Хотя рисунка как такового тут не требуется, но рас просишь, пожалуйста Дано: h = 12 cm V = 2000 cm^3 h1 = 9 cm V1. В цилиндрический сосуд налили 5000см в кубе воды уровень воды при этом достиг высоты 20 см в жидкость полностью погрузили деталь при этом уровень жидкости в сосуде поднялась на 12 см чему равен обьем детали ответ выразите в см в кубе. Ответы экспертов на вопрос №3187189 В цилиндрический сосуд налили 2000 воды. Уровень жидкости в сосуде поднялся на 6 см. Чему равен объем детали? Найди верный ответ на вопрос«в цилиндрический сосуд налили 2000 см куб. воды. Уровень воды при этом достигает высоты 12 см. В жидкость полностью погрузили деталь. При этом уровень жидкости в сосуде поднялся на 9 см. Чему равен объем детали?
Похожие вопросы
- Задание 5 № 27045 В цилиндрический сосуд налили 2000 см 3 воды
- Как решить задачу о наливе воды в цилиндрический сосуд
- Последние опубликованные вопросы
- В цилиндрический сосуд налили 2000 см³ воды. Уровень воды при этом достигает высоты 12 см. В
- Последние опубликованные вопросы
Ответы на вопрос
- Геометрия. Задание В13
- Андрей Андреевич
- Интересное в мире информатики
- "Делай добро, бросай его в воду...": 26. Цилиндр
- 5 февраля 2024 Пробник ЕГЭ по математике 11 класс 6 вариантов с ответами ФИПИ
- Навигация по записям
В цилиндрический сосуд налили 2100 см3 воды
При этом уровень жидкости в сосуде поднялся на 8 см. Чему равен объём детали? Хотя рисунка как такового тут не требуется, но рас просишь, пожалуйста Дано: h = 12 cm V = 2000 cm^3 h1 = 9 cm V1. Гистограмма просмотров видео «Геометрия В Цилиндрический Сосуд Налили 2000 См3 Воды. Уровень Жидкости Оказался Равным 12 См» в сравнении с последними загруженными видео. Задачи на погружение детали в жидкость В цилиндрический сосуд налили 5000 см3 воды. В первом цилиндрическом сосуде уровень жидкости достигает 16 см. Эту жидкость перелили во второй цилиндрический сосуд, диаметр основания которого в 2 раза больше диаметра основания первого. В цилиндрический сосуд налили 2000 см 3 воды. Уровень воды при этом достигает высоты 12 см. В жидкость полностью погрузили деталь.
Любая правда - это только одна грань истины
- В цилиндрический сосуд налили 2100 см3 воды
- Как решить задачу: в цилиндрический сосуд налили 2000 см3 воды?
- Смотрите также
- Задача №1241
В цилиндрический сосуд налили 2000 см3 воды. Уровень воды при этом достигает высоты 12 см.
Гистограмма просмотров видео «Геометрия В Цилиндрический Сосуд Налили 2000 См3 Воды. Уровень Жидкости Оказался Равным 12 См» в сравнении с последними загруженными видео. Когда в цилиндрический сосуд налили 2000 см³ воды, то уровень воды достиг высоты 8 см. Значит, S * 8 см = 2000 см³, откуда S = 2000 см³: 8 см = 250 см². Естественно, что фигура, наполненная жидкостью после полного погружения детали, так же является цилиндром с. В цилиндрический сосуд налили 1800 см3 воды. При этом уровень жидкости в сосуде увеличился в 1,7 раза. В цилиндрический сосуд налили 2000 см3 воды уровень жидкости 12 см. В цилиндрическом сосуд налиои2000.
ЕГЭ профильный уровень. №3 Цилиндр, конус, шар. Задача 1
Из пункта A круговой трассы выехал велосипедист. Через 30 минут он ещё не вернулся в пункт А и из пункта А следом за ним отправился мотоциклист. Через 10 минут после отправления он догнал велосипедиста в первый раз, а еще через 30 минут после этого догнал его во второй раз. Найдите скорость мотоциклиста, если длина трассы равна 30 км. Ответ: 80 14. Ответ: корень из 5 16. Найдите наименьшее значение n, при котором за три года хранения вклад Б окажется выгоднее вклада А при одинаковых суммах первоначальных взносов. Ответ: 26 17. Точка O — центр окружности, описанной около остроугольного треугольника ABC, I — центр вписанной в него окружности, H — точка пересечения высот. Ответ: 165 градусов 19.
Натуральные числа от 1 до 12 разбивают на четыре группы, в каждой из которых есть по крайней мере два числа. Для каждой группы находят сумму чисел этой группы. Для каждой пары групп находят модуль разности найденных сумм и полученные 6 чисел складывают. Ответ: а-нет, б-нет, в-4 Задания и ответы с 2 варианта 1. Основания равнобедренной трапеции равны 43 и 73. Косинус острого угла трапеции равен 5 7. Найдите боковую сторону. Ответ: 21 2. Найдите скалярное произведение векторов BA и CB.
Ответ: -49 3. В цилиндрический сосуд налили 2000 см3 воды. Уровень жидкости оказался равным 12 см. В воду полностью погрузили деталь. При этом уровень жидкости в сосуде поднялся на 9 см. Чему равен объем детали? Ответ выразите в см3. Ответ: 1500 4. На рисунке изображён лабиринт.
Паук заползает в лабиринт в точке «Вход». Развернуться и ползти назад паук не может, поэтому на каждом разветвлении паук выбирает один из путей, по которому ещё не полз. Считая, что выбор дальнейшего пути чисто случайный, определите, с какой вероятностью паук придёт к выходу D. Ответ: 0,0625 5. Если шахматист А. Если А. Шахматисты А. Найдите вероятность того, что А. Ответ: 0,156 10.
Петя и Ваня выполняют одинаковый тест.
Объем куба равен 8. Найдите площадь его поверхности. Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 10 и 9. Объем параллелепипеда равен 450. Найдите площадь боковой поверхности правильной шестиугольной призмы, сторона основания которой равна 10, а высота — 12. Если каждое ребро куба увеличить на 1, то его площадь поверхности увеличится на 96.
Найдите площадь поверхности прямой призмы, в основании которой лежит ромб с диагоналями, равными 6 и 8, и боковым ребром, равным 20. Найдите боковое ребро правильной четырехугольной призмы, если сторона ее основания равна 20, а площадь поверхности равна 1760. Через среднюю линию основания треугольной призмы, площадь боковой поверхности которой равна 96, проведена плоскость, параллельная боковому ребру. Стороны основания правильной четырёхугольной пирамиды равны 36, боковые рёбра равны 82. Стороны основания правильной шестиугольной пирамиды равны 72, боковые рёбра равны 60. Площадь поверхности тетраэдра равна 3.
Значит, работу можем принять за единицу. А что же обозначить за переменные? Мы уже говорили, что за переменную удобно обозначить производительность. Пусть — производительность первого рабочего. Но тогда производительность второго нам тоже понадобится, и ее мы обозначим за. По условию, первый рабочий за два дня делает такую же часть работы, какую второй — за три дня. Работая вместе, эти двое сделали всю работу за дней. При совместной работе производительности складываются, значит, Итак, первый рабочий за день выполняет всей работы.
Значит, на всю работу ему понадобится дней. Первая труба пропускает на литр воды в минуту меньше, чем вторая. Сколько литров воды в минуту пропускает первая труба, если резервуар объемом литров она заполняет на минуты дольше, чем вторая труба заполняет резервуар объемом литров? Всевозможные задачи про две трубы, которые наполняют какой-либо резервуар для воды — это тоже задачи на работу. В них также фигурируют известные вам величины — производительность, время и работа. Примем производительность первой трубы за. Именно эту величину и требуется найти в задаче.
Как смог иютак решил... Первый вопрос помогите пожалуйста? Лилён 26 апр. JuliJuliSh 26 апр. Kaxa229 26 апр. Объяснение : во вложении... VladasK1434 26 апр. Чаша6 26 апр.
В цилиндрический сосуд налили 2100 см3 воды
При этом уровень жидкости в сосуде поднялся на 5 см. Найдите объём детали? Найдите правильный ответ на вопрос«В цилиндрический сосуд положили чугунную деталь и налили 2000 см3 воды. При этом уровень жидкости в сосуде поднялся на 9 см. Найдите объём детали. При этом уровень жидкости в сосуде поднялся на 9 см. Чему равен объем детали? В цилиндрический сосуд налили 2000,, extrm{cм}^3 воды. Уровень воды при этом достигает высоты 12 см. В жидкость полностью погрузили деталь.
В цилиндрический сосуд налили 2000
Из условия задачи известно, что объем детали составляет 1500 см3. Также известно, что при погружении детали уровень жидкости в сосуде поднялся на 12 см. Давайте рассмотрим, какая часть изначального объема воды была вытеснена деталью при погружении.
Если бы вместо 10 кг воды добавили 10 кг 50- процентного раствора той же кислоты, то получили бы 41- процентный раствор кислоты. Сколько килограммов 30- процентного раствора использовали для получения смеси? Ответ: 60 16. Схема выплат кредита следующая—31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга т. Какой должна быть сумма x, чтобы Алексей выплатил долг четырьмя равными платежами т.
Ответ: 2296350 Задания и ответы с 4 варианта 3. Цилиндр и конус имеют общие основание и высоту. Высота цилиндра равна радиусу основания. Площадь боковой поверхности конуса равна 27 2. Найдите площадь боковой поверхности цилиндра. Ответ: 54 4. Механические часы с двенадцатичасовым циферблатом в какой-то момент сломались и перестали ходить.
Найдите вероятность того, что часовая стрелка застыла, достигнув отметки 10, но не дойдя до отметки 1 час. Ответ: 0,25 5. Перед началом волейбольного матча капитаны команд тянут честный жребий, чтобы определить, какая из команд начнёт игру с мячом. Команда «Статор» по очереди играет с командами «Ротор», «Мотор» и «Стартер». Найдите вероятность того, что «Статор» будет начинать только первую и последнюю игры. Ответ: 0,125 10. Масса второго сплава больше массы первого на 3 кг.
Найдите массу третьего сплава. Ответ дайте в килограммах. Ответ: 9 16. В двух областях есть по 160 рабочих, каждый из которых готов трудиться по 5 часов в сутки на добыче алюминия или никеля. В первой области один рабочий за час добывает 0,1 кг алюминия или 0,3 кг никеля. Во второй области для добычи x кг алюминия в день требуется x 2 человеко-часов труда, а для добычи y кг никеля в день требуется y 2 человеко-часов труда. Для нужд промышленности можно использовать или алюминий, или никель, причём 1 кг алюминия можно заменить 1 кг никеля.
Какую наибольшую массу металлов можно за сутки суммарно добыть в двух областях? Ответ: 280 19. В последовательности из 80 целых чисел каждое число кроме первого и последнего больше среднего арифметического соседних чисел. Первый и последний члены последовательности равны 0. Ответ: а-нет, б-нет, в-39 Задания и ответы с 5 варианта 1. Около окружности, радиус которой равен 3, описан многоугольник, площадь которого равна 33. Найдите его периметр.
Точка E — середина ребра SB. Найдите объем треугольной пирамиды EABC. Какова вероятность того, что номера двух случайно выбранных паспортов оканчиваются одной и той же цифрой? Игральную кость бросили два раза. Известно, что три очка не выпали ни разу.
Собственные произведения и фотографии моих цветов: георгины и розы. Страницы блога вторник, 28 апреля 2015 г.
Стереометрия 10. Задачи ЕГЭ. Задание 9 из ОБЗ Вариант 1 10 класс 1. В цилиндрический сосуд налили 1200 см3 воды. Уровень жидкости оказался равным 12 см. В воду полностью погрузили деталь. При этом уровень жидкости в сосуде поднялся на 10 см.
Чему равен объем детали? Ответ выразите в см3. В сосуд, имеющий форму правильной треугольной призмы, налили 1600 см3 воды и полностью в нее погрузили деталь. При этом уровень жидкости в сосуде поднялся с отметки 25 см до отметки 28 см.
Примем ее за. Тогда производительность первого рабочего равна он делает на одну деталь в час больше. Первый рабочий Первый рабочий выполнил заказ на час быстрее.
Следовательно, на меньше, чем, то есть Мы уже решали такие уравнения. Оно легко сводится к квадратному: Дискриминант равен. Корни уравнения: ,. Очевидно, производительность рабочего не может быть отрицательной — ведь он производит детали, а не уничтожает их? Значит, отрицательный корень не подходит. Двое рабочих, работая вместе, могут выполнить работу за дней. За сколько дней, работая отдельно, выполнит эту работу первый рабочий, если он за два дня выполняет такую же часть работы, какую второй — за три дня?
В этой задаче в отличие от предыдущей ничего не сказано о том, какая это работа, чему равен ее объем. Значит, работу можем принять за единицу. А что же обозначить за переменные? Мы уже говорили, что за переменную удобно обозначить производительность. Пусть — производительность первого рабочего.
Как решить задачу: в цилиндрический сосуд налили 2000 см3 воды?
Задача 1. В цилиндрический сосуд налили 2000 см3 воды. Уровень жидкости оказался равным 12 см. В воду полностью погрузили деталь. При этом уровень жидкости в сосуде поднялся на 9 см. Чему равен объем детали? В цилиндрический сосуд налили 2000,, extrm{cм}^3 воды. Уровень воды при этом достигает высоты 12 см. В жидкость полностью погрузили деталь. Опубликовано 4 года назад по предмету Геометрия от Аккаунт удален. в цилиндрический сосуд налили 2000см кубических воды. уровень воды при этом достигает высоты 12 см. в жидкость полностью погрузили деталь. при этом уровень жидкости с сосуде поднялся на 9 см. Когда в сосуд с водой положили деталь, уровень жидкости поднялся на 5 см. Объем жидкости в 5 см высоты цилиндра и есть объем детали.
Задача №1241
В цилиндрический сосуд налили 5000см в кубе воды уровень воды при этом достиг высоты 20 см в жидкость полностью погрузили деталь при этом уровень жидкости в сосуде поднялась на 12 см чему равен обьем детали ответ выразите в см в кубе. При этом уровень жидкости в сосуде поднялся на 6 см. Чему равен объём детали? в цилиндрический сосуд налили 2000 см(в кубе) ь воды при этом достиг высоты 8 см.В жидкость полностью погрузили этом уровень жидкости в сосуде поднялся на 6 равен объем детали?Ответ выразите в кубических сантиметрах.
В цилиндрический сосуд налили 2000
Значит, отрицательный корень не подходит. Двое рабочих, работая вместе, могут выполнить работу за дней. За сколько дней, работая отдельно, выполнит эту работу первый рабочий, если он за два дня выполняет такую же часть работы, какую второй — за три дня? В этой задаче в отличие от предыдущей ничего не сказано о том, какая это работа, чему равен ее объем. Значит, работу можем принять за единицу. А что же обозначить за переменные? Мы уже говорили, что за переменную удобно обозначить производительность. Пусть — производительность первого рабочего. Но тогда производительность второго нам тоже понадобится, и ее мы обозначим за. По условию, первый рабочий за два дня делает такую же часть работы, какую второй — за три дня. Работая вместе, эти двое сделали всю работу за дней.
При совместной работе производительности складываются, значит, Итак, первый рабочий за день выполняет всей работы. Значит, на всю работу ему понадобится дней. Первая труба пропускает на литр воды в минуту меньше, чем вторая. Сколько литров воды в минуту пропускает первая труба, если резервуар объемом литров она заполняет на минуты дольше, чем вторая труба заполняет резервуар объемом литров?
А что же обозначить за переменные? Мы уже говорили, что за переменную удобно обозначить производительность. Пусть — производительность первого рабочего. Но тогда производительность второго нам тоже понадобится, и ее мы обозначим за.
По условию, первый рабочий за два дня делает такую же часть работы, какую второй — за три дня. Работая вместе, эти двое сделали всю работу за дней. При совместной работе производительности складываются, значит, Итак, первый рабочий за день выполняет всей работы. Значит, на всю работу ему понадобится дней. Первая труба пропускает на литр воды в минуту меньше, чем вторая. Сколько литров воды в минуту пропускает первая труба, если резервуар объемом литров она заполняет на минуты дольше, чем вторая труба заполняет резервуар объемом литров? Всевозможные задачи про две трубы, которые наполняют какой-либо резервуар для воды — это тоже задачи на работу. В них также фигурируют известные вам величины — производительность, время и работа.
Примем производительность первой трубы за. Именно эту величину и требуется найти в задаче. Тогда производительность второй трубы равна, поскольку она пропускает на один литр в минуту больше, чем первая.
Давление жидкости на стенки цилиндрического сосуда. Зависит ли давление жидкости на дно сосуда от площади дна. Задачи на цилиндр ЕГЭ.
Объем сосуда. Цилиндрический сосуд с носиком. Сосуд цилиндрический СЦ-5,0. Сосуд имеющий форму правильной треугольной Призмы налили 2024. В сосуд имеющий форму правильной треугольной Призмы налили 2300. В бак имеющий форму правильной четырехугольной Призмы налито 10 л воды.
В сосуд имеющий форму правильной треугольной Призмы 15 60 45. Цилиндр задачи с решением. Сообщающиеся сосуды физика задачи. Задачи на сообщающиеся сосуды. Физика 7 класс давление жидкости в сообщающихся сосудах одинаково. Физика 7 класс задания сообщающиеся сосуды.
В цилиндрический сосуд налили 500 куб см воды 1. Как найти объем детали погруженной в жидкость цилиндра формула. В цилиндрический сосуд налили 500 см3 воды в воду полностью в 1. В сосуде было 5 куб. Объем жидкости в цилиндрическом сосуде. Три сосуда.
Три сосуда с водой. Площадь дна сосуда. Три сосуда с одинаковой площадью дна налита вода. В первом цилиндрическом сосуде 16 см эту жидкость перелили во второй. В первом цилиндрическом сосуде. В сосуд имеющий форму правильной треугольной Призмы.
Форму правильной треугольной Призмы. В сосуд имеющий форму правильной треугольной Призмы налили.
Уровень жидкости оказался равным 15 см. В воду полностью погрузили деталь. При этом уровень жидкости в сосуде поднялся на 9 см. Чему равен объём детали?
Ответ выразите в см3.