Новости почему поверхностное натяжение зависит от рода жидкости

Попытаемся выяснить, как поверхностное натяжение зависит от рода жидкости, наличия примесей, температуры. Знание о зависимости поверхностного натяжения от рода жидкости является важным для множества процессов и приложений. Род жидкости также оказывает влияние на зависимость поверхностного натяжения от температуры. Поверхностное натяжение зависит от рода жидкости и от ее температуры: с повышением температуры оно уменьшается. Важно понимать, что поверхностное натяжение зависит от рода жидкости и может быть сильным или слабым в зависимости от типа взаимодействия между молекулами.

Почему поверхностное натяжение зависит от вида жидкости?

Почему поверхностное натяжение зависит от состава и свойств жидкости Эти силы называются силами поверхностного натяжения. Сила поверхности натяжения зависит от плотности жидкости.(следовательно и от рода жидкости).
Поверхностное натяжение жидкости - формулы и определение с примерами #ФизикаЖидкостиKhanAcademyВ этом видео мы поговорим о том, почему иголка может свободно плавать на поверхности воды, но тут же утонет, если на неё надавать.

Поверхностные явления

Под действием этой силы молекулы поверхностного слоя стремятся втянуться внутрь жидкости, число молекул на поверхности уменьшается, и площадь поверхности сокращается. Но все молекулы, разумеется, не могут уйти вовнутрь. На поверхности остается такое число молекул, при котором площадь поверхности оказывается минимальной в каждом конкретном случае — при заданном объеме жидкости, силах, действующих на жидкость. Для перенесения молекул из глубины объема жидкости в ее поверхностный слой необходимо совершить работу по преодолению равнодействующей сил притяжения, действующих на молекулу в поверхностном слое. Поверхностное натяжение зависит от рода жидкости и от ее температуры : с повышением температуры оно уменьшается. Так называемые поверхностно-активные вещества мыло, жирные кислоты также уменьшают поверхностное натяжение.

Сила поверхностного натяжения направлена по касательной к поверхности жидкости, перпендикулярно к участку контура, на который она действует и пропорциональна длине этого участка. В СИ он измеряется в ньютонах на метр. В этом случае появляется ясный физический смысл понятия поверхностного натяжения. В 1983 году было доказано теоретически и подтверждено данными из справочников [2] , что понятие поверхностного натяжения жидкости однозначно является частью понятия внутренней энергии хотя и специфической: для симметричных молекул близких по форме к шарообразным. Приведенные в этой журнальной статье формулы позволяют для некоторых веществ теоретически рассчитывать значения поверхностного натяжения жидкости по другим физико-химическим свойствам, например, по теплоте парообразования или по внутренней энергии [3] [4].

В результате на поверхности образуется определённым образом ориентированный адсорбционный слой, в котором полярная часть обращена в воду, а неполярный радикал - в контактирующую фазу например, в воздух. При этом уменьшается избыточная поверхностная энергия, а, следовательно, и поверхностное натяжение. Кривая 3 на рис. Для них поверхностное натяжение падает сначала линейно, затем по логарифмическому закону.

В цилиндрических капиллярах искривленная поверхность жидкости представляет собой часть сферы, которую называют мениском. У смачивающей жидкости образуется вогнутый мениск рис. Под вогнутой поверхностью жидкость смачивает капилляр лапласово давление отрицательное и жидкость втягивается в капилляр. Так поднимаются влага и питательные вещества в стеблях растений, керосин по фитилю, влага в почве. Вследствие лапласового давления салфетки или ткань впитывают воду, брюки в дождливую погоду сильно намокают снизу и т. Под выпуклой поверхностью жидкость не смачивает капилляр лапласово давление положительное и жидкость в капилляре опускается. Чем меньше радиус капилляра, тем больше высота подъема или опускания жидкости см. Пример решения задачи Капиллярную трубку радиусом r одним концом опустили в жидкость, смачивающую внутреннюю поверхность капилляра. Чему равно лапласово давление под вогнутой поверхностью капилляра? Смачивание считайте полным. Решение: На жидкость в капилляре действуют сила тяжести и сила поверхностного натяжения направлена вертикально вверх по касательной к поверхности мениска. Ответ: Данные выводы следует запомнить! Высота подъема жидкости в капилляре прямо пропорциональна поверхностному натяжению жидкости и обратно пропорциональна плотности жидкости и радиусу капилляра:. Лапласово давление избыточное давление под сферической поверхностью жидкости прямо пропорционально поверхностному натяжению жидкости и обратно пропорционально радиусу кривизны мениска:. Выводы: Молекулы поверхностного слоя жидкости обладают избыточной потенциальной энергией по сравнению с молекулами, находящимися внутри жидкости; эту энергию называют поверхностной энергией. Физическая величина, которая характеризует жидкость и равна отношению поверхностной энергии к площади поверхности жидкости, называется поверхностным натяжением жидкости:.

Вода с низким поверхностным натяжением

Таким образом, рода жидкости влияют на поверхностное натяжение различными способами, причем эффект температуры может варьироваться для каждого рода жидкости. 'В таблице 4 показано как зависит поверхностное натяжение и вязкость воды от ее температуры. Проанализировав зависимость поверхностного натяжения жидкости от ее температуры, приходим к выводу, что поверхностное натяжение уменьшается с ростом температуры (с увеличением скорости движения молекул). Гипотеза подтверждается, поверхностное натяжение жидкости зависит от рода жидкости, т. е. от сил притяжения между молекулами данной жидкости. Поверхностное натяжение зависит от рода жидкости и от ее температуры: с повышением температуры оно уменьшается.

Почему поверхностное натяжение зависит от вида жидкости?

Поверхностное натяжение и его зависимость от температуры и рода жидкости Высота подъема влаги зависит от радиуса капилляра и свойств жидкости, таких как поверхностное натяжение и вязкость.
Почему поверхностное натяжение зависит от рода воды? - Физика » Чем обусловлено это удивительное явление и почему величина поверхностного натяжения так сильно зависит от природы жидкости?
Поверхностное натяжение — формула, коэффициент, определение Получи верный ответ на вопрос Почему поверхностное натяжение зависит от вида жидкости?

Почему поверхностное натяжение зависит от состава и свойств жидкости

Поверхностное натяжение жидкости зависит от её рода из-за молекулярных сил, действующих на поверхности жидкости. #ФизикаЖидкостиKhanAcademyВ этом видео мы поговорим о том, почему иголка может свободно плавать на поверхности воды, но тут же утонет, если на неё надавать. Род жидкости также оказывает влияние на зависимость поверхностного натяжения от температуры.

Поверхностное натяжение и его зависимость от температуры и рода жидкости

Я занимаюсь написанием студенческих работ уже более 4-х лет. За это время, мне еще ни разу не возвращали выполненную работу на доработку! Если вы желаете заказать у меня помощь оставьте заявку на этом сайте. Ознакомиться с отзывами моих клиентов можно на этой странице. Белоусова Анэля Протасьевна - автор студенческих работ, заработанная сумма за прошлый месяц 91 600 рублей. За все время деятельности мы выполнили более 400 тысяч работ.

Написанные нами работы все были успешно защищены и сданы.

Физическая химия. Поверхностное натяжение Поверхностное натяжение видео 3 - Силы межмолекулярного взаимодействия - Химия Коэффициент поверхностного натяжения.

Каждая молекула внутри жидкости оказывается под влиянием сил притяжения со стороны других молекул. Однако, на поверхности жидкости, молекулы находятся только с одной стороны, поэтому здесь силы притяжения оказываются более сильными, что создает поверхностное натяжение.

Силы притяжения молекул на поверхности жидкости стремятся уменьшить площадь поверхности, так как таким образом они занимают более устойчивое состояние и сложнее испаряются. Поверхностное натяжение является играющим огромную роль во многих процессах, таких как капиллярное действие, смачивание, образование пузырьков, и даже движение вязкой жидкости по трубе. Оно также зависит от температуры и рода жидкости.

Как поверхностное натяжение зависит от температуры? Температура является одним из факторов, которые влияют на поверхностное натяжение жидкости. Обычно, с увеличением температуры поверхностное натяжение уменьшается.

Это происходит из-за того, что с повышением температуры молекулы жидкости получают больше кинетической энергии и начинают двигаться быстрее. Быстрое движение молекул позволяет им преодолевать силы взаимодействия и образовывать более слабые связи на поверхности жидкости. Род жидкости также оказывает влияние на зависимость поверхностного натяжения от температуры.

Жидкость ведет себя так, как будто по касательной к ее поверхности действуют силы, сокращающие стягивающие эту поверхность. Эти силы называются силами поверхностного натяжения. Сила поверхности натяжения зависит от плотности жидкости.

Поверхностное натяжение жидкости

ДЗ: 1. Способность жидкости сокращать свою поверхность называют: а смачиванием, б поверхностным натяжением, в капиллярными явлениями. Поверхностное натяжение зависит: а от рода жидкости, б от объема сосуда, в от давления. Подъем или опускание жидкости в трубках малого диаметра называется: а капиллярными явлениями, б смачиванием, в диффузией.

Под действием этой силы молекулы поверхностного слоя стремятся втянуться внутрь жидкости, число молекул на поверхности уменьшается, и площадь поверхности сокращается. Но все молекулы, разумеется, не могут уйти вовнутрь.

На поверхности остается такое число молекул, при котором площадь поверхности оказывается минимальной в каждом конкретном случае — при заданном объеме жидкости, силах, действующих на жидкость. Для перенесения молекул из глубины объема жидкости в ее поверхностный слой необходимо совершить работу по преодолению равнодействующей сил притяжения, действующих на молекулу в поверхностном слое. Поверхностное натяжение зависит от рода жидкости и от ее температуры : с повышением температуры оно уменьшается. Так называемые поверхностно-активные вещества мыло, жирные кислоты также уменьшают поверхностное натяжение.

Это можно сравнить с перемещением груза на санях в разное время года. Летом для перевозки на санях единицы груза придется затратить намного больше энергии, чем зимой, так как разная при этом будет сила трения полозьев о поверхность. Точно так же обстоят дела и при использовании поверхностно-активных веществ - они уменьшают водородные связи между молекулами воды и поверхность последней при этом увенчивается. Но тибетские физики или только Фланаган полагали, что снижение поверхностного натяжения происходило в результате затраты некоей энергии, поэтому они и ставили такой вопрос - откуда берется эта энергия. Ответ был так же прост, как и бездоказателен - энергию поставляют сверхновые звезды.

Мне кажется, что всем давно уже должно быть ясно, что все мы живем за счет энергии одного лишь Солнца. А от сверхновых звезд к нам приходит столько энергии, что в лучшем случае благодаря этому они сами на некоторое время становятся видимыми, а поэтому вряд ли такое количество энергии может как-то повлиять на поверхностное натяжение жидкостей. Поэтому этот исследователь и стремился в дальнейшем найти приемлемый способ понижения поверхностного натяжения воды, не поясняя механизма связи этого фактора со здоровьем человека. И если мы отбросим в сторону весь тот частокол из слов, которым Кристофер Бёрд окружил исследования Фланагана, то станет ясно, что последний нашел в хунзакутской воде одно только необычное качество - ее поверхностное натяжение было ниже поверхностного натяжения обычной воды. И все последующие исследования Фланагана велись уже только в этом направлении. Слишком даже живая. Ею можно стирать белье без мыла, отбеливателей, без стиральной машины. Но она не опьяняет человека, а дает огромный прилив сил - замечает исследователь. То, что в такой воде можно стирать без мыла, легко понять - мыло снижает поверхностное натяжение воды, а в указанном выше случае поверхностное натяжение значительно снижается не с помощью мыла, а с помощью каких-то иных веществ.

Ну и что с того - для стирки ведь важен сам фактор снижения поверхностного натяжения.

Если рассмотреть атом в середине жидкости, то другие атомы тянут его к себе со всех сторон, то есть, суммарная сила будет равна нулю. Однако атомы на границе жидкости притягиваются только нижними атомами, создавая ненулевую силу. Именно эта сила и ответственна за натяжение жидкостей. В видео показана классическая демонстрация поверхностного натяжения жидкостей. С помощью мыльного раствора создается пленка между двумя металлическими стержнями. Эта пленка стягивает два стержня, будто пружинка. Вода удерживается над стаканом силами поверхностного натяжения Еще один классический эксперимент, который каждый может повторить дома, на работе, в детском саду,... В стакан наливают воду до краев и начинают дозированно увеличивать объем содержимого. Можно использовать пипетку или докидывать в стакан небольшие тела.

Аналогичный опыт проводят с монеткой. Мы с вами видели, как мыльная пленка стягивала два металлических стержня. Это приводит к довольно интересной вещи - капельки ртути силами поверхностного натяжения стягиваются так, что представляют собой практически идеальные шарики, если они небольшого размера. С увеличением размера капли сил натяжения больше не хватает, и капля "расползается". Поэтому при плавке золото собирается в большой красивый шарик, который даже при больших размерах имеет почти идеальную сферическую форму. Капиллярный эффект Поверхностное натяжение жидкости является причиной появления капиллярного эффекта. Если окунуть кончик тонкой трубочки капилляра в жидкость, то жидкость начнет подниматься по трубочке на достаточно большую высоту. Затягивает жидкость туда как раз сила натяжения, которую постепенно уравновешивает сила тяжести. Высота подъема зависит от двух факторов - она увеличивается при увеличении коэффициента поверхностного натяжения данной жидкости и при уменьшении диаметра трубочки.

Почему поверхностное натяжение зависит от рода жидкости: удивительные свойства поверхностного слоя

Ясно, что водородных связей между такими комплексами уже нет. Этот ион называется ионом гидроксония. Атом кислорода в таком ионе окружен тремя эквивалентными атомами водорода. И между такими ионами гидроксония уже нет никаких водородных связей, а появляются лишь силы отталкивания. Источник Поверхностное натяжение жидкости — формулы и определение с примерами Содержание: Поверхностное натяжение жидкости: В отличие от газов жидкости имеют свободную поверхность. Молекулы, расположенные на поверхности жидкости, и молекулы внутри жидкости находятся в разных условиях: a молекулы внутри жидкости окружены другими молекулами жидкости со всех сторон. Молекула 1 внутри жидкости испытывает действие соседних молекул со всех сторон, поэтому равнодействующая сил притяжения, действующих на нее, равна нулю f; молекула 1 ; Читайте также: Талая вода для животных b молекулы на поверхности жидкости испытывают действие со стороны соседних молекул жидкости только сбоку и снизу. Притяжение со стороны молекул газа пара жидкости или воздуха над жидкостью во много раз слабее, чем со стороны молекул жидкости, поэтому не принимаются во внимание f; молекула 2.

В результате каждая из равнодействующих сил Сила поверхностного натяжения Сила поверхностного натяжения — это сила, направленная по касательной к поверхности жидкости, перпендикулярно к линии, ограничивающей поверхность жидкости, и стремящаяся сократить площадь поверхности жидкости. Сила поверхностного натяжения прямо пропорциональна длине границы соприкосновения свободной поверхности жидкости с твердым телом: Здесь — длина границы соприкосновения свободной поверхности жидкости с твердым телом, сигма — коэффициент поверхностного натяжения: Коэффициент поверхностного натяжения Коэффициент поверхностного натяжения — численно равен силе поверхностного натяжения, приходящейся на единицу длины линии, ограничивающей поверхность жидкости: Значение коэффициента поверхностного натяжения зависит от вида жидкости и ее температуры, то есть с увеличением температуры жидкости коэффициент его поверхностного натяжения уменьшается и при критической температуре равен нулю. Единица коэффициента поверхностного натяжения в СИ: Смачивающая и несмачивающая жидкость. При внимательном рассмотрении можно увидеть искривление поверхности жидкости на границе между жидкостью и твердым телом. Мениск — это искривление свободной поверхности жидкости в месте ее соприкосновении с поверхностью твердого тела или другой жидкости. Угол между поверхностью мениска и поверхностью твердого тела называется краевым углом. Значение краевого угла тетта зависит от того, является ли жидкость смачивающей или несмачивающей твердое тело: Смачивающая жидкость —это жидкость, у которой краевой угол острый.

Сила взаимного притяжения между молекулами смачивающей жидкости и твердого тела больше, чем силы взаимного притяжения между молекулами самой жидкости. В результате свободная поверхность жидкости в сосуде становится вогнутой, например, вода в стеклянном сосуде — смачивающая жидкость g. Несмачивающая жидкость — это жидкость, у которой краевой угол тупой. Сила взаимного притяжения между молекулами несмачивающей жидкости и твердого тела меньше, чем сила взаимного притяжения между молекулами самой жидкости. В результате свободная поверхность жидкости в сосуде бывает выпуклой, например, ртуть в стеклянном сосуде — несмачивающая жидкость i. Капиллярные явления В повседневной жизни встречаются и используются тела, с легкостью впитывающие в себя воду, например, полотенце, промокательная бумага, сахар, кирпич, растения и др. Это свойство в телах объясняется существованием в них большого количества очень узких трубочек — капилляров.

Капилляр — это узкая трубка канал диаметром меньше м. Уровень жидкости внутри капилляра, опущенного в жидкость, в зависимости от ее свойств смачивающая или несмачивающая , отличается от общего уровня жидкости: Капиллярными явлениями называют явления подъема смачивающей и опускания несмачивающей жидкости по капилляру относительно общего уровня жидкости под действием сил поверхностного натяжения j. В таблице 6.

Проявления сил поверхностного натяжения Чтобы убедиться в реальном существовании сил поверхностного натяжения, достаточно провести простые опыты. Поместить мыльную пленку на рамку и увидеть, как она стремится уменьшить свою площадь. Опустить проволочное кольцо в мыльный раствор и подействовать на него силой, чтобы оторвать от поверхности. Таким образом, силовое и энергетическое определения поверхностного натяжения тесно взаимосвязаны между собой и дополняют друг друга. Давайте разберемся, от чего зависит это удивительное свойство. Зависимость поверхностного натяжения от условий Поверхностное натяжение определяется в первую очередь природой самой жидкости и того вещества, с которым она граничит обычно воздух или пар. Это связано с различной силой взаимодействия между молекулами. Объясняется это ослаблением сил притяжения между молекулами жидкости.

Укрощение штормов в море. Укрощение бурных морей с помощью масла — отнюдь не сказка. Достаточно вылить за борт совсем немного подходящего масла, чтобы оно распространилось по большой поверхности. Ветер пытается создать большие волны, раскачивая небольшую рябь, масло сдувается в лужи неправильной формы, и различие поверхностного натяжения помешает действию ветра, создав своего рода поверхностное трение. Поэтому в таком месте образуется меньше больших волн. А волны, приходящие издалека, не смогут по крайней мере создать разрушительных гребней. Поверхностное натяжение играет важную роль при образовании вспененных гребней, и масло может помешать их образованию. Как изменится поверхностное натяжение при повышении температуры? Попробуйте нагреть припудренную поверхность воды, поднося к ней раскаленную докрасна кочергу. Опыт 21. Распылите по чистой воде камфару. Каждая частица совершает беспорядочные движения. Это происходит потому, что камфара медленно растворяется в воде, ослабляя поверхностную оболочку. Каждую частицу вперед тянет чистая вода, а назад — слабее вода с камфарой, поэтому частица плывет вперед, подобно лодке, крутясь и поворачиваясь из-за своей неправильной формы. Попробуйте добавить еще немного масла. Движение камфары сразу прекратится. Не правда ли, это красивый несложный опыт, немного похожий на детскую забаву? Однако эта забава играет важную роль в одном из великих экспериментов атомной физики — в измерении размеров молекулы. Размер молекулы Шестьдесят лет назад лорд Рэлей наблюдал за растеканием масла по воде. В то время, когда ученые строили различные предположения о размерах молекул, он догадался, что самый тонкий слой масла, который может полностью покрыть водную поверхность, будет иметь толщину как раз в одну молекулу, и решил определить эту толщину. Рэлей представил себе растекание капли масла как хаотическое движение молекул, карабкающихся друг на друга и сваливающихся назад, пока каждая не достигнет поверхности воды и не сможет прицепиться к воде эти масла состоят из молекул с длинной цепью, на одном конце которых находится химическая группа, имеющая сродство к воде. Как только все молекулы масла расположатся таким способом, они будут держаться в виде мономолекулярного покрова и перестанут стремиться к дальнейшему растеканию фиг. Масло на воде. Капля масла, нанесенная на чистую поверхность воды, растекается и покрывает ее слоем толщиной в одну молекулу. Молекулы масла, вероятно, стоят «дыбом» подобно ворсу на ковре. Если масла как раз достаточно для данной поверхности воды, слой будет иметь толщину в одну молекулу, и все молекулы будут плотно упакованы по вертикали, подобно ворсинкам бархата. При меньшем количестве масла останутся участки открытой воды. Если масла будет …??? Лорд Рэлей вымыл и заполнил водой круглый большой таз, имевший 82 см в поперечнике. На поверхность воды он поместил взвешенную каплю масла и наблюдал, как оно растекается и закрывает всю поверхность. Затем он опять взял чистую воду и каплю меньшего размера, затем еще меньшую, пока не дошел до такой капли, которая уже не могла полностью закрыть всю поверхность. Как же он обнаружил, что закрыта не вся поверхность? Если перед опытом распылить на поверхности порошок, можно изменить свойства поверхности. Поэтому Рэлей после масла распылял камфару помните детскую забаву? Пока поверхность воды была полностью покрыта маслом, камфара не находила чистой воды, по которой она могла бы танцевать, но когда капля масла была мала, на поверхности открывались участки чистой воды. Условия приведенной ниже задачи 5 следуют за ходом вычислений Рэлея. Используя результаты его измерений, определите размеры молекул масла. Задача 5. Измерение размеров молекулы Рэлей наносил каплю оливкового масла на чистую воду в большом сосуде. Для простоты примем, что сосуд был прямоугольным с размером зеркала воды 0,55 м х 1,00 м это даст ту же площадь, что и в круглом тазу, взятом Рэлеем. Предположим, что плотность остается такой же и в очень тонкой пленке. Помните, что поскольку масло менее плотно, чем вода, его объем должен быть больше объема той же массы воды. Поверим химикам, что это масло имеет «длинные» молекулы, один конец которых сильно притягивается водой. Какой вывод можно сделать из вопроса а относительно размеров молекул? Длина молекул очень мала; чтобы образовать линию в 1 см их требуются миллионы. В те времена, когда Рэлей производил свои измерения, ученые делали грубые, поспешные предположения о размере и массе молекул; их косвенные догадки основывались на трении в газах, на рассеянии солнечного света в небе молекулами и на некоторых сомнительных электрических аргументах. Здесь же был поразительно простой эксперимент и, вероятно, надежный. С тех пор метод был улучшен и обобщен многими, особенно Ленгмюром в США. Оливковое масло, которое применял Рэлей, было неопределенной смесью маслянистых веществ. Позднейшие исследователи применяли чистые химические соединения, часто используя несколько членов «гомологического ряда» или, иначе, химической семьи. Например, Ленгмюр применял «жирные кислоты». Их получают из природных жиров и масел, и они дают мыло, соединяясь с натрием или калием. Они имеют длинные молекулы с одним инертным, а другим «кислым» концом, который притягивается водой. Существует целый ряд таких соединений, причем молекула каждого представителя этого ряда больше своего предшественника на один атом углерода и два атома водорода. Очень давно химики изобразили молекулы различных членов этих рядов структурными формулами, подобными трем приведенным на стр. Это были лишь догадки, основанные на химических данных, но они наводили на мысль о длинных цепных молекулах, удлиняющихся на группу СН3 при переходе от одного члена семьи к другому. Задача 6 основана на усовершенствовании метода Рэлея, осуществленном Ленгмюром, Адамом и другими. Задача 6. Точное измерение размеров молекул Адам использовал прямоугольную ванну шириной 0,14 м и длиной 0,5 м. Ванна была наполнена водой до краев; исследуемая область ограничивалась положенными сверху на расстоянии около 0,4 м друг от друга брусками А и В фиг. Упрощенный рисунок прибора Адама. Пленка масла ограничена брусками А и В. Брусок В был подвижен; он свободно плавал по воде и был соединен с измерительным устройством, которое имело пружину или грузик и позволяло обнаружить любое горизонтальное смещение бруска, а также предотвращало его случайные движения. Брусок А клали поперек ванны, он имел выступающие края и его можно было перемещать рукой. Ванну и бруски покрывали воском, чтобы уровень воды мог подниматься немного выше краев, так что бруски А и В отсекали центральную часть поверхности. Располагая сначала брусок А далеко от бруска В, Адам помещал на водную поверхность между брусками небольшое измеренное количество пальмитиновой кислоты. Брусок В не смещался. Затем передвигался брусок А, собирая пленку масла на все меньшей и меньшей площади, пока вдруг брусок В не испытывал заметного толчка; это позволяло думать, что молекулы вобрались в сплошной слой. В реальных экспериментах толкающее усилие не возрастало абсолютно резко от нуля до полного значения. Оно появлялось при определенной величине поверхности и быстро росло при дальнейшем перемещении, достигая постоянной величины, после которой дальнейшее сближение, вероятно, заставляло «слой» изгибаться. По графику легко было найти момент, в который появляется значительное усилие. Для нанесения жирных кислот на поверхность вода Адам растворял их в бензоле и наносил несколько капель раствора. Бензол быстро испарялся. Вот типичные результаты измерений это не подлинные данные Адама, но они основаны на его записях : Бензольный раствор. Состав: 4 г пальмитиновой кислоты растворены в 996 г бензола. Следовательно, каждый килограмм раствора содержит 0,004 кг пальмитиновой кислоты. Размер капель. В сосуд капают 100 капель раствора и сосуд взвешивают. Масса 100 капель раствора равна 0,33 г, или 0,00033 кг. Основной опыт. На воду наносят 5 капель раствора. Когда бензол испаряется остается невидимая нерастворимая поверхностная пленка пальмитиновой кислоты , брусок А двигают по направлению к бруску В. Последний испытывает сильный толчок, когда расстояние между А и В составляет 0,23 м. В этот момент поверхность воды между брусками составляет 0,23 м в длину и 0,14 м в ширину. Задание: предполагая, что пленка пальмитиновой кислоты имеет ту же плотность, с помощью приведенной ниже инструкции определите размеры ее молекул. Даже одна арифметическая ошибка может превратить решение этой задачи в бессмыслицу. Расчет объема взятого масла пальмитиновой кислоты является простой задачей на дроби, подобно расчету рецепта теста для пирога или разбавления соков. Он требует знания элементарных арифметических правил и уверенности. Чтобы избежать ошибок, лучше производить его по стадиям, например, по количеству раствора 5 капель , нанесенного на воду, рассчитать: а массу нанесенного на воду раствора; б массу пальмитиновой кислоты, содержащейся в этом количестве раствора; в объем, который займет эта масса пальмитиновой кислоты 850 кг занимают 1 м3, следовательно…. Цепная формула изображает молекулу в 19 атомов длиной и только несколько атомов шириной. Трудно догадаться о форме поперечного сечения молекулы; атомы Н должны быть меньше, чем атомы С в цепи. Возможно, что поперечное сечение содержит 3 атома в ширину и один в толщину, либо чередующиеся связи могут колебаться в разные стороны, делая поперечное сечение квадратом, скажем, со сторонами по 3 атома. В качестве грубого предположения[83], допустим, что поперечное сечение является квадратом со стороной от 1,5 до 3 атомов. Глупо было бы пытаться сузить эти пределы фиг. Схема к рассуждению о форме молекулы пальмитиновой кислоты. Современные химики, группируя атомы углерода и водорода в молекулы, приписывают им четкие размеры, причем углероду намного больше, чем водороду. Здесь показаны ранние предположения о размерах атомов, и атом С изображен лишь немного больше атома Н. Каково поперечное сечение: «продолговатое» а или «квадратное» б? Рассчитайте объем молекулы пальмитиновой кислоты, для этого возьмите длину, полученную в п. Если 850 кг занимают 1 м3, то… 4 Простые химические измерения анализ путем сжигания и взвешивания и т. Химические опыты не могут дать действительных значений масс отдельных атомов и молекул, но позволяют легко определить их относительные величины. Предположите, что правильно это значение, и проделайте вычисление в обратном порядке. Что теперь можно сказать о форме молекулы пальмитиновой кислоты? Проделать детально всю работу в обратном порядке может оказаться утомительным. Можно ограничиться сокращенными выкладками. Задача 7. Цепные молекулы Измерения с помощью бруска и весов, подобные описанным в задаче 6, дают следующие оценки для длины молекул нескольких членов ряда жирных кислот. Длина дается в специальных единицах часто используемые в атомной физике единицы Ангстрема, равные 10-10 м. Указанное число групп включает первый атом углерода с тремя атомами водорода. Подтверждают ли эти опыты идею о цепных молекулах? Проанализируйте их о помощью графика. Физическая проверка химической картины Только плохой преподаватель льстит себя надеждой, что способен объяснить, что такое молекулы масла, с помощью одних разговоров о «цепях связей» или «ворсе бархата» в тонких пленках. Однако если после вычислений, подобных приведенным выше, у вас появилось чувство, что вы что-то понимаете, то вы делаете гениальные успехи в науке. Использованные нами структурные формулы были остроумными догадками, сделанными по косвенным химическим соображениям. Они оставались совершенно непроверенными, пока метод Рэлея не дал в высшей степени удовлетворительное подтверждение существования длинных тонких молекул с одинаковым увеличением длины на каждую группу СН2. Все же рассуждения Рэлея допускали определенный риск; были желательны независимые измерения. В наше время еще более тонким средством измерения размеров молекул стали рентгеновские лучи. Превращая масла в воски путем замораживания, мы можем заставить слои молекул в кристаллах отражать рентгеновские лучи и по отражению рентгеновских лучей можем определить расстояние между слоями или размер молекул , подобно тому как физики во времена Рэлея могли определить расстояние между жилками на крыльях бабочки по цветам отраженного света[84]. Некоторое понятие об этих «эффектах дифракционной решетки» будет дано в последующих главах. Рентгеновские измерения с удовлетворительной точностью подтвердили догадку Рэлея и дали дополнительные сведения о размерах и строении молекул. Если теперь вернуться к вопросам смачивания и водонепроницаемости, то можно оценить количества веществ, требуемые для придания материалу нужных свойств. Вероятно, достаточен слой толщиной в одну молекулу, поэтому потребные количества минимальны. О мономолекулярных слоях уже думают как о реальных, знакомых вещах. Они слишком тонки, чтобы их видеть с помощью обычного света, хотя их можно обнаружить с помощью рентгеновских лучей или дифракции электронов. Однако Блоджетт разработал метод, в котором наносится слой за слоем на стеклянную пластинку, причем осаждаются сразу по два слоя, когда пластинку погружают в воду с плавающим мономолекулярным слоем. Погружение повторяют до тех пор, пока толщина не может быть измерена обычными приборами, которыми измеряют толщину бумаги, и не будут осуществлены, наконец, прямые измерения. Такие пленки представляют собой ранний способ, нанесения на стекла покрытий, уничтожающих блики, — просветление оптики. Линзы современных фотоаппаратов имеют покрытие, нанесенное другим методом — испарением в вакууме. Эту главу мы начали с простых наблюдений и ввели некоторые наименования, затем позаимствовали идеи о молекулах и сделали некоторые предварительные предположения. Потом провели дополнительные опыты и пришли к разнообразным результатам, простирающимся от сугубо практических вещей, вроде мыльной пены и чистки обуви, до измерения длины молекулы.

Каждая отдельно взятая молекула в пограничном слое притягивается находящимися внутри жидкости молекулами. При этом, силами, которые оказывают воздействие на такую молекулу жидкости со стороны молекул газа можно пренебречь. Вследствие этого возникает некая направленная вглубь жидкости равнодействующая сила. Поверхностные молекулы втягиваются внутрь жидкости, с помощью действия сил межмолекулярного притяжения.

Остались вопросы?

Сила поверхностного натяжения направлена по касательной к поверхности жидкости, перпендикулярно к участку контура, на который она действует и пропорциональна длине этого участка. Поверхностное натяжение жидкости: определение в физике. Как определить коэффициент поверхностного натяжения, формула, примеры решения. Поверхностное натяжение и температура Поверхностное натяжение жидкости зависит от различных факторов, включая род жидкости и температуру. Коэффициент поверхностного натяжения зависит от рода жидкости в силу межмолекулярных взаимодействий. Почему поверхностное натяжение жидкости зависит от рода жидкости?

ПОЧЕМУ ПОВЕРХНОСТНОЕ НАТЯЖЕНИЕ ЗАВИСИТ ОТ РОДА ЖИДКОСТИ

Поверхностное натяжение это физическая величина, равная отношению силы поверхностного натяжения F, приложенной к границе поверхностного слоя жидкости и направленной по касательной к поверхности, к длине L этой границы. Попытаемся выяснить, как поверхностное натяжение зависит от рода жидкости, наличия примесей, температуры. По причине воздействия сил поверхностного натяжения на капли жидкости и их действия внутри мыльных пузырей появляется некоторое избыточное давление. Следовательно, силы поверхностного натяжения будут действовать слабее. Сила поверхности натяжения зависит от плотности жидкости.(следовательно и от рода воды).

Что такое поверхностное натяжение?

Отсюда следует, что свободная поверхность жидкости стремится сократить свою площадь. По этой причине свободная капля жидкости принимает шарообразную форму. Жидкость ведет себя так, как будто по касательной к ее поверхности действуют силы, сокращающие стягивающие эту поверхность. Эти силы называются силами поверхностного натяжения. Сила поверхности натяжения зависит от плотности жидкости. Я занимаюсь написанием студенческих работ уже более 4-х лет. За это время, мне еще ни разу не возвращали выполненную работу на доработку!

Именно эта сила и ответственна за натяжение жидкостей. В видео показана классическая демонстрация поверхностного натяжения жидкостей.

С помощью мыльного раствора создается пленка между двумя металлическими стержнями. Эта пленка стягивает два стержня, будто пружинка. Вода удерживается над стаканом силами поверхностного натяжения Еще один классический эксперимент, который каждый может повторить дома, на работе, в детском саду,... В стакан наливают воду до краев и начинают дозированно увеличивать объем содержимого. Можно использовать пипетку или докидывать в стакан небольшие тела. Аналогичный опыт проводят с монеткой. Мы с вами видели, как мыльная пленка стягивала два металлических стержня. Это приводит к довольно интересной вещи - капельки ртути силами поверхностного натяжения стягиваются так, что представляют собой практически идеальные шарики, если они небольшого размера.

С увеличением размера капли сил натяжения больше не хватает, и капля "расползается". Поэтому при плавке золото собирается в большой красивый шарик, который даже при больших размерах имеет почти идеальную сферическую форму. Капиллярный эффект Поверхностное натяжение жидкости является причиной появления капиллярного эффекта. Если окунуть кончик тонкой трубочки капилляра в жидкость, то жидкость начнет подниматься по трубочке на достаточно большую высоту. Затягивает жидкость туда как раз сила натяжения, которую постепенно уравновешивает сила тяжести. Высота подъема зависит от двух факторов - она увеличивается при увеличении коэффициента поверхностного натяжения данной жидкости и при уменьшении диаметра трубочки. Предлагаю вашему вниманию три опыта на эту тему. Окрашивание растений за счет капиллярного эффекта Считается, что благодаря капиллярному эффекту происходит очень важный процесс - питание живых растений водой.

Благодаря поверхностному натяжению жидкость не выливается из маленького отверстия тоненькой струйкой, а капает рис. Почему одни жидкости собираются в капли, а другие растекаются Наличие сил поверхностного натяжения проявляется в сферической форме мелких капелек росы, в каплях воды, разбегающихся по раскаленной плите, в капельках ртути на поверхности стекла. Однако при соприкосновении с твердым телом сферическая форма капли, как правило, не сохраняется. Форма свободной поверхности жидкости зависит также от сил взаимодействия молекул жидкости с молекулами твердого тела. Если силы взаимодействия между молекулами жидкости больше, чем силы взаимодействия между молекулами жидкости и твердого тела, жидкость не смачивает поверхность твердого тела рис.

Например, ртуть не смачивает стекло, а вода не смачивает покрытую сажей поверхность. Капля несмачивающей жидкости принимает форму, близкую к сферической, а поверхность жидкости вблизи стенки сосуда является выпуклой Если же капельку ртути поместить на цинковую пластину, то капелька будет стремиться растечься по поверхности пластины; так же ведет себя и капелька воды на стекле рис. Если силы взаимодействия между молекулами жидкости меньше сил взаимодействия между молекулами жидкости и твердого тела, жидкость смачивает поверхность твердого тела. Капля смачивающей жидкости стремится растечься по поверхности твердого тела, а вблизи стенки сосуда поверхность жидкости принимает вогнутую форму Почему жидкость поднимается в капиллярах В природе часто встречаются тела, пронизанные многочисленными мелкими капиллярами от лат. Такую структуру имеют бумага, дерево, почва, многие ткани и строительные материалы.

В цилиндрических капиллярах искривленная поверхность жидкости представляет собой часть сферы, которую называют мениском. У смачивающей жидкости образуется вогнутый мениск рис. Под вогнутой поверхностью жидкость смачивает капилляр лапласово давление отрицательное и жидкость втягивается в капилляр. Так поднимаются влага и питательные вещества в стеблях растений, керосин по фитилю, влага в почве. Вследствие лапласового давления салфетки или ткань впитывают воду, брюки в дождливую погоду сильно намокают снизу и т.

Под выпуклой поверхностью жидкость не смачивает капилляр лапласово давление положительное и жидкость в капилляре опускается.

Эти силы называются силами поверхностного натяжения. Сила поверхности натяжения зависит от плотности жидкости.

Похожие новости:

Оцените статью
Добавить комментарий