Получаемый кубит называется кубитом на сжатых состояниях, поскольку для кодирования информации одна из квадратур сжимается сильнее стандартного квантового предела. — Мы модернизировали систему считывания: раньше могли считывать восемь ионов одновременно, теперь 10, что соответствует 20 кубитам.
Квантовые компьютеры: путь от фантастики до реальности и их влияние на науку и бизнес
Если вам интересны космос, физика, робототехника, современная медицина и биология, то вам сюда. Подписывайтесь на «Чердак» и исследуйте мир вместе с нами! Показать больше.
Квантовый компьютер способен за короткое время найти жизнеспособные комбинации сложных органических молекул, как природа, которой на решение этих задач потребовалось миллиарды лет. Теперь поиск таких комбинаций стал доступен искусственным путем через квантовые вычисления, с появлением более мощных квантовых компьютеров мы сможем смоделировать возможное существование и взаимодействие всех веществ и элементов. Источник: IBM Quantum Области применения квантовых вычислений Как и обычных компьютеров, сфера применения КК крайне широка, от части мы еще не знаем весь потенциал квантовых вычислений, которые затронут практически все сферы деятельности человека. Аэрокосмическая отрасль. КК необходим для сложных расчетов траекторий полетов, нагрузок с огромным количеством переменных. Будут найдены не только способы расшифровки всех возможных кодирований, но и новые способы квантового шифрования, что приведет к новым возможностям в кибербезопасности. Искусственный интеллект.
С появление КК, искусственный интеллект шагнет далеко вперед. Теперь он сможет анализировать миллионы вариантов развития событий. Транспортная компания, осуществляющая доставку в десятки и сотни городов, сможет узнать оптимальный маршрут, чтобы сэкономить на расходах на топливо. Станет возможно путем сложных расчетов сбалансировать риски инвестиционных портфелей и предсказывать возможную волатильность. Снижение выбросов углерода в атмосферу с помощью открытия новых материалов. Нефтедобывающие компании моделируют месторождения и способы эффективной добычи. Способность квантовых компьютеров точно моделировать молекулярные реакции, вплоть до субатомного уровня, имеет огромное значение для всего, от открытия лекарств до создания нового поколения легких и долговечных аккумуляторных батарей. Большинство химиков, которые занимались традиционными лабораторными исследованиями, понимают, что часы, месяцы и даже годы могут быть потрачены на то, чтобы попытаться понять, как химические процессы происходят внутри колбы, и научиться контролировать их. Квантовые вычисления обещают ускорить все это.
Некоторые задачи невозможно эффективно выполнить даже на самых мощных современных суперкомпьютерах. КК помогут открыть и синтезировать новые вещества. Которые заменят малоэффективные или вредные вещества используемые сейчас. Это может изменить все начиная от состава пластиковых пакетов до скорости зарядки электромобилей. С появлением сложных вычислений, появилась возможность моделировать взаимодействие сложных белковых молекул. Одна из главных проблем в поиске лекарств, это поиск веществ нейтрализующих вредоносные белки в нашем организме, так называемых ингибиторов. Для поиска нужных веществ, необходимо смоделировать вредоносный белок и смоделировать взаимодействие его с другими молекулами разных веществ. Для выявления полезных комбинаций необходимо создать сотни миллионов комбинаций взаимодействия. Сложные молекулы белков усложняют поиск лекарств.
На первый взгляд запутанность выглядит как колдовство, но она реальна и не настолько сложна, если смотреть на её систему кубитов. Если 2-кубитная система с кубитами A и B находится в запутанном состоянии, кубиты могут находиться наполовину в состоянии 00, наполовину в 11. Таким образом, независимо от измерений системы два кубита останутся теми же самыми. Запутанная система может быть так же наполовину в 01, наполовину в 10, где два состояния всегда противоположны друг другу.
Состояние 00 или 11 — два кубита останутся теми же Альберт Эйнштейн и другие физики считали запутанность ошибкой, потому что она противоречит специальной теории относительности Эйнштейна, в которой говорится, что ничто не может двигаться быстрее скорости света. Если у Алисы есть кубит A, а у Боба есть кубит B оба кубита находятся в запутанности , и Боб улетит за миллиарды световых лет от Алисы, измерение её кубита покажет то же, что и измерение кубита Боба — любые изменения в кубите Алисы с применением квантового вентиля повлияют на состояние кубита Боба. Формирует ли это общение? Никто не знает наверняка, потому что невозможно найти точное вероятностное состояние кубита, так как измерение кубита вынуждает его перейти в одно из двух детерминированных состояний.
Этот вопрос всё ещё горячо обсуждается. Почему за кубитами будущее? Кубиты экспоненциально быстрее битов в некоторых вычислительных задачах, таких как поиск по базам данных или разложении чисел на множители что, как мы выясним ниже, может взломать интернет-шифрование. Важно понимать, что кубиты могут содержать значительно больше информации, чем биты.
Один бит содержит такое же количество информации, что и кубит — оба они могут содержать одно значение. Однако четыре бита используются для хранения того же объёма информации, что два кубита. Восемь бит сохраняют информацию, которую можно сохранить в трёх кубитах, так как 3-кубитная система может хранить восемь состояний — 000, 001, 010, 011, 100, 101, 110 и 111. И так далее.
График ниже демонстрирует вычислительную мощность кубитов. По оси x отображается количество кубитов, используемых для хранения определённого количества информации. Значения по оси y голубой линии отображают количество битов, необходимых для хранения того же объёма информации, что и в количестве кубитов по оси x, или 2 в степени x. График построен с помощью Desmos.
Представьте себе какие возможности предоставляют квантовые вычисления! Квантовые компьютеры также прекрасно подходят для разложения чисел на множители, что приводит нас к RSA шифрованию. Протокол безопасности, защищающий Medium и, наверняка, любой другой известный вам веб-сайт, известен как RSA шифрование.
Эти технологические лидеры работают с производителями, фирмами, оказывающими финансовые услуги, и биотехнологическими компаниями, чтобы решить множество проблем.
Доступность квантовых компьютерных услуг и прогресс в области вычислительной мощности дают исследователям и ученым новые инструменты для поиска решений проблем, которые раньше было невозможно решить. Квантовые вычисления сократили количество времени и ресурсов, необходимых для анализа невероятных объемов данных, моделирования этих данных, разработки решений и создания новых технологий, которые решают проблемы. Бизнес и промышленность используют квантовые вычисления для изучения новых способов ведения бизнеса. Вот несколько проектов в области квантовых вычислений, которые могут принести пользу бизнесу и обществу: Аэрокосмическая отрасль использует квантовые вычисления для поиска лучшего способа управления воздушным движением.
Финансовые и инвестиционные фирмы надеются использовать квантовые вычисления для анализа риска и доходности финансовых вложений, оптимизации портфельных стратегий и урегулирования финансовых переходов. Производители применяют квантовые вычисления для улучшения своих цепочек поставок, повышения эффективности своих производственных процессов и разработки новых продуктов. Биотехнологические компании изучают способы ускорения открытия новых лекарств. Открытые эксперименты с квантовыми вычислениями Значит ли это, что скоро у вас будет квантовый компьютер?
Некоторые ученые изучают возможность моделирования квантовых вычислений на настольном компьютере. Пока вы ждете свой квантовый компьютер, есть несколько возможностей поэкспериментировать с квантовыми устройствами и симуляторами. Многие крупнейшие мировые технологические компании предлагают квантовые услуги. Эти квантовые сервисы в сочетании с настольными компьютерами и системами создают среду, в которой квантовая обработка используется наряду с настольными компьютерами для решения сложных задач.
IBM предлагает среду IBM Q с доступом к нескольким реальным квантовым компьютерам и симуляциям, которые вы можете использовать через облако. Alibaba Cloud предлагает облачную платформу для квантовых вычислений, где вы можете запускать и тестировать пользовательские квантовые коды. Microsoft предлагает набор для квантовой разработки , который включает язык программирования Q , квантовые симуляторы и библиотеки разработки готового к использованию кода. Rigetti имеет квантовую облачную платформу , которая в настоящее время находится в бета-версии.
Революция в ИТ: как устроен квантовый компьютер и зачем он нужен
Кубиты и суперпозиция, или почему обычных компьютеров уже недостаточно Считывать, записывать, хранить и обрабатывать информацию — главное, для чего нужен обычный компьютер. Работа на нем связана с двумя важными параметрами — общей памятью и скоростью выполнения операций. Для представления информации такие машины используют биты. Бит — единица информации, которая принимает определенное значение, 1 или 0. Определенное — ключевое слово. Мы точно знаем, в каком значении находится бит. Представьте переключатель света — он либо включен, либо выключен. Мы можем это увидеть по горящей лампочке. Так же и с битами. Внутри компьютера это устроено так: на материнской плате находится миллион транзисторов — полупроводников, которые нужны для управления электрическим током; каждый из транзисторов либо закрыт позиция 0 , либо открыт позиция 1 и пропускает ток, при этом электроны пробегают по транзистору со скоростью, близкой к скорости света; пока транзистор включается и выключается, компьютер может производить вычисления — любая информация представляется в виде чисел, благодаря переключению с позиции 0 на 1 и наоборот.
Квантовый компьютер подчиняется другим законам. И тут важны два понятия: Квантовый компьютер — это вычислительное устройство, в котором используются явления квантовой механики для обработки данных. Вероятность Классическая механика основана на детерминизме: транзистор либо включен, либо нет, кран или закрыт, или открыт. В квантовой механике во главе угла вероятность. Вопрос «Свет включен? Все знают про мысленный эксперимент физика-теоретика Эрвина Шредингера. Правда, мы слишком любим котиков, поэтому лучше покажем мем с тарелками. В ходе эксперимента Шредингера возникает суперпозиция Тарелки Шредингера одновременно находятся в двух состояниях — мы не знаем, какие из них разобьются, а какие останутся целы. Зато можем предсказать это, основываясь на траектории их падения, циркуляции воздуха в помещении и скорости открытия дверцы.
То есть можем математически подсчитать вероятность того, что они разобьются. Своеобразное математическое гадание.
По словам ученых, простота платформы кубитов также должна обеспечивать простое и недорогое производство. Перспективы квантовых вычислений заключаются в способности этой технологии следующего поколения решать определенные задачи намного быстрее, чем их могут решить классические компьютеры. Исследователи стремятся объединить длительное время когерентности со способностью нескольких кубитов связываться друг с другом, известной как запутанность. Таким образом, квантовые компьютеры могли бы найти ответы на проблемы, на решение которых у классического компьютера ушли бы многие годы. Рассмотрим задачу, в которой исследователи хотят найти самую низкую энергетическую конфигурацию белка, состоящего из многих аминокислот. Эти аминокислоты могут складываться триллионами способов, на расчет которых не способен ни один классический компьютер.
С помощью квантовых вычислений можно использовать запутанные кубиты для создания суперпозиции всех конфигураций складывания, что дает возможность одновременно проверять все возможные ответы и более эффективно решать проблему. Результаты работы были опубликованы в Nature.
Кубиты и суперпозиция, или почему обычных компьютеров уже недостаточно Считывать, записывать, хранить и обрабатывать информацию — главное, для чего нужен обычный компьютер.
Работа на нем связана с двумя важными параметрами — общей памятью и скоростью выполнения операций. Для представления информации такие машины используют биты. Бит — единица информации, которая принимает определенное значение, 1 или 0.
Определенное — ключевое слово. Мы точно знаем, в каком значении находится бит. Представьте переключатель света — он либо включен, либо выключен.
Мы можем это увидеть по горящей лампочке. Так же и с битами. Внутри компьютера это устроено так: на материнской плате находится миллион транзисторов — полупроводников, которые нужны для управления электрическим током; каждый из транзисторов либо закрыт позиция 0 , либо открыт позиция 1 и пропускает ток, при этом электроны пробегают по транзистору со скоростью, близкой к скорости света; пока транзистор включается и выключается, компьютер может производить вычисления — любая информация представляется в виде чисел, благодаря переключению с позиции 0 на 1 и наоборот.
Квантовый компьютер подчиняется другим законам. И тут важны два понятия: Квантовый компьютер — это вычислительное устройство, в котором используются явления квантовой механики для обработки данных. Вероятность Классическая механика основана на детерминизме: транзистор либо включен, либо нет, кран или закрыт, или открыт.
В квантовой механике во главе угла вероятность. Вопрос «Свет включен? Все знают про мысленный эксперимент физика-теоретика Эрвина Шредингера.
Правда, мы слишком любим котиков, поэтому лучше покажем мем с тарелками. В ходе эксперимента Шредингера возникает суперпозиция Тарелки Шредингера одновременно находятся в двух состояниях — мы не знаем, какие из них разобьются, а какие останутся целы. Зато можем предсказать это, основываясь на траектории их падения, циркуляции воздуха в помещении и скорости открытия дверцы.
То есть можем математически подсчитать вероятность того, что они разобьются. Своеобразное математическое гадание.
И хотя физически кубит может быть реализован разными способами кубиты создают с использованием специально выращенных сверхпроводниковых структур, ультрахолодных атомов и ультрахолодных ионов, с помощью оптических систем и так далее , единого ответа о наиболее перспективной реализации у исследователей пока нет — сегодня эксперименты по созданию квантовых вычислителей ведутся на основе разных технологий. И этот список регулярно обновляется. Если обобщить на совсем базовом уровне: «столкновение» квантовой системы с реальным миром разрушает всю «квантовость», и способ поддержки этого состояния в достаточном масштабе пока не придуман. Тем более не придуман способ реализации такого квантового вычислителя, к примеру, в условиях обычной квартиры.
Несмотря на текущие сложности, квантовые информационные системы имеют большой потенциал — по крайней мере в науке уже есть немало вычислительных задач, с которыми классические компьютеры справиться не могут. Также стоит заметить, что существуют системы с сотнями кубитов — например, об этом заявляет фирма IBM, — но состояния квантового превосходства они пока не достигают из-за высокой декогеренции и других трудностей, связанных с корректным поддержанием системы.
Сердце квантовых компьютеров - как создаются кубиты?
Последние новости о разработке собраны в этой статье. Для кубитов IBM и Google безошибочная работа кубитов означает, что каждый логический кубит должен состоять из 1000 физических кубитов. К 2024 году планируется построить квантовые компьютеры, состоящие из 30-100 кубитов, в зависимости от используемой технологии. Под числом кубитов понимается объем информации, который может храниться и обрабатываться на квантовом компьютере за время когерентности. Последние новости о разработке собраны в этой статье.
В Канаде создали альтернативную архитектуру кубита со встроенной защитой от ошибок вычислений
Нестабильность и ошибки — квантовые состояния кубитов очень чувствительны к любым воздействиям извне, что может приводить к потере или изменению информации. Кубит, минимальная единица передаваемой или хранимой квантовой информации, аналогичная биту в классической информации. Недавно исследователи разработали флюксониевый кубит, способный сохранять информацию в течение 1,43 миллисекунды, что в десять раз дольше, чем предыдущие технологии создания кубитов. Куби́т — наименьшая единица информации в квантовом компьютере (аналог бита в обычном компьютере), использующаяся для квантовых вычислений.
Как работает квантовый компьютер: простыми словами о будущем
Квантовые компьютеры: путь от фантастики до реальности и их влияние на науку и бизнес | Кубиты, даже находящиеся в специально созданных условиях (вакуум, охлаждение до сверхнизких температур), разрушаются за доли секунды. |
Как работают квантовые процессоры. Объяснили простыми словами | Они могут работать, как обычные кубиты, так и как кудиты, представляющие собой расширенную версию кубитов. |
В Китае создан 504-кубитный чип для квантового суперкомпьютера. На подходе 1000-кубитный | Последние новости о разработке собраны в этой статье. |
Квантовые компьютеры | Термин «кубит» (QuBit — «квантовый бит») был введен физиком Стивеном Визнером в его статье «Сопряженное кодирование» (Conjugate Coding), опубликованной в 1983 году в SIGACT News. |
Кульбит кубита. Новейший сверхкомпьютер может победить рак или погубить мир
Нужно создать кубиты и квантовую запутанность между ними, уметь их контролировать, строить вентили на их базе. Кроме того, кубиты могут быть квантово запутаны друг с другом, что позволяет проводить параллельные вычисления и работать с большими объёмами информации. Каждый лишний кубит играет большую роль – ведь он сразу повышает мощность вычислений в два раза. Что наиболее важно, кубит достиг времени когерентности в квантовом состоянии, конкурентоспособного с другими современными кубитами. Они могут работать, как обычные кубиты, так и как кудиты, представляющие собой расширенную версию кубитов. Последние новости о разработке собраны в этой статье.
От бита к кубиту. Создание квантовых компьютеров сулит необыкновенные перспективы
В нашем кольце кубит, напомним, реализован как кольцо на полупроводниковой подложке при приложении определенного магнитного поля существуют два равновероятностных состояния. Они равновероятностные потому, что имеют одинаковую энергию то есть ни одно из состояний не является более выгодным энергетически для всей системы, чем другое. Эти состояния соответствуют незатухающему сверхпроводящему току, текущему по кольцу по часовой и против часовой стрелки соответственно. Это и есть ноль и единица. Физики говорят, что в кубите возникает суперпозиция этих двух состояний. Суть явления туннелирования заключается в следующем: квантовые частицы, в отличие от классических, могут с некоторой вероятностью проходить сквозь потенциальные барьеры. То есть, например, заряженная частица может пролетать сквозь барьер из изолятора, как в случае с кубитом. Туннелирование ответственно за эффекты в полупроводниковой электронике, радиоактивность, некоторые типы ядерного распада и многое другое. В чем заключается достижение вашей лаборатории? Достижение здесь пока, конечно, местного значения, работа только начинается. Схема кубита, которую мы использовали, была предложена еще 13 лет назад, а первый работающий вариант появился лет 10-11 назад.
В данном случае достижением является то, что такой кубит был впервые померян в России. И трудности здесь состоят как в возможности получения низкой температуры, так и в том, что для проведения эксперимента необходимо сделать довольно большой набор непростых действий, чтобы экранировать кубит от влияния внешних паразитных магнитных полей чтобы мерить при помощи специальных микроволновых устройств. В кубите же суперпозиция состояний. Что значит «мерить кубит»? Опять-таки, измерение кубита можно делать по-разному, точного значения у этого термина нет. Если мы теперь немного изменим внешнее магнитное поле, то одно из этих состояний станет более выгодным. В квантовом случае индуктивность определяется током, протекающим через джозефсоновский переход, поэтому ведет себя как так называемая параметрическая индуктивность. Это изменение мы и регистрируем. Для этого на частоте порядка 10 гигагерц мы посылаем к кубиту электромагнитный сигнал. При прохождении через образец у этого сигнала сдвигается фаза.
Этот сдвиг вызывает изменение состояния кубита, которое влияет на индуктивность некоторой измерительной цепи, находящейся рядом с кубитом. Усиленный сигнал при этом по кабелю поступает в прибор, который позволяет уже при комнатной температуре мерить фазу сигнала. В центре желтая дверь видна чистая комната. Ее монтаж пока еще не закончен. Цель эксперимента, который мы поставили, была пока самой простой из тех, которые только возможны.
Другая причина — отсутствие универсальных стандартов и алгоритмов для квантовых вычислений. Разные проекты квантовых компьютеров используют разные физические системы для квантовых вычислений. Разные физические системы имеют свои преимущества и недостатки, такие как скорость, точность, масштабируемость и устойчивость к шумам. Описание темы и ее актуальности Тема квантовых компьютеров является одной из самых перспективных и актуальных в современной науке и технологии.
Квантовые компьютеры обещают прорыв в целом ряде областей, таких как химия, биология, медицина, финансы, криптография, искусственный интеллект и другие. Они могут помочь в решении сложных задач, которые невозможно или очень трудно решить на классических компьютерах. Например, они могут симулировать поведение молекул и атомов, оптимизировать сложные системы, находить новые материалы и лекарства, расшифровывать защищенные данные и т. Однако создание квантовых компьютеров также представляет собой большой научный и технический вызов. Для этого необходимо разработать новые физические платформы, алгоритмы, стандарты, программное обеспечение и интерфейсы. Также необходимо учитывать факторы, такие как декогеренция, шумы, ошибки и интерференция. Поэтому развитие квантовых компьютеров требует совместных усилий ученых, инженеров, программистов и инвесторов из разных стран и организаций. Цель обзора Цель данного обзора — дать читателю представление о реально существующих, работающих квантовых компьютерах, их технических характеристиках, перспективах и возможностях. В обзоре будут рассмотрены следующие аспекты: Обзор и анализ текущих состояний и достижений в области квантовых компьютеров; Квантовые компьютеры и облачное применение Примеры квантовых приложений Технические характеристики реально существующих квантовых компьютеров; Рассмотрение ключевых игроков в индустрии квантовых вычислений; Исследование применения квантовых компьютеров в различных областях, таких как финансы, медицина, наука и технологии; Оценка перспектив развития квантовых вычислений и потенциальных технологических прорывов; Обзор ключевых вызовов и проблем, связанных с разработкой и эксплуатацией квантовых компьютеров.
Обзор будет полезен для всех заинтересованных в теме квантовых компьютеров: студентов, ученых, специалистов в разных областях, а также широкой публике, а также стимулировать дальнейшее изучение и обсуждение темы квантовых компьютеров. За последние годы было достигнуто множество важных результатов и прогрессов в этой области. Вот некоторые из них: В 2021 году Google заявила о достижении квантового превосходства на своем 53-кубитном квантовом процессоре Sycamore. Компания утверждала, что ее процессор смог выполнить задачу, которая потребовала бы около 10 тысяч лет на самом мощном суперкомпьютере Summit. Однако IBM оспорила этот результат, утверждая, что Summit мог бы решить ту же задачу за 2,5 дня с большей точностью. В 2022 году IBM представила свой 433-кубитный квантовый процессор Quantum Condor, который стал самым мощным квантовым процессором на данный момент. Компания также анонсировала свою дорожную карту по созданию квантового процессора на миллион кубитов к 2030 году. В 2022 году Microsoft анонсировала свой первый квантовый процессор на 80 кубитах, который будет доступен через облачный сервис Azure Quantum. Компания также разработала свой собственный язык программирования для квантовых вычислений — Q.
В 2022 году Intel представила свой новый квантовый процессор на 144 кубитах, который использует технологию спин-кубитов. Компания также работает над созданием квантового процессора на 1000 кубитах с использованием технологии сверхпроводящих транзисторов. В 2022 году Amazon запустила свой облачный сервис для доступа к квантовым компьютерам — Amazon Braket. Сервис позволяет пользователям экспериментировать с разными типами квантовых процессоров от разных поставщиков, таких как D-Wave, IonQ и Rigetti. В 2022 году Alibaba представила свой первый китайский коммерческий квантовый процессор на 11 кубитах, который также доступен через облачный сервис Alibaba Cloud Quantum Development Platform. Компания также разработала свой собственный язык программирования для квантовых вычислений — Aliyun Quantum Language AQL. В 2022 году будет построен универсальный квантовый компьютер с облачным доступом 1. Квантовые компьютеры и облачное применение Квантовые компьютеры — это вычислительные устройства, которые используют явления квантовой механики для передачи и обработки данных. Они оперируют не битами, а кубитами, которые могут существовать одновременно в нескольких состояниях.
Это позволяет им решать те задачи, на которые обычным компьютерам потребовалось бы очень много времени или ресурсов. Квантовые компьютеры имеют потенциал применения в разных областях, таких как химия, биология, транспорт, медицина и криптография. Однако построение полноценного универсального квантового компьютера является сложной и дорогостоящей задачей, которая требует новых открытий и достижений в физике. Поэтому некоторые компании предлагают использовать квантовые компьютеры через облако. Это означает, что пользователи могут получать доступ к квантовым вычислениям через интернет, не имея собственного квантового компьютера.
Поэтому реальный сценарий использования квантового вычислителя — гибридный. Вся инфраструктура остаётся классической, и только при необходимости произведения отдельных специфичных расчётов классическая программа удалённо подключается к квантовому вычислителю, передаёт ему данные и считывает результат. Единственная технология, которая остаётся за рамками такой картины — квантовые коммуникации. Квантовая криптография, которая как раз способна обеспечить концептуальную защиту от атаки квантовым вычислителем, требует создания новой инфраструктуры для передачи квантовой информации.
Это может быть оптическое волокно или атмосферный лазерный канал. Не исключается использование на оптическом канале дронов и спутников. Также, помимо непосредственно программируемых квантовых компьютеров, возможно использование проблемно-специфичных квантовых устройств. С их помощью, например, на линиях квантовых коммуникаций может осуществляться коррекция ошибки без считывания квантового состояния. Данный тип устройств не предъявляет больших требований по числу кубитов или объёму исполняемой программы и теоретически может быть реализован на имеющейся сегодня технологической базе. Из всего перечисленного выше формируется образ перспективной информационной инфраструктуры. Квантовые вычислители не повлияют существенным образом на облик имеющихся сегодня сервисов, оставив все конечные пользовательские интерфейсы привычно классическими. Может повыситься скорость обработки данных в отдельных задачах за счёт доступа пользовательских устройств к облачным квантово-вычислительным сервисам. Также появится квантовая информационная инфраструктура, в первую очередь для квантовой криптографии.
Это будут стационарные, либо мобильные, но маловероятно, что карманные устройства для квантового распределения ключей. Вполне возможно, что более простые и компактные по сравнению с полноценными компьютерами квантовые вычислительные системы будут использоваться на конечных пользовательских узлах для обработки квантовой информации. Квантовые алгоритмы и возможности квантовых вычислителей Ступень развития, на которой сегодня находятся квантовые вычислители, получила название NISQ — Noisy Intermediate-Scale Quantum — квантовые устройства среднего масштаба без коррекции ошибок. Название отражает две главные проблемы, сдерживающие развитие квантовых компьютеров — сложность создания регистра большого объёма и большая подверженность влиянию внешних шумов. Две этих проблемы неразрывно связаны. То, что под влиянием шума квантовые состояния со временем теряют заложенную в них информацию, влияет на нашу способность контролировать одновременно большое число кубитов. Экспериментальные реализации квантовых вычислителей только чуть более года назад перешагнули рубеж в 100 кубитов в регистре [11]. Теоретически, этого уже достаточно, для экспериментальной реализации некоторых алгоритмов криптоанализа. Атака полноценного AES-128 может быть выполнена при 384 доступных кубитах [13].
Однако глубина данного алгоритма такова, что к концу его исполнения полезная информация в вычислительном регистре будет почти полностью уничтожена шумами. Справиться с такими нежелательными эффектами призвана технология коррекции ошибок. Вероятность того, что несколько кубитов одновременно потеряют информацию о своём состоянии под действием шумов — ниже, чем для одного. Для коррекции ошибок вводится понятие логического кубита, состояние которого кодируется несколькими физическими кубитами. Если часть физических кубитов, кодирующих один логический, оказалась зашумлена, их состояния могут быть восстановлены с опорой на информацию, сохранённую в остальных кубитах. Таким образом, для повреждения состояния логического кубита необходимо, чтобы к моменту выполнения коррекции большая доля физических кубитов была значительно зашумлена. Такой подход в теории позволяет бороться с шумами, но кратно увеличивает требования к объёму регистра квантовых вычислителей. Объём регистра, необходимого для выполнения атаки Гровреа на AES с применением коррекции ошибок составляет от нескольких тысяч до десятков тысяч кубитов. Объём регистра, необходимого для атаки шифра RSA алгоритмом Шора преодолевает порог в сто тысяч кубитов.
Возможность реализации вычислителя с регистром такого объёма в ближайшие пять лет представляется крайне маловероятной. Однако не исключено, что первые попытки лабораторной реализации подобных алгоритмов или их элементов начнут появляться к концу десятилетия. Рост числа кубитов по годам Другим возможным подходом к борьбе с шумами является не коррекция, а подавление ошибок [14]. Наиболее распространёнными являются подходы с так называемой экстраполяцией к нулевому шуму и с применением в схеме дополнительных параметризованных гейтов, призванных статистически подавлять влияние специфических шумов. Преимуществом подхода является то, что он не требует увеличения числа физических кубитов в алгоритме. Метод экстраполяции к нулевому шуму является наиболее простым методом подавления ошибки, и он отлично подходит для применения в вариационных квантовых алгоритмах. Данный тип алгоритмов — самый реальный кандидат на практическое использование в NISQ-устройствах. Вариационный алгоритм сочетает использование квантового вычислителя для ускоренного расчёта некоторой целевой функции с использованием классического оптимизатора. Можно сказать, что прямая реализация принципа, высказанного Ричардом Фейнманом: для расчёта состояний квантово-механической системы используется квантовый вычислитель.
В зависимости от того, какая квантовая схема используется, оптимизируемая целевая функция может решать задачи квантовой химии, оптимизации или даже криптоанализа [15, 16]. Интереснее всего то, что неизвестны точные асимптотики эффективности квантовых вариационных алгоритмов. В отдельных случаях они способны демонстрировать результаты, превосходящие и классический оптимизатор, и даже квантовый алгоритм Гровера. В совокупности со сравнительно низкими требованиями по числу кубитов вариационные алгоритмы можно оценить как потенциально одну из самых близких к практическому внедрению технологию из области квантовых вычислений. Сверхпроводники Долгое время квантовые компьютеры на основе сверхпроводящих кубитов удерживали рекорд по доступному объёму вычислительного регистра. Именно на машине такой архитектуры было продемонстрировано практическое квантовое превосходство [1]. В основе физической реализации данного типа кубитов лежит квантование уровней энергии электрического колебательного контура в условиях сверхпроводимости. Такой подход обеспечивает достаточно высокую степень точности исполнения операций, однако поддержание вычислителя в сверхпроводящем состоянии требует создания криогенных температур в значительном объёме. Это, в свою очередь, ведёт к существенной чувствительности вычислителей данного типа к внешнему воздействию, а также создаёт дополнительные препятствия для масштабирования.
Тем не менее, достижением 2022 года является представленный компанией IBM вычислитель Osprey с 433 сверхпроводящими кубитами [17]. Если представленный годом ранее Eagle, обладающий 127 кубитами, теоретически позволял промоделировать отдельные элементы атаки S-AES с простейшей коррекцией ошибок, например, с девятикубитным кодом Шора, то в регистре Osprey можно проводить эксперименты со значительно более сложными и совершенными кодами коррекции. В контексте этого вызывает интерес исследование методов подавления ошибки на уровне логических кубитов. Точная оценка перспектив этих подходов требует более подробных экспериментальных данных, однако, можно утверждать, что IBM пока достаточно успешно поддерживают тренд роста числа кубитов сверхпроводниковых вычислителей. Озвученным прогнозом специалистов IBM стало получение компьютера с 4000 кубитов к 2025 году. И, несмотря на всю кажущуюся амбициозность данного заявления, фундаментальных ограничений, которые могли бы препятствовать достижению заявленных параметров, нет. Если специалисты IBM справятся с подавлением шумов и поддержанием когерентности для регистра с таким количеством кубитов — они смогут выполнить обещание. Холодные атомы Вычислители на основе холодных атомов не требуют криогенного охлаждения кубитов. Теоретически, за счёт возможности наращивания числа оптических ловушек, удерживающих атомы, и большей устойчивости к шумам, вычислители данного типа обладают несколько большим потенциалом масштабирования, по сравнению с квантовыми компьютерами на основе сверхпроводящих цепей.
Чем больше кубитов у вас в игре, тем больше этих проблем умножается. Хотя самые мощные современные квантовые компьютеры имеют около 50 кубитов, вполне вероятно, что им потребуются сотни или тысячи для решения тех проблем, которые мы хотим от них. Какие бывают кубиты? Сообщество ученых и инженеров еще не пришло к единому решению в вопросе о том, какая из известных технологий кубитов является лучшей. По мнению большинства, у разных типов имеются разные области применения. Помимо вычислений, различные квантовые материалы могут быть полезны для квантового зондирования или сетевой квантовой связи.
Сверхпроводящие кубиты Сверхпроводящие кубиты в настоящее время являются самой передовой технологией кубитов. Большинство существующих квантовых компьютеров используют сверхпроводящие кубиты, в том числе тот, который "побеждает" самый быстрый суперкомпьютер в мире. Они используют многослойные структуры металл-изолятор-металл, называемые джозефсоновскими переходами. Чтобы превратить эти материалы в сверхпроводники — материалы, через которые электричество может проходить без потерь, — ученые остужают их до очень низких температур. Помимо прочего, пары электронов когерентно движутся через материал, как если бы они были отдельными частицами. Это движение делает квантовые состояния более долгоживущими, чем в обычных материалах.
Сейчас все усилия по разработке сосредоточены не изучении того, как улучшить джозефсоновский переход, тонкий изолирующий барьер между двумя сверхпроводниками в кубите. Влияя на то, как движутся электроны, этот барьер позволяет управлять уровнями энергии электронов. Сделав это соединение как можно более непротиворечивым и маленьким, можно увеличить время когерентности кубита. В одной статье об этих соединениях авторы предлагают рецепт создания восьмикубитного квантового процессора, дополненный экспериментальными ингредиентами и пошаговыми инструкциями. Кубиты с использованием дефектов Дефекты — это места, в которых атомы отсутствуют или неправильно размещены в структуре материала. Эти пространства меняют способ движения электронов в материалах.
В некоторых квантовых материалах эти пространства захватывают электроны, позволяя исследователям получать доступ и управлять их спинами. В отличие от сверхпроводников, эти кубиты не всегда должны находиться при сверхнизких температурах. У них есть потенциал, чтобы иметь долгое время согласования и производиться в больших масштабах. Хотя алмазы обычно ценят за отсутствие недостатков, их дефекты на самом деле весьма полезны для кубитов. Добавление атома азота к месту, где обычно находится атом углерода в алмазах, создает то, что называется центром вакансий азота. Исследователи нашли способ создать трафарет длиной всего два нанометра для создания этих дефектов.
Это расстояние помогло увеличить время когерентности этих кубитов и упростило их запутывание. Но полезные дефекты не ограничиваются бриллиантами. Бриллианты дорогие, маленькие, и их трудно контролировать.
Как устроен и зачем нужен квантовый компьютер
Но квантовая механика говорит нам, что квантовый объект, то есть кубит, находится в суперпозиции, пока ты его не измеришь. Помните монетку — это идеальный пример суперпозиции — пока она в воздухе она одновременно и орел, и решка, но как только я ее поймал — все: либо орел, либо решка! Состояние определилось. Надо понять, что эти кубиты и их поведение выбираются совсем не случайно — эти квантовые системы очень строго определены и их поведение известно. Они подчиняются законам квантовой механики! Квантовый компьютер внутри Говоря о самом устройстве, если мы привыкли к полупроводникам и кремнию в обычных процессорах, то в случае квантовых компьютеров люди все еще ищут, какие именно квантовые объекты лучше всего использовать для того, чтобы они выступили кубитами. Сейчас вариантов очень много — это могут быть и электроны со своим спином или, например, фотоны и их поляризация.
Вариантов множество. И это далеко не единственная сложность, с которой столкнулись ученые! Дело в том, что квантовые кубиты довольно нестабильны и их надо держать в холодном месте, чтобы можно было контролировать. И если вы думаете, что для этого будет достаточно водяного охлаждения вашего системника, отчасти вы правы, только если залить туда жидкий Гелий, температура которого ниже минус двухсот семидесяти градусов Цельсия! А для его получения используются вот такие вот здоровые бочки. Фактически, квантовые компьютеры — это одни из самых холодных мест во вселенной!
Принцип работы квантового компьютера Давайте вернемся к нашей задачке про трех людей и две машины и рассмотрим ее с точки зрения квантового компьютера: Для решения подобной системы нам понадобится компьютер с 3 кубитами. Помните, что классический компьютер должен был пройти все варианты один за одним? Так вот поскольку кубиты одновременно имеют состояния «1» и «0», то и пройти через все варианты он сможет, фактически одновременно! Знаю, что прозвучит максимально странно, но представьте, что в данной ситуации наши три кубита создают 8 различных параллельных миров, в каждом из которых существует одно решение, а потом они все собираются в один! Реально «Мстители» какие-то! Но что же получается?
Он выдает все варианты сразу, а как получить правильный? Для этого существуют специальные математические операторы, например оператор Грувера, который позволяет нам определять правильные результаты вычислений квантовых систем! Это специальная функция, которая среди всех возможных вариантов находит нужный нам. Помните задачку про 100 человек в 2 автобуса, которую не смогли бы решить все современные компьютеры вместе взятые? Для квантового компьютера со 100 кубитами эта задачка все равно что семечку щелкнуть! То есть компьютер находится одновременно в 2 в 100 степени состояний, а именно: 1,267,650,600,228,229,401,496,703,205,376 — вот столько состояний одновременно!
Столько параллельных миров! Думаете, что всё это звучит слишком хорошо, чтобы быть правдой? Да, вы правы. Есть куча нюансов и ограничений. Например, ошибка. Проблема в том, что кубиты, в отличие от обычных битов, не определены строго.
У них есть определенная вероятность нахождения в состоянии 1 или 0. Поэтому есть вероятность ошибки и чем больше кубитов в системе, тем больше суммарная вероятность, что система выдаст неправильный ответ. Поэтому зачастую надо провести несколько расчетов одной и той же задачи, чтобы получить верный ответ.
В 2019 году была разработана сначала единая дорожная карта, а после — дорожная карта на каждое отдельное направление: квантовые вычисления, квантовые коммуникации и квантовые сенсоры. Руслан Юнусов, руководитель проектного офиса по квантовым технологиям госкорпорации «Росатом», говорит, что создание квантовых процессоров стало одной из основных задач дорожной карты, утвержденной в июле 2020 года. По его словам, работа ведется в нескольких плоскостях: развитии фундаментальной науки и первых прикладных внедрениях квантовых продуктов. Россия стала одним из 17 технологически развитых государств с официально утвержденной квантовой стратегией. Индустрия 4. На реализацию дорожной карты предусмотрено финансирование в размере 23,7 млрд рублей. Как работает квантовый компьютер Квантовые компьютеры для вычислений используют такие свойства квантовых систем, как суперпозиция и запутанность.
В суперпозиции квантовые частицы представляют собой комбинацию всех возможных состояний, пока не произойдет их наблюдение и измерение. Запутанные кубиты образуют единую систему и влияют друг на друга. Измерив состояние одного кубита, возможно сделать вывод об остальных. С увеличением числа запутанных кубитов экспоненциально растет способность квантовых компьютеров обрабатывать информацию. Биты и кубиты Фото: Журнал Яндекс Практикума Базовым элементом, выполняющим логические операции в классическом компьютере, является вентиль. Для работы квантового компьютера используются квантовые вентили, собранные из кубитов. Они бывают однокубитные и двухкубитные. Также существуют универсальные наборы вентилей, с помощью которых можно выполнить любое квантовое вычисление Кроме того, квантовые компьютеры не могут работать со стандартным софтом вроде Windows. Для них требуется своя операционная система и приложения. Некоторые технологические гиганты уже предлагают организациям опцию квантовых вычислений в облаке.
Облачные квантовые вычисления обеспечивают прямой доступ к эмуляторам, симуляторам и квантовым процессорам. Квантовые вычисления в облаке Фото: Medium Поставщики также предоставляют платформы разработки и документацию для языков и инструментов вычислений.
Представьте, что на регистр осуществляется внешнее воздействие, например, в часть пространства поданы электрические импульсы или направлены лазерные лучи. Если это классический регистр, импульс, который можно рассматривать как вычислительную операцию, изменит L переменных. Если же это квантовый регистр, то тот же импульс может одновременно преобразовать до переменных. Таким образом, квантовый регистр, в принципе, способен обрабатывать информацию в раз быстрее по сравнению со своим классическим аналогом. В действительности квантовое ускорение обычно значительно меньше, чем приведенная грубая оценка сверху это связано со сложностью получения большого количества амплитуд и считывания результата , поэтому практически полезный квантовый компьютер должен содержать тысячи кубитов. Но, с другой стороны, понятно, что для достижения действительного ускорения вычислений нет необходимости собирать миллионы квантовых битов. Компьютер с памятью, измеряемой всего лишь в килокубитах, будет в некоторых задачах несоизмеримо быстрее, чем классический суперкомпьютер с терабайтами памяти. Стоит, однако, отметить, что существует класс задач, для которых квантовые алгоритмы не дают значительного ускорения по сравнению с классическими.
Одним из первых это показал российский математик Ю. Ожигов, построивший ряд примеров алгоритмов, принципиально не ускоряемых на квантовом компьютере ни на один такт. И тем не менее нет сомнения, что компьютеры, работающие по законам квантовой механики, - новый и решающий этап в эволюции вычислительных систем. Осталось только их построить. Правда, пока что экспериментально удается собирать лишь небольшие регистры, состоящие всего из нескольких квантовых битов. Так, недавно группа, возглавляемая американским физиком И. Чангом IBM , объявила о сборке 5-битового квантового компьютера. Несомненно, это большой успех. К сожалению, существующие квантовые системы еще не способны обеспечить надежные вычисления, так как они либо недостаточно управляемы, либо очень подвержены влиянию шумов. Однако физических запретов на построение эффективного квантового компьютера нет, необходимо лишь преодолеть технологические трудности.
Существует несколько идей и предложений, как сделать надежные и легко управляемые квантовые биты. Чанг развивает идею об использовании в качестве кубитов спинов ядер некоторых органических молекул. Российский исследователь М. Фейгельман, работающий в Институте теоретической физики им. Ландау РАН, предлагает собирать квантовые регистры из миниатюрных сверхпроводни ковых колец. Каждое кольцо выполняет роль кубита, а состояниям 0 и 1 соответствуют направления электрического тока в кольце - по часовой стрелке и против нее. Переключать такие кубиты можно магнитным полем. Валиева предложила два варианта размещения кубитов в полупроводниковых структурах. В первом случае роль кубита выполняет электрон в системе из двух потенциальных ям, создаваемых напряжением, приложенным к мини-электродам на поверхности полупроводника. Состояния 0 и 1 - положения электрона в одной из этих ям.
Переключается кубит изменением напряжения на одном из электродов. В другом варианте кубитом является ядро атома фосфора, внедренного в определенную точку полупровод ника. Состояния 0 и 1 - направления спина ядра вдоль либо против внешнего магнитного поля. Управление ведется с помощью совместного действия магнитных импульсов резонансной частоты и импульсов напряжения. Таким образом, исследования активно ведутся и можно предположить, что в самом недалеком будущем - лет через десять - эффективный квантовый компьютер будет создан. Вероятно, большой масштабируемый компьютер будет содержать тысячи управляющих элементов, действующих локально на каждый кубит. Каким образом могло бы осуществляться это воздействие? Скорее всего, с помощью электрических импульсов, подаваемых на микроэлектроды, подведенные к кубитам. Возможно также оптическое управление пучками света, сфокусированными на кубитах. Однако в этом случае трудно избежать паразитного воздействия на соседние кубиты дифракционных краев сфокусированного пучка.
Что касается электрических методов, то они уже давно и широко применяются в микроэлектронике для управления классичес кими логическими элементами. Поэтому их использование представляется наиболее перспективным и для создания масштабируемых квантовых компьютеров. Возможно, конечно, что в результате какого-нибудь технологического прорыва появится еще и третий вариант. Однако революционные открытия трудно поддаются прогнозу. Таким образом, весьма возможно, что в перспективе квантовые компьютеры будут изготавливаться с использованием традиционных методов микроэлектронной технологии и содержать множество управляющих электродов, напоминая современный микропроцессор. Для того чтобы снизить уровень шумов, критически важный для нормальной работы квантового компьютера, первые модели, по всей видимости, придется охлаждать жидким гелием. Вероятно, первые квантовые компьютеры будут громоздкими и дорогими устройствами, не умещающимися на письменном столе и обслуживаемыми большим штатом системных программистов и наладчиков оборудования в белых халатах. Доступ к ним получат сначала лишь государственные структуры, затем богатые коммерческие организации.
Звучит странно, но это особенность квантовых частиц. Именно благодаря тому, что кубит находится во всех состояниях одновременно до тех пор, пока его не измерили, компьютер мгновенно перебирает все возможные варианты решения, потому что кубиты связаны между собой. Получается, что решение становится известно сразу, как только введены все данные. Суперпозиция и даёт ту параллельность в вычислениях, которая ускоряет работу алгоритмов в разы. Вся сложность в том, что результат работы квантового компьютера — это правильный ответ с какой-то долей вероятности. И нужно строить алгоритмы таким образом, чтобы максимально приблизить вероятность правильного ответа к единице. Рабочая температура внутри таких компьютеров — минус 273 градуса по Цельсию Как делают кубиты и в чём сложность Максимально упрощённо: чтобы получить рабочий кубит, нужно взять один атом, максимально его зафиксировать, оградить от посторонних излучений и связать с другим атомом специальной квантовой связью. Чем больше таких кубитов связано между собой, тем менее стабильно они работают. Для достижения «квантового превосходства» над обычным компьютером нужно не менее 49 кубитов — а это очень неустойчивая система. Основная сложность — декогеренция. Это когда много кубитов зависят друг от друга и на них может повлиять всё что угодно: космические лучи, радиация, колебания температуры и все остальные явления окружающего мира. Такой «фазовый шум» — катастрофа для квантового компьютера, потому что он уничтожает суперпозицию и заставляет кубиты принимать ограниченные значения. Квантовый компьютер превращается в обычный — и очень медленный. С декогеренцией можно бороться разными способами. Например, компания D-Wave, которая производит квантовые компьютеры, охлаждает атомы почти до абсолютного нуля, чтобы отсечь все внешние процессы.