходит в равновесное одно ядерное состояние, с излучением лишних не резонансных вихронов, образующих различные элементарные частицы при вылете из внешних оболочек этого ядра. У тяжёлых трансурановых элементов этот процесс может занять очень длительное время, называемое периодом полураспада. Источники основного производства атомных ядер находятся вблизи поверхности ядер звёзд и планет — это квантованные кластеры плотной чёрной ядерно-мезонной плазмы, то есть смеси заряженных атомных ядер, мезонов, мюонов, и распадающихся нейтральных ядер. Стабильные ядра поверхности Земли имеют внешнее электрическое поле, спин, магнитный момент, определённые заряд массы, заряд электрическим потенциалом, размер, форму и оболочечную структуру.

Ядра, имеющие порядковый номер 2, 8, 20, 28, 50, 82 и некоторые другие, обладают сферической формой. Все другие являются сплюснутыми или вытянутыми эллипсоидами. Вытянутых ядер больше сплюснутых. Большинство ядер имеют по несколько изотопов. Обращает на себя внимание то, что все эти нуклиды имеют нечетные массовые числа в системе СИ и полуцелые спины. Откуда можно сделать вывод о том, что ядра с полуцелым спином более стабильны, что и подтверждается экспериментально. В основу структуры фото 9а атомного ядра положены экспериментальные результаты исследований по строение протона, гиперонов, резонансов, мезонов, экзотических частиц, мезоатомов и эта-ядер. Время жизни резонансов порядка 10—22 сек. Первый нуклонный резонанс был открыт Э.

Экзотическая частица Z 4430 — необычный мезон, не вписывающийся в стандартные рамки. Его существование было известно и раньше, но только сейчас стало окончательно доказано, что это реальная экзотическая частица. Тот факт, что он распадается очень быстро, означает, что распад идет за счет сильного взаимодействия. Состояния этой частицы с энергиями были названы Zb 10610 и Zb 10650 в соответствии с их массами. В 1977 году были открыты нейтральные Y-мезоны ипсилон-мезоны с массами в диапазоне 9. Y-мезоны являются связанными состояниями из двух частиц с половиной массы Y 9460 , то есть 4700 МэВ. Z-бозон или Z0 электрически нейтрален и является античастицей сам для себя. Эти бозоны — тяжеловесы среди элементарных частиц — с массой в 80,4 и 91,2 ГэВ, соответственно. Масса этих бозонов очень важна для понимания слабого взаимодействия, поскольку ограничивает радиус действия слабого взаимодействия.

Электромагнитные силы, напротив, имеют бесконечный радиус действия, потому что их бозон-переносчик фотон не имеет массы.

Казалось бы, все звучит довольно солидно: с этим достижением Мизуно планирует выступить на конференции, и даже есть краткое резюме его выступления. Рассказываем о том, почему это не лженаука, но почему, тем не менее, к «нормальной» науке работа Мизуно никак не относится. Как отличить научную работу от ненаучной Сообщение о работе Мизуно выглядит необычно.

За счет не до конца изученных физических эффектов, утверждается там, удалось получить отдачу, эквивалентную полкиловатту, от прибора, к которому подали четверть киловатта. Облик «реактора» из работы Мизуно в интерьере его дома. Выглядит внушительно, но, как и всегда в сложных темах, следует вникать в детали. Что скрывается за буквами ICCF-22?

И почему те, кто пишут о Мизуно, не расшифровали это сокращение сами? То есть перед нами тема, которую активно обсуждают уже 30 лет — вот только в основном за пределами научных кругов. Это может показаться необычным, потому что физически «холодный» термоядерный синтез возможен — более того, это установленный научный факт. Но обо всем по порядку.

Сперва — о том, что якобы получилось у Тадахико Мизуно. Никель, палладий, даровая энергия? Автор утверждает, что установил у себя дома трубообразный реактор с никелевой сеткой, покрытой палладием. При подключении к сетке тока должно было выделяться тепло.

Это и произошло, вот только калориметр показал, что этого тепла якобы было выделено порядка 500 ватт при вдвое меньшей подаче энергии. Более того, при подаче на «реактор» 50 ватт выделяемая в виде тепла энергия, по утверждению Мизуно, была эквивалентна 300 ватт. Основной предполагаемый механизм якобы наблюдавшегося процесса — превращение более легких изотопов водорода в тяжелые, с выделением тепловой энергии.

Ожидается, что это будет сделано завтра. Если учёным действительно удалось провести реакцию ядерного синтеза с указанными выше условиями, это сулит революцию в энергетике. Проект National Ignition Facility, специалисты которого и добились успеха, использует метод так называемого «термоядерного инерционного синтеза». На практике американские учёные стреляют гранулами, содержащими водородное топливо, в пучок из почти 200 лазеров, создавая серию чрезвычайно быстрых повторяющихся взрывов со скоростью 50 раз в секунду.

Нейтрон легко проникает в ядра химических элементов при любой энергии, вызывает ядерные реакции и способен вызывать деление тяжёлых ядер. Медленные нейтроны, имеющие дебройлевскую длину волны соизмеримую с межатомными расстояниями, служат для использования их в исследовании свойств твёрдых тел. Большое внимание привлекают на себя осцилляции друг в друга нейтрон-антинейтрон.

Осцилляции элементарных частиц — это периодический процесс превращения частиц определённой совокупности друг в друга. Ведутся экспериментальные работы во многих странах по обнаружению увеличения числа антинейтронов в пучке нейтронов из реактора с ростом длины пролёта, а также в потоках космических лучей и в специальных ловушках ультрахолодных нейтронов — это так называемые нейтрон-антинейтронные осцилляции 30. Они вложены друг в друга таким образом, что половины замкнутых контуров из положительных зёрен-потенциалов внутренней закрываются отрицательными зёрнами-потенциалами следующей половины внешней. Центральная сфера показывает свободное пространство, которое будет заполняться центральными оболочками при образовании ядер химических элементов вплоть до ядер кальция. Такая структура нейтрона свойственна ему вначале его появления и долгой жизни в определённых условиях, до начала разрыхления его внешней зарядо-образующей оболочки. Взаимодействие между оболочками — электромагнитное с очень малым радиусом действия 10—16 см. Нейтрон, как электрически нейтральная частица является одновременно и античастицей по отношению к себе, как и фотон. Мгновенная структура нейтрона с уже разрыхлённой третьей внешней оболочкой, образующей его спин, приведена на фото 5, Фото 5. Схема нейтрона и антинейтрона где внешняя оболочка находится в состоянии разрыхления и готовится к распаду. Аналогичны структуры внешних оболочек перед распадом всех атомных нейтральных ядер, появившихся при рождении на поверхности ЧСТ звёзд и планет или в результате мощного электроразряда, или мощного удара при специальной сварке взрывом, или при воздействии магнитных монополей в кавитационном пузырьке и т.

Распад нейтрона зависит от внешних условий и возможен с учётом нейтрон-антинейтронных осцилляций не только с образованием протона, но и антипротона. Распад нейтрона можно рассматривать и как акт ионизации половины внешней оболочки ядра-нейтрона частицы типа мюона с испусканием электрона и антинейтрино за счёт внутренних процессов и рождением протона. Половина средней положительной отрицательной оболочки нейтрона после распада оголилась и уже не компенсируется полем вылетевшей отрицательной положительной оболочки, которая превратилась в электрон позитрон распада. Оставшаяся после распада половина внешней оболочки нейтрона вместе со средней положительной превращает его в протон антипротон с геометрической формой внешней части представленной на фото 6, слева справа. Протон в состоянии покоя. Фото 6. Схемы ядерных электрических оболочек протона слева и антипротона справа без указания гравитационых. В полусферических слоях рождается зона холодной безмассовой плазмы, удерживая и центрируя положения магнитных монополей ГЭММ. Подобная полусфера внешней оболочки в совокупности с полусферой нижней положительной части оболочки определяет положительный заряд протона. Энергия, обеспечивающая протон массой, электрическим зарядом, спином, магнитным моментом, размером и другими параметрами, определяется суммарной энергией пяти магнитных монополей ГЭММ, пульсирующих с разной частотой.

Даже две внешние положительные оболочки порождают такой недостаточный положительный отрицательный электрический заряд из зёрен-потенциалов на поверхности протона антипротона , который один электрон позитрон в атоме водорода антиводорода перекрывает полностью и даже остаётся излишек — образуется атом водорода с достаточно большой энергией сродства к электрону, который способен присоединить ещё один протон с образованием молекулярного иона. Поэтому более стабильна молекула водорода. Превращения структуры протона в движении при увеличении энергии на ускорителях и коллайдерах. Вплоть до настоящего времени расчёт увеличения энергии протонов за счёт их разгона в электрическом поле идёт по формулам СТО А. Эйнштейна, то есть с учётом релятивистского эффекта зависимости массы частицы от скорости. Это грубая ошибка вызвана тем, что в природе нет никакой массы — ни массы покоя, ни релятивисткой массы в СТО. А физические процессы увеличения массы даются лишь на веру математическими формулами Лоренца, не имея под собой никакого физического обоснования, в том числе определения массы, как физической категории. Таким образом, нарушается основной классический принцип познания законов природы на основе экспериментов, а не из математики, ограниченной неполнотой по Геделю. Циклотроны позволяют ускорять протоны до энергий примерно 20 МэВ. Дальнейшее их ускорение в циклотроне ограничивается релятивистским возрастанием массы со скоростью, что приводит к увеличению периода обращения он пропорционален массе и синхронизм нарушается.

Реально, в природе увеличение внутренней энергии протона идёт по формуле Планка, то есть путём увеличения частоты магнитного монополя и количества в замкнутых вихронах ГЭММ каждой из его оболочек, а также числом таких оболочек. Поэтому ускоряясь в электрическом поле, протон фото 6 поэтапно превращается в дейтрон фото 7 , тритон фото 16 и т. Превращения протона в плазмоиде Вачаева 31 Высокоинтенсивные электроимпульсные короткие 5—50 микросекунд разряды-процессы в плазмоиде Вачаева реализуют переходы протон-дейтрон-тритон-гелий путём концепции возбуждение-распад-синтез. Этот же метод позволяет получить из протонов воды почти всю таблицу Менделеева химических элементов. Атомный и ядерный аналог процессов в диапазоне, частот на которых работает реактор Вачаева реализован на 30—60 МГц производство электроэнергии и 30—60 ГГц холодный ядерный распад-синтез атомных ядер химических элементов в стабильном состоянии. Продолжительность импульса разряда, которая определяет длину движения кластера воды для достижения синтеза ядер элементов, колеблется от 20…30 до 2000…3000 микросекунд. Таким образом, наличие дейтронов и тритонов 32 в отработанных водах указывает на механизм их избытка при превращениях протона в движении в плазмоиде на пути четверть волновода вышеуказанных частот и тока в импульсе для реализации синтеза атомных ядер. А также доказывает причастность к таким переходам увеличение заряда энергии магнитного монополя через произведение постоянной Планка на частоту — переход с увеличением энергии в новый более тяжёлый элемент. Внешний слой оболочки нейтрона антинейтрона имеет характерную структуру волноводов и размер 9,1 х 10—13 см, а также определяет спин частицы и его знак электрического заряда — у протона он положительный, у антипротона отрицательный. Один из вихронов половины внешней оболочки в нейтроне при распаде улетает и строит электрон или позитрон, а оставшийся формирует внешнюю оболочку протона 33 или антипротона со структурой мюона.

Подобным же образом, как и на внешней оболочке протона, формируется заряд электрическим положительным потенциалом атомных ядер всех последующих химических элементов. Аннигиляция протона и его античастицы происходит аналогично, как и в случаях нейтрона и антинейтрона, электрона и позитрона. Таким же образом вскрывается внешняя оболочка запорный слой со структурой мюона протона. Самыми последними вылетают вихроны, образующие центральную и более высокоэнергетическую высокочастотную К-оболочку. Этот процесс — процесс электромагнитной вихревой эксплозии с превращением зарядов покоя двух противоположных частиц в заряды движения, как и в случае аннигиляции электрона и позитрона, то есть в безмассовую форму энергии движения фотонов — играет самую главную роль в производстве энергии звёзд и планет. У протона, сформированная оставшимся полярным вихроном часть внешней оболочки с положительными волноводами и открытая часть средней фото 6 порождает его внешнее положительно заряженное поле, препятствующее вылету вихронов с внутренних оболочек и их возможности последующего распада — это наиболее стабильная частица из числа всех известных. Благодаря одинаковым структурам внешних оболочек, с параллельным спином, тепловой протон может легко захватывать тепловой нейтрон с образованием дейтрона фото 7 , посредством слияния-объединения связано-замкнутых дебройлевских квантов-вихронов. После пересечения и преобразования вихронами их фазовых объёмов происходит процесс энергетического упорядочивания внутренних оболочек при рождении новой микрочастицы с излучением-сбросом гамма-кванта с энергией 2,2 Мэв. В процессе слияния этих нуклонов суммарный заряд сфер-источников ГЭММ всех оболочек дейтрона увеличивается, размер — уменьшается, частота и число оболочек — изменяются. Фото 7.

Схема рождения дейтрона. Слева протон, затем нейтрон, справа дейтрон. Спин и электрический заряд дейтрона равен единице, суммарный заряд энергии сфер-источников ГЭММ всех оболочек увеличивается вдвое, средний диаметр — 4,1 х 10—13 см, а масса в СИ — 1875 Мэв равна удвоенной массе нуклонов без энергии вылетевшего гамма-кванта. Эта ядерная реакция является знаковой по формуле — охлаждение с образованием вокруг движущихся микрочастиц связано-замкнутых дебройлевских вихронов, ориентация спинов, дрейф, захват-синтез с расширением внутреннего дискретного микропространства на величину, соответствующую энергии 2,2 Мэв, преобразование и снятие возбуждения и характеризует последовательное взаимодействие быстрых ядерных вихронов — сброс освободившейся энергии в виде вылета свободного биполярного вихрона в форме фотона с энергией 2,2 Мэв. Такие преобразования внутренней структуры промежуточной составной частицы, образованной слиянием одинаковых дебройлевских гравитационных монополей, дополняют свойства ядерных вихронов. Внутренние вихроны, вылетев в такое пространство после взаимодействия и изменения в общем фазовом объёме, по новому образуют вложенные друг в друга биполярные оболочки, и уже с другим частотным спектром. Эта ядерная реакция экзотермическая — лишняя освободившаяся энергия, как и в случае возбуждённого атома, сбрасывается в виде ядерного гамма-излучения. При этом надо отметить, что эта ядерная реакция является первой, порождающей ещё стабильный тяжёлый изотоп водорода-дейтрон. Уже вторая реакция антипротона с дейтроном или наоборот даёт нестабильный изотоп сверхтяжёлого изотопа водорода — тритон тритий. Это связано с тем, что стабильных ядер легче протона в нашей природе на поверхности Земли быть не может.

Однако ядерно-ионные реакции с участием положительных и отрицательных тяжёлых ядер, начиная с титана, идут в природе и в некоторых экспериментах 34. В таких случаях, которые проверены и достоверно установлены, рождается чуть ли не вся таблица элементов из одного элемента меди. Аналогичные процессы с внутриядерной перестройкой вихронов происходят при внутреннем и внешнем возбуждении вихронов, которое приводит к делению и распаду тяжёлых ядер с образованием и вылетом двух более лёгких ядер и нескольких лёгких элементарных частиц. Нейтроны с тепловыми энергиями менее 1 Мэв, также легко, как и в случае с протоном, проникают в ядра всех химических элементов с образованием промежуточного возбуждённого ядра. Облучение веществ тепловыми нейтронами позволяет проводить элементный анализ — это так называемый и широко распространенный нейтронно-активационный анализ образцов. А захват нейтронов ядрами других элементов с последующим бета-распадом, известный под названием быстрый R — и медленный S-процесс, происходящий в звёздах, вносят определённый вклад в производство более тяжёлых химических элементов во всей Вселенной. Таким образом, геометрическую структуру и физические свойства нейтронов и протонов определяют: количество оболочек фото 4—5 — 6 и энергетически-частотный состав внутренних вихронов. А за их стабильность, заряд и спин отвечают внешние оболочки и внутреннее состояние внешнего полярного вихрона в стационарном поле нуклона. Масса покоя в системе СИ нейтрона и антинейтрона равна 939,57 Мэв. Центральная ядерная оболочка типа К-ноль мезон с наибольшей кривизной и частотой, обладает большей энергией, чем внешние и даёт больший вклад в индукцию заряда массы покоя нейтрона.

Сродство структуры фотона с оболочечной структурой нейтрона и протона подтверждают экспериментальные исследования рассеяния жестких электронов и гамма-квантов на протонах, которые позволили обнаружить в них схожее пространственное распределение плотности электрического заряда, а также найти электрическую и магнитную поляризуемости их объёма. Подтверждение указанной структуры нуклонов находим на каждом шагу анализа распадов и взаимодействий, особенно частица-античастица, а также легких и тяжёлых элементарных частиц, следующих из известной таблицы изотопов 35. Так, например, с участием лептонов — мюонный захват протоном с последующим образованием нейтрона и мюонного нейтрино. Другие источники обнаружены во всех генераторах холодного ядерного синтеза LENR при ионизации внешних оболочек ядер тяжёлых элементов. Когда атмосфера пульсара уже перенасыщена нейтронами и плотность слоя прилегающего непосредственно к поверхности ядра звезды достигает критического, то спектр нейтронов начинает обогащаться более тяжёлыми нейтральными ядрами. Другой путь производства и накопления нейтральных ядер происходит при вращении ядер звёзд и планет путём индукции механических гипервихронов, состоящего из гравитационного гипермонополя. Для сохранения средней энергии, в связи с тем, что в таких системах, не может произойти перезарядка индуктированного монополя на противоположный, происходит квантовый переход с образованием электромагнитного гипервихрона, квантовые переходы в котором доступны этой системе массы. При его квантовых переходах электрический гипермонополь уже способен сбрасывать излишнюю индуктированную энергию в виде излучения мощных «тяжёлых» магнитных монополей, которые взаимодействуя с плотными слоями нейтронов преобразуют их в нейтральные ядра с весом в две, три или четыре атомные единицы и т. Структура этих частиц — центрально-оболочечная из волноводов зёрен-электропотенциалов и гравпотенциалов, причём каждая оболочка вложена одна в другую таким образом, что над отрицательной полусферой внутренней находится внешняя полусфера положительных волноводов, как и в нейтроне — фото 4. Фото 8.

Оболочечная структура атомных ядер из оболочек ГЭМД. Каждая внутренняя оболочка заполняется более энергетическими вихронами, по сравнению с предыдущей внешней, то есть в терминах СИ, по мере увеличения атомного веса идёт заполнение центральных оболочек более тяжёлыми мезонами типа ипсилон Y cм. Такой процесс принципиально отличается от заполнения атомных оболочек частицами одного электрического знака электронов, САП с полуцелым спином. Таким образом идёт заполнение центра сферы нейтральной частицы вплоть до ядра кальция. На поверхности ядра звезды нейтральные ядра достаточно стабильны, но по мере заполнения ими атмосферы всего прилегающего пространства, дальнейшего уплотнения и вытеснения по радиусу в наиболее слабые гравитационные пояса звезды, начинается распад внешних оболочек фото 9 с образованием положительных или отрицательных ядер с помощью ядерно-мезонной плазмы. Это обусловлено тем, что появляется возможность у двух магнитных монополей внешней оболочки в отличие от внутренних оболочек пульсировать в свободное пространство. Ядерно-мезонная плазма. При распаде по каналу бета-плюс образуются отрицательно заряженные ядра, которые практически мгновенно же объединяются синтез ядер с положительными. При энергии такого излучения от 0,4 до 0,9 эв с частотой 1—2 х 10 13 Гц и длине волны 1,4 — 3 микрона, сфера заряда энергии имплозией способна проникать даже в атомное ядро имея размер около 10—14 см.

Холодный синтез: самое известное физическое мошенничество

Проект National Ignition Facility, специалисты которого и добились успеха, использует метод так называемого «термоядерного инерционного синтеза». На практике американские учёные стреляют гранулами, содержащими водородное топливо, в пучок из почти 200 лазеров, создавая серию чрезвычайно быстрых повторяющихся взрывов со скоростью 50 раз в секунду. Энергия, полученная от нейтронов и альфа-частиц, извлекается в виде тепла, и это тепло является ключом к производству энергии. В данном случае речь идёт о выработке минимального количества энергии, очень далёкого от промышленных масштабов.

Плотность плазмы — одно из важнейших условий для воспроизведения реакции. Чем плотнее материал, тем большее количество горючих частиц он содержит, что повышает вероятность термоядерного синтеза. В ядерных реакторах типа токамак эта плотность ограничена. Однако в ходе недавнего эксперимента ученым из General Atomics компании, специализирующейся на ядерной физике удалось увеличить плотность плазмы, как никогда ранее, без ущерба для ее удержания. Подробности были опубликованы в журнале. Преодоление предела Гринвальда Теоретический предел, определяющий максимальную плотность плазмы, достижимую в реакторе токамак, известен как "предел Гринвальда". При превышении этого предела плазма может стать нестабильной, и некоторые заряженные частицы могут выйти из-под контроля ограничивающих их магнитных полей.

Еще в 50-х годах прошлого века советские ученые придумали установку в форме тора, или бублика, где разогретую плазму удерживает магнитное поле. Тогда и родился термин «токамак» тороидальная камера с магнитной катушкой. Сегодня в работе с токамаками российские специалисты по-прежнему впереди планеты всей. В термоядерном синтезе множество задач, которые никому не удается решить уже десятки лет. Глава правительства Михаил Мишустин дал старт большому проекту класса «Мегасайенс», который должен помочь выйти за рамки современных научных догм. И, конечно, я сразу же хочу поздравить весь ваш дружный коллектив, который много лет работал над тем, чтобы продвинуться еще дальше.

Появляется уникальная инфраструктура для научных исследований, для того, чтобы, как говорят ученые, управляемый термоядерный синтез все-таки создал неиссякаемый источник энергии», — сказал премьер Михаил Мишустин. На этой установке российские ученые будут проводить исследования, без которых невозможен запуск международного проекта ИТЭР. Самый большой в мире экспериментальный термоядерный реактор сейчас строится на юге Франции. На связь оттуда вышел генеральный директор проекта.

Здесь за основу берется тяжелый элемент как правило, уран или плутоний , который расщепляется на составляющие с выделением энергии. То есть ключевой процесс — распад ядра. Первая в мире атомная электростанция была запущена еще в 1954 году — ей стала Обнинская АЭС в Калужской области.

Человечество хорошо освоило расщепление, хотя проблемы пока остаются. Управляемый термоядерный синтез УТС. В термоядерном синтезе используется обратный принцип: вместо расщепления тяжелых элементов соединяются синтезируются легкие — водород и гелий. Точно такие же процессы протекают в центре звезд. Синтез сопровождается выделением огромного количества энергии, но чтобы он осуществился, требуются уникальные условия. Почему же ученые так упорно ищут подходы к УТС, когда у них уже есть атомная энергетика? Потому что у термоядерного синтеза есть главное неоспоримое преимущество — близкая к идеалу теоретическая энергоэффективность.

Ключевая сложность — условия , которые требуется создать, чтобы атомы водорода соединились друг с другом. В ядре Солнца они подвергаются колоссальному давлению вкупе с огромной температурой.

Физики вносят ясность

  • Холодный синтез. Миф или лженаука? | Живой Космос | Дзен
  • Что такое Холодный ядерный синтез?
  • Термоядерный синтез: ещё один шаг | Hi-Tech
  • Курсы валюты:
  • Рекомендации

Подписка на дайджест

  • Ядерный синтез: недавний эксперимент преодолевает два основных препятствия для работы
  • Поделиться
  • Как это работает
  • Как это работает

Холодный синтез: желаемое или действительное?

Новый атомный проект России – холодный ядерный синтез? Тандберг начал изучать холодный термоядерный синтез в 1927 году, когда 33-летний главный научный сотрудник компании Electrolux Co. заинтересовался экспериментами по термоядерному синтезу, проводимыми в Германии, сказал Вильнер. Статья автора «Живой Космос» в Дзене: Холодный синтез — это мечта, над исполнением которой некоторые учёные трудятся уже несколько десятилетий. Холодный ядерный синтез или ХЯС специалисты определяют как реакцию слияния1 атомных ядер в холодном водороде, например, мюонный катализ.

Компактные термоядерные реакторы: прорыв или просчёт?

Холодный термоядерный синтез новости. Но созданный холодный термоядерный синтез своими руками Иван Степанович Филимоненко отказался устанавливать в подземных городах-убежищах для партийных руководителей страны. «Холодный термоядерный синтез» пользуется у физиков той же репутацией, что и вечный двигатель, машина времени и прочие экспериментально недоказанные или недоказуемые, гипотетические приспособления, которые идут вразрез с законами физики и химии. Верифицирован реактор холодного термоядерного синтеза. 8 декабря 2014 Новости. 8 октября 2014 года была завершена проверка независимыми исследователями из Италии и Швеции устройства E-Cat для выработки электроэнергии на основе реактора холодного термоядерного синтеза.

Проект Google не смог обнаружить холодный ядерный синтез

На совещании глава правительства обсудил с российскими учеными федеральную программу развития синхротронных и нейтронных исследований. До 2027 года на нее предусмотрено выделить 138 миллиардов рублей. В рамках программы Курчатовский институт создает по стране целую сеть мегаустановок нового уровня. Россия была абсолютно самодостаточна.

Мы производили все сами, все компоненты от начала до конца. И сейчас у нас это есть, но это требуется перевести на современный уровень», — отметил президент НИЦ «Курчатовский институт» Михаил Ковальчук. План по модернизации прорабатывается, и глава правительства призвал ученых присоединиться к этой работе.

Сами же подобные установки призваны сделать научные прорывы во всевозможных сферах: от медицины и сельского хозяйства до генетики и космоса. Не только придумано, но и сделано или растиражировано в нашу обычную жизнь», — подчеркнул Михаил Мишустин. На встрече обсудили и внедрение в жизнь так называемых природоподобных технологий — Михаил Мишустин заявил, что поручит до 1 сентября разработать стратегию их развития в России.

По данным Space. Это крупнейший в мире действующий экспериментальный термоядерный реактор. Его используют для удержания физической плазмы магнитным полем. Он находится в Калхэмском центре термоядерной энергии в Великобритании.

О первых успехах учёные отчитались в 2014-м, однако производимая тогда реакцией энергия была крохотной — примерно столько потребляет 60-ваттная лампочка за пять минут. На коммерциализацию и широкое распространение данной технологии могут уйти десятилетия — так сказала Кимберли Будил, директор Ливерморской национальной лаборатории. Технология развивается, и при нужных усилиях и соответствующих инвестициях мы через несколько десятилетий исследований сможем построить электростанцию.

Учёные уже научились осуществлять горячий ядерный синтез, нагревая атомы или используя лазеры. Но для этого, как правило, используется больше энергии, чем получается на выходе. И смысла в таких источниках энергии нет. Однако работы по этой теме не прекращаются. Несколько реализованных идей Ниже мы перечислим современные подходы к холодному синтезу. Мюон-катализируемый синтез Учёные придумали уже несколько типов холодного синтеза, которые действительно работают. И это делает холодный синтез реальностью с точки зрения его осуществимости.

Ключом к первому подходу в этой проблеме являются мюоны. Дело тут обстоит так: поскольку электроны очень лёгкие, они вращаются вокруг ядра атома достаточно далеко, на расстоянии, которое немного больше, чем необходимое для того, чтобы произошёл синтез. Но мюоны намного тяжелее электронов. И если их поместить на место последних, они будут вращаться гораздо ближе к ядру, сливаясь с атомами гораздо проще и быстрее. Такой способ ядерного синтеза — это реальность. И учёные осуществляли его уже неоднократно. И даже при комнатной температуре.

Но, к сожалению, мюоны очень нестабильны. И часто распадаются ещё до начала процесса холодного синтеза, в котором они участвуют. Нестабильность мюонов приводит к тому, что процесс их создания в ускорителях частиц потребляет намного больше энергии, чем количество, которое возникает при их последующем использовании. Это обстоятельство делает весь этот процесс бессмысленным. И его можно использовать для бомбардировки и осаждения на поверхность металла, такого как титан. Когда кристаллическая решётка металла оказывается заполнена, часть дейтерия начинает вступать в реакцию синтеза. Этот процесс называется синтезом твёрдого тела.

И его используют для производства нейтронов в лаборатории. Металл помогает уменьшить кулоновский барьер и облегчает процесс синтеза.

Похожие новости:

Оцените статью
Добавить комментарий