Сколько кадров видит человеческий глаз. Сколько человек воспринимает кадров в секунду. Частота 90 или 120 Гц куда более подходит для человеческого глаза по природе.
Каковы пределы человеческого зрения?
Видимый спектр излучения частота. Видимый диапазон спектра солнечного излучения. Видимый спектр диапазон длин волн. Длина волны разных цветов. Спектр света длины волн. Цвет и длина волны таблица. Световой спектр длина волны. Диапазон видимого человеком спектра излучения. Инфракрасное излучение диапазон длин волн.
Диапазон длин волн видимого света. Длина инфракрасной волны. Спектр электромагнитного излучения спектр видимого света. Длины волн спектра. Длины волн видимого спектра. Длины волн электромагнитного спектра. Диапазон длин волн ИК излучения. Инфракрасное излучение диапазон длин волн и частот.
Диапазон длин волн рентгеновского излучения. Спектр зрения человека. Цветовые спектры восприятия человека. Длина волны воспринимаемая человеческим глазом. Волна которую воспринимает глаз. Спектр длин волн электромагнитных излучений. Диапазоны спектра электромагнитного излучения. Диапазоны длин волн электромагнитного спектра.
Видимый диапазон спектра электромагнитного излучения. Диапазон спектра видимого света. Видимый свет частота. Видимое излучение диапазон. Видимый свет диапазон длин волн. Оптическая область электромагнитного спектра 10 380 НМ. Диапазон частот видимого спектра. Видимый диапазон электромагнитного спектра.
Спектр инфракрасного излучения диапазон. Спектр частот электромагнитного излучения. Видимый диапазон спектра занимает частотный интервал. Звуковой диапазон. Звуковые частоты в Музыке. Таблица Гц. Диапазон звуковых частот. УФ части спектра таблица.
Видимый свет диапазон волн. Видимый свет длина волны и частота таблица. Видимый спектр излучения. Диапазон длины волны видимой части спектра. Шкала длин волн видимого спектра электромагнитного излучения. Видимый диапазон электромагнитных волн частота. Длины волн электромагнитных излучений таблица. Спектр шкала электромагнитных волн.
Шкала электромагнитный электромагнитных волн. Шкала электромагнитного спектра. Спектр с длинами волн волны. Диапазон частот видимого излучения. Диапазон длин волн и частот видимого излучения. Диапазон частот видимого света. Частотный спектр света ИК УФ. Видимый спектральный диапазон.
Таблица длин волн цветов спектра. Диапазон длин волн цветов. Длина волны цвета. Длина волны видимого спектра излучения. Диапазон длин волн видимого излучения. Видимый диапазон света длина волны. Длины волн спектра НМ.
Тест под названием «критический порог слияния мерцаний» позволил определить специалистам частоту, при которой участники исследования переставали различать мерцание. Распределение порогов слияния мерцаний у участников теста в трех различных измеренияхИсточник: PLOS ONE В итоге было выяснено, что разные люди могут видеть разное количество мерцаний в секунду. Так, некоторые переставали различать мигания света уже при 35 Гц, подавляющее большинство воспринимало от 40 до 50 Гц, а также несколько людей смогли преодолеть порог в 60 Гц.
Частота световых волн измеряется в герцах Гц. Человеческий глаз может воспринимать световые волны с частотами примерно от 400 до 700 нанометров. Этот диапазон соответствует частотам примерно от 430 до 770 триллионов герц. Таким образом, можно сказать, что человеческий глаз видит световые волны с частотами в диапазоне от 430 до 770 триллионов герц. Надеюсь, это ответило на ваш вопрос! Человеческий глаз способен воспринимать движение с определенной частотой кадров. Оптическая система глаза и нервные рецепторы имеют свое ограничение на скорость передачи информации к мозгу. Исследования показывают, что оптимальная частота кадров для человеческого зрения составляет примерно 60 кадров в секунду. Сколько Ггц у глаза человека?
Будет ли разрешение 16К? Это разрешение имеет 132,7 мегапикселя, что в 16 раз больше, чем разрешение 4K, и в 64 раза больше, чем разрешение 1080p. Каков предел разрешающей способности человеческого глаза? Была дана модель пределов восприятия зрительной системы человека, в результате чего максимальная оценка составила примерно 15 миллионов пикселей с переменным разрешением на глаз. И хотя это много по сравнению с новыми более дешевыми телевизорами 4K, это не такой большой скачок, как мы видели с 4K и 1080P, и он будет снижаться все больше и больше. Итак, хотя да, 8K столкнется с некоторыми проблемами, как и 4K, но говорить, что это бессмысленно, в первую очередь просто неправильно. Может ли человеческий глаз отличить 60 кадров в секунду от 120 кадров в секунду? Многие люди могут заметить разницу в динамичных играх, таких как некоторые игры FPS. Человеческий глаз способен видеть гораздо больше, чем 76 кадров в секунду. Не каждый человек может, но это все еще распространено. Так что нет, 120 Гц не слишком много для игр. Почему 8K бесполезен? Если у вас есть возможность посмотреть на 8K-телевизор в действии, вы, скорее всего, будете смотреть 4K-контент на вытянутом экране. Возможно, ваши глаза не заметят, увеличено оно или нет, но телевизор не может создать детали из ничего, и падение качества определенно присутствует. Видит ли человеческий глаз 144 Гц? Человеческие глаза не могут видеть вещи выше 60 Гц. Глаз передает информацию в мозг, но некоторые характеристики сигнала при этом теряются или изменяются. Например, сетчатка способна следить за быстро вспыхивающими огнями.
Нейробиологи обнаружили, что некоторые люди видят мир быстрее других
Картинка на 120 Гц мониторе выглядит более плавной Как ни странно, но это действительно так. На первых взгляд можно заподозрить противоречие: в одной статье я писал, что максимум — 60 FPS А сейчас говорю, что мы замечаем разницу между 60 и 120 Гц. Как так? Дело в том, что подобные сравнения некорректны. Гц и FPS это совершенно разные величины и они не тождественны, как подразумевают многие пользователи. FPS это кадры в секунду которые отображаются матрицей монитора. Гц это количество сигналов поступающих на матрицу.
Казалось бы а ни «одна ли фигня»? Нет, ни одна. Артефакты матриц Человеческий глаз воспринимает 60 FPS. Но мы забываем, что изображение, которое выводится на монитор не является «идеальным»: оно содержит артефакты. Взгляните на график ниже. На нем изображена зависимость светимости пикселя от времени.
Сначала он был темным. Затем пришла команда изменить цвет 40 мс. Современные игровые матрицы заточены на максимальную скорость, которая достигается усиленным сигналом.
Как все это связано с частотой кадров? Предположим, если все что мы видим постоянно меняется и "шумит", то мозг эффективно регистрирует информацию. Мозг способен проводить суперсэмплинг повышать разрешение и получать в два раза больше данных. И это действительно так. Более того, для получения лучших результатов сигнал должен быть "шумным" — этот феномен известен как Стохастический резонанс. Более того, допустив, что колебания с частотой 83. Получится, что мы более не получаем сигнал, который меняется достаточно быстро для проведения суперсэмплинга. В результате теряется значительная часть воспринимаемых движений и деталей. Что будет, если сигнал обновляется с частотой выше половины частоты колебаний? По мере движения глаза, он будет регистрировать больше деталей, используя эту информацию для создания подробной картинки мира. Будет даже лучше при добавлении "зерна" предпочтительно через временной антиалиасинг для заполнения пробелов. Половина от 83. Таким образом, для получения высококачественного разрешения из картинки, она должна быть "шумной" подобно зерну пленки и обновляться с частотой выше 41 Гц. Пример — фильм "Хоббит" в 48 fps, или "Гемини" в 60 fps. То же касается и видеоигр. Что же будет с частотой 24 или 30 кадров в секунду, ведь это ниже лимита? Глаза будут анализировать изображение дважды и не смогут собрать дополнительную информацию благодаря колебаниям. Кино или игра получиться более "сказочным", не таким детальным. Ограниченным разрешением самого формата. Существуют теории, что это может быть связано с размытием движений, однако в случае кино эффект не должен играть большой роли. Что все это значит для кино? При частоте обновления в 48-60 кадров в секунду наши глаза различают больше деталей, чем при частоте 24-30 fps, как в отношении движения, так и в детализации. Однако мы получим более чем в 2 раза больше информации, потому что помимо окружающей информации мозг регистрирует и движения. Поэтому экшеновые сцены с резкой сменой кадров более высокая частота будет иметь лучшие результаты среди аудитории. Однако аудитория будет регистрировать и больше деталей из сцены, чем при 24-30 fps.
Сколько FPS видит человеческий глаз? Это необходимое количество кадров, при котором видеоряд воспринимается наиболее удобно: нет провисаний или скачков. Когда Вы концентрируете внимание на чём-либо, то способны воспринимать до сотни кадров в секунду, не упуская при этом семантической нити происходящего. Допустим играя в шутер вы можете воспринимать 220 кадров и более. Важным фактором в подаче изображения, естественно, является монитор.
Видимый диапазон электромагнитных излучений. Электромагнитная шкала видимого излучения. Световое излучение ультрафиолетовое видимое инфракрасное. Инфракрасное излучение длина волны и частота. ИК спектр диапазон длин волн. Спектры света длины волн. Частота кадров в секунду. Сравнение кадров в секунду. Кадры в секунду. Количество кадров в секунду. Диапазоны длин волн электромагнитного излучения. Диапазон длин волн гамма излучения. Гамма излучение диапазон излучения. Таблица длин волн и частот. Диапазоны электромагнитного излучения таблица. Диапазон длин волн видимого электромагнитного излучения. Диапазон зрения человека. Цветовое зрение диапазон для человека. Излучение видимое человеческим глазом. Шкала электромагнитных излучений схема. Шкала электромагнитного излучения микроволны. Шкала электромагнитного излучения микроволновка. СВЧ волны диапазон. Частота Шумана. Резонансные частоты органов человека. Частота резонанса Шумана. Частота вибраций в Герцах. Диапазон излучения 5g. Влияние частоты излучения на организм человека. Сколько мегапикселей в глазу человека. Разрешение человеческого глаза в мегапикселях. Сколько пикселей в человеческом глазе. Разрешение глаза в пикселях. Частота Герц. Герц единица измерения. Частота 1 Гц. Герц единица частоты. Звук в Герцах таблица. Соль второй октавы частота. Высота нот частоты. Обозначение в Герцах. Почему ухудшается зрение. От чему ухудшается 9рение. Почему портится зрение. Причины порчи зрения. Спектр видимого излучения длины волн. Электромагнитный спектр излучения инфракрасное излучение. Шкала частот звуковых волн. Шкала различных колебаний. Частота электромагнитных колебаний таблица. Диапазон частот акустических колебаний. Влияние частоты шума на организм человека. Диапазон слуха человека в Гц. Частота звука для человека. Влияние звука на организм человека. Диапазон фиолетового цвета физика. Sinфи нормального красного цвета в физике. Ритмы мозга. Частоты ритмов мозга. Альфа ритм тета ритм. Частота Альфа-ритма мозга человека. Ультрафиолетовая лампа спектр излучения. Диапазоны длин волн таблица цвета. Таблица шкала электромагнитных волн частота, длина.
сколько герц видит человеческий глаз
“Так сколько же FPS способен увидеть человеческий глаз?”. Отвечая на вопрос о том, сколько fps видит человеческий глаз, можно смело назвать цифру 100. Другими словами, начинающие спорить, что "глаз не видит более 24 к/сек." на самом деле, этим своим заявлением подменяют (или сильно узкоспециализируют) обсуждаемую тему. Значит, в человеческом глазу 127 Мегапикселей, так? Человеческий глаз способен воспринимать световые волны с частотами от приблизительно 430 до 770 терагерц (ТГц), что соответствует частотам от примерно 430 до 770 нанометров (нм) в спектре видимого света.
Сколько человек видит Гц?
Человеческий глаз может не заметить разницы между 120 Гц и 144 Гц, но легко увидит разницу между 30 FPS и 60 FPS. Считается, что человеческий глаз способен воспринимать изменения в визуальной информации, частота которых не превышает 30-80 Гц (зависит от индивидуальных особенностей человека, окружающих условий, интенсивности и спектрального состава светового потока). Сколько FPS человек может различить глазом? Отвечая на вопрос о том, сколько fps видит человеческий глаз, можно смело назвать цифру 100.
Просчитанное изображение
- Сколько кадров в секунду видит человек
- Сколько максимум герц видит глаз? Найдено ответов: 25
- Мониторы с частотой 144, 240, 360 Гц: дают ли они реальные преимущества? |
- Популярное
- Сколько кадров в секунду видит человеческий глаз
Сколько видит герц человеческий глаз?
Существует устойчивый миф, что 24 Гц — это максимальная частота, воспринимаемая человеческим глазом. FPS и человеческий глаз: сколько fps воспринимает глаз? Сколько FPS может видеть человеческий глаз? Таким образом, можно сказать, что человеческий глаз видит световые волны с частотами в диапазоне от 430 до 770 триллионов герц. Сколько FPS может увидеть человеческий глаз. Человеческий глаз может не заметить разницы между 120 Гц и 144 Гц, но легко увидит разницу между 30 FPS и 60 FPS.
Сколько человек видит Гц?
Тем не менее закон Блоха не значит, что ограничение в восприятии для человека останавливается на 100 миллисекундах. В некоторых случаях люди различают артефакты в изображении при 500 кадрах в секунду задержка в 2 миллисекунды. Как отмечает профессор Джордан Делонг, восприятие движения во многом зависит и от того, в каком положении человек находится. Если он сидит на месте и следит за объектом, то это одна ситуация, а если сам куда-то идёт, то совершенно другая. Это связано с отличиями между основным и периферийным зрением, которые достались людям от их первобытных предков. Когда человек смотрит прямо на объект, он различает мельчайшие детали, однако его зрение плохо справляется с быстро движущимися предметами. Периферийное зрение, напротив, страдает недостатком деталей, но действует намного быстрее. Именно с этой проблемой столкнулись разработчики шлемов виртуальной реальности. Если 60 и даже 30 Гц вполне хватает для монитора, на который человек смотрит прямо, то для того, чтобы зритель нормально чувствовал себя в VR, частоту кадров необходимо повысить до 90 Гц.
Всё потому, что шлем даёт картинку и для периферийного зрения. По словам профессора Бьюзи, если пользователь играет в шутер от первого лица, то повышенная частота кадров по большей части позволяет ему лучше воспринимать движение крупных объектов, нежели мелкие детали. Это связано с тем, что во время игры геймер не стоит на одном месте, выжидая врагов, а двигается в виртуальном пространстве с помощью мышки и клавиатуры, также меняя и своё положение относительно противников, которые могут появляться в разных частях монитора. Сколько вешать в кадрах Мнения о том, сколько человеку нужно кадров в секунду, у учёных разошлись. Профессор Бьюзи считает, что для комфорта стоит проходить как минимум отметку в 60 Гц, однако он не знает, будет ли разница для некоторых людей между 120 и 180 кадрами в секунду. Психолог Делонг считает, что частота выше 200 кадров будет восприниматься любым зрителем как реальная жизнь, однако он убеждён, что после 90 кадров разница для большинства людей становится минимальной. Исследователь Эдриен Чопин смотрит на ситуацию иначе. Да, чем больше кадров, тем лучше, однако человеческий мозг перестаёт получать полезную новую информацию о картинке при частоте выше 20 Гц.
По словам учёного, для того, чтобы зафиксировать небольшой объект, мозгу нужно ещё меньше. Когда вы хотите произвести визуальный поиск, проследить за несколькими объектами или выяснить направление движения, ваш мозг захватит примерно 13 кадров в секунду из общего потока. Для этого он вычисляет некое среднее значение из ряда соседних кадров, составляя из них один. Эдриен Чопин, исследователь Чопин убеждён, что для передачи информации нет смысла идти выше 24 кадров в секунду, принятых в кино.
Диапазоны спектра электромагнитного излучения. Диапазоны длин волн электромагнитного спектра. Видимый диапазон спектра электромагнитного излучения. Диапазон спектра видимого света. Видимый свет частота. Видимое излучение диапазон.
Видимый свет диапазон длин волн. Оптическая область электромагнитного спектра 10 380 НМ. Диапазон частот видимого спектра. Видимый диапазон электромагнитного спектра. Спектр инфракрасного излучения диапазон. Спектр частот электромагнитного излучения. Видимый диапазон спектра занимает частотный интервал. Звуковой диапазон. Звуковые частоты в Музыке. Таблица Гц.
Диапазон звуковых частот. УФ части спектра таблица. Видимый свет диапазон волн. Видимый свет длина волны и частота таблица. Видимый спектр излучения. Диапазон длины волны видимой части спектра. Шкала длин волн видимого спектра электромагнитного излучения. Видимый диапазон электромагнитных волн частота. Длины волн электромагнитных излучений таблица. Спектр шкала электромагнитных волн.
Шкала электромагнитный электромагнитных волн. Шкала электромагнитного спектра. Спектр с длинами волн волны. Диапазон частот видимого излучения. Диапазон длин волн и частот видимого излучения. Диапазон частот видимого света. Частотный спектр света ИК УФ. Видимый спектральный диапазон. Таблица длин волн цветов спектра. Диапазон длин волн цветов.
Длина волны цвета. Длина волны видимого спектра излучения. Диапазон длин волн видимого излучения. Видимый диапазон света длина волны. Длины волн спектра НМ. Глаза орган зрения для детей. Органы человека глаза. Строение глаза. Органы зрения для дошкольников. Шкала частоты вибраций человека.
Вибрационная частота. Частота вибраций эмоций человека. Шкала вибраций эмоций. Длина волны видимой части спектра. Спектр излучения видимого света. Видимый диапазон спектра в нанометрах. Диапазон длин волн у видимого спектра света в нанометрах. Восприятие времени у животных. Скорость разных животных. Скорость восприятия животных.
Восприятие времени зверей. Частота видимого спектра электромагнитных волн. ЭМВ это диапазон длин волн. Диапазон спектра электромагнитных колебаний. Спектр частота и длина волны. Параметры остроты зрения. Острота зрения физиология. Угол зрения и острота зрения.
Так, некоторые переставали различать мигания света уже при 35 Гц, подавляющее большинство воспринимало от 40 до 50 Гц, а также несколько людей смогли преодолеть порог в 60 Гц. Кроме того, помимо индивидуальной восприимчивости, в течение жизни данный показатель у каждого человека может меняться в ту или иную сторону. Причем женщины более склонны к данному феномену.
Он уходит корнями в эпоху зарождения кинематографа. Первые фильмы, снятые в конце XIX века братьями Люмьер, имели 16 кадров в секунду. Эту цифру выбрали потому, что расход стандартной пленки 35 мм при такой частоте составлял ровно 1 фут в секунду. Таким образом упрощались расчеты необходимого количества пленки для съемок. Потребность в увеличении частоты возникла с переходом от немого кино к звуковому. Дорожка в те времена писалась на пленку рядом с картинкой в виде полосок, каждая из которых соответствовала определенной частоте. Малая длина пленки, прокручиваемой за секунду всего 30 см , не позволяла записать звук достаточно четко, поэтому длину нужно было увеличивать. Секундный расход пленки теперь составлял 1,5 фута, минутный — 90 футов или 30 ярдов. Эти цифры тоже оказались удобными для расчетов при планировании бюджета съемок. Частоту пытались увеличить и больше, до 30, 48 и даже 60 кадров за секунду, но возникли проблемы. Для такой скорости требовалось более точное и выносливое оборудование как для съемки, так и воспроизведения в кинотеатрах , а расход пленки существенно увеличивался. Помимо затрат на саму пленку, увеличивались также стоимость монтажа, время на его произведение. В итоге все так и остановились на 24 кадрах, эта частота стала отраслевым стандартом на много десятилетий. Окончательно утвердили частоту около 25 кадров в секунду тотальная электрификация Европы и появление телевидения. При частоте переменного тока 50 Гц смен направления в секунду 24-25 кадров удобно привязывать к параметрам тока. При таком подходе смена кадра происходит один раз на период синусоиды. Однако эксперименты показывают, что человек обрабатывает и видит в среднем до 150 кадров за обозначенный промежуток времени. Известны редкие случаи, когда при регулярных тренировках достигался уровень восприятия около 250 FPS. Но некоторые исследователи полагают, что человеческий глаз может воспринять даже 1000 и более кадров в секунду. Сколько кадров в секунду видит глаз человека? Если вы покажете человеку один кадр в секунду на протяжении длительного периода времени, со временем он станет воспринимать не изображения по отдельности, а картину движения в общем.
Частота кадров: сколько визуальной информации воспринимает человек?
Распределение порогов слияния мерцаний у участников теста в трех различных измеренияхИсточник: PLOS ONE В итоге было выяснено, что разные люди могут видеть разное количество мерцаний в секунду. Так, некоторые переставали различать мигания света уже при 35 Гц, подавляющее большинство воспринимало от 40 до 50 Гц, а также несколько людей смогли преодолеть порог в 60 Гц. Кроме того, помимо индивидуальной восприимчивости, в течение жизни данный показатель у каждого человека может меняться в ту или иную сторону.
Объясняю — у нас есть небольшой участок матрицы, который может делать цветное и чёткое фото. То есть у нашего мозга уже есть представление о том, каким цветом окрашен тот или иной объект благодаря сканированию. Всё что ему остаётся это сопоставить всю полученную информацию, объединить их в единую чёткую и цветную картинку.
Немного напоминает раскрашенную версию 17 мгновений весны, но мозг справляется получше. Фактически, мозг сам дорисовывает за нас итоговую картинку. Придумывает наше мировосприятие. Забавный факт, для этой обработки и сопоставления результатов сканирования или собирания этого пазла, мозгу необходимо примерно 150 миллисекунд. Во время этого процесса наше зрение отключается.
Мы ничего не видим. Но из-за такого малого промежутка по времени, наше сознание этого не замечает. То есть каждую секунду, мы страдаем временной слепотой! Что там с ретиной? Сканирование нам нужно из-за того, что в человеческом глазу очень ограниченное пространство.
И сделать как в камере, чтобы к каждому пикселю был подключен свой проводок не получается. Эволюция наградила нас зрительной ямкой, в которой, хоть и ограничено, но есть похожая технология как на матрице смартфона. Чтобы каждый участок видимого пространства попал на эту ямку и мы получили хорошую картинку, нам нужны две функции. Первая, это сканер. Нужно захватить каждую точку в пространстве с помощью микродвижений, их как мы помним называют саккады.
Саккады сканируют объект или пространство. Мы получаем кучу мелких пазлов, которые нам нужны для итоговой картинки. Вторая функция, это наш мозг. Он собирает эти пазлы в единую картинку. Придаёт чёткости, дорисовывает объекты, наполняет красками.
Создаёт виртуальное пространство в нашем сознании, из фотонов, которое мы воспринимаем как реальность. Вот как то так мы воспринимаем мир, и вот так устроены глаза. Но все-таки. С какой точностью глаза это делают. И что там с Retina у Apple?
Давайте, наконец, попробуем решить задачку Стива Джобса. Итак, сколько точек на дюйм должно быть у экрана смартфона, лежащего в руке, чтобы мы не замечали на нем пиксели? И теперь давайте решим несложную задачку по геометрии 7 класса. Мы уже посчитали ,что DPI глаза в самом четком месте центральной ямке примерно 9 836 точек на дюйм. Вот здесь находится линза нашего глаза, хрусталик, через который проходит луч.
А вот здесь пиксель смартфона в нашей руке. И он должен быть такого размера, чтобы пройдя через хрусталик, он спроектировался ровно в пиксель на сетчатке. Вроде так. Возможно, тут есть какие то допущения в плане оптики, но на порядок вычислений не повлияет. И теперь у нас получается два подобных треугольника.
Это мы знаем — размер пикселя сетчатки. Фокусное расстояние мы тоже знаем, ведь это диаметр глазного яблока, примерно 22 мм. И это тоже знаем — расстояние до смартфона. Допустим, 30 см, как в школе учили держать книжку. Или 300 мм.
Нам надо найти X. А значит плотность пикселей должна быть 721 DPI. Тогда на расстоянии в 30 см наш глаз такой пиксель не заметит. Получается, что для среднего смартфона, который мы будем держать на расстоянии 30 см, нужна плотность пикселей, аж целых 721 точек на дюйм! За всю историю смартфоностроения, только несколько моделей Сони Экспирия, добирались до таких показателей.
Так что iPhone 4 со своими 326 пикселей на дюйм и рядом не стоял. Старина Стив схитрил. Занятно, что из текущих моделей самый высокий показатель у iPhone 13 mini — 476 PPI. Но почему пиксели в смартфонах, в основном, не режут нам глаза? Apple и прочие компании прячут пиксели другими технологиями.
Это уже другая история. Ладно, главный вопрос: сколько все-таки мегапикселей в глазах? Однозначно ответить сложно, так как аналогия не точна: потому что для камеры все области матрицы идентичны, а для глаза нет. Можно считать, что это 127 Мп по количеству клеток сенсоров. Или что 1 Мп по количеству соединений с мозгом.
А можно провести мысленный эксперимент и предположить, что мозг заполняет все видимое пространство с точностью центральной ямки? Можно и так, тогда выйдет около 164 МП на глаз. Для этого мы захватываем каждую видимую точки микродвижениями — саккадами. А получившиеся данные соединяет и обрабатывает мозг. Так получается единая картинка.
Одни утверждают, что и 24-30 кадров в секунду достаточно, потому что выше они уже не различают. Другие заявляют, что чем больше кадров, тем лучше — будет то игры или кино. Биологический факт в том, что человеческий глаз видит мир с частотой выше 24 fps. И даже выше 240 fps. Потому что наши органы зрения — это не камера с механическим или электронным затвором, который открывается и закрывается с определенной частотой. Если мы воспринимаем мир без какой-то жесткой частоты, тогда возникают справедливые вопросы: Почему фильмы с частотой 48 или 60 кадров в секунду выглядят, словно сняты на камеру смартфона? Почему фильмы в 24 или 30 кадрах в секунду выглядят приятнее, кинематографичнее?
Почему в играх мы предпочитаем 60 fps и выше, а не 24 или 30 кадров? Давайте разбираться с научной точки зрения. Внимание, в тексте будут серьезные упрощения, но с указанием ссылок на более подробную информацию. Глаза — оптический инструмент, но не камера Возможно, вы не в курсе, но ваши глаза находятся в постоянном движении. Подобно птичке колибри, они совершают множество микродвижений. Это необходимо для формирования подробной картины окружения, так как в максимальном "разрешении" и "фокусе" мы можем видеть только область размером с монету на вытянутой руке. Эта часть сетчатки называется "ямка", которая отвечает за четкость и красочность того, что мы видим, благодаря высокой концентрации светочувствительных колбочек.
Наш мозг "склеивает" информацию из этой ямки, создавая достаточно подробный образ мира. Детальное описание — Wiki. Согласно исследованиям , физический лимит остроты зрения составляет 6 арксекунд при взгляде на две параллельные линии, расположенные рядом друг с другом. Однако существует так называемый критерий Рэлея , который устанавливает границы углового разрешения для любого оптического инструмента — от человеческого глаза до фотоаппарата или видеокамеры. Если воспользоваться соответствующей формулой, то в оптимальных условиях глаз обычного человека имеет остроту около 25 арксекунд. Более того, сами светочувствительные колбочки имеют ширину от 30 до 60 арксекунд, что в 5-10 раз больше, чем минимальное расстояние между линиями, которое можно гипотетически различить. Однако глаз — это не камера.
Если с чем и сравнивать сетчатку, то лучше всего подойдет процессор, потому что эта часть глаза выполняет ряд функций обработки. Достаточно взглянуть на устройство колбочек. Устройство колбочек Колбочки — это узкоспециализированные светочувствительные рецепторы, за миллионы лет развившиеся для сбора максимально доступной информации. Это не просто сенсор камеры, регистрирующий пиксель — колбочки "предпочитают", когда свет падает на них напрямую.
Единица частоты, равная одному циклу в секунду. Чему равен 1 герц? Что измеряется в герцах?
Герц — производная единица, имеющая специальные наименование и обозначение. Сколько FPS видит глаз? Единственное исключение — некоторые стандарты 3D-кинопроекции, в которых используется удвоенная частота 48 кадров в секунду для проекции стереопары. При этом, для каждого глаза частота остается привычной — 24 кадра в секунду. Какая частота обновления человеческого глаза? Когда периферийное зрение заполняет экран с частотой обновления 60 Гц или более, многие люди сообщают, что у них есть сильное ощущение, что они физически движутся.