Узнайте о Европейской организации по ядерным исследованиям (ЦЕРН), уникального и крупнейшего в мире научного центра, созданного в Швейцарии для фундаментальных исследований физики элементарных частиц. Последние новости России и Мира» Новости» Статьи» Над ЦЕРН снова открылся портал? ЦЕРН: что это, где находится и чем занимается. Европейская организация ядерных исследований (European Organization for Nuclear Research, CERN/ЦЕРН) – крупнейший в мире научно-исследовательский центр в РИА Новости, 29.09.2019. Европейский институт ядерных исследований. Объединение более чем 15000 ученых и инженеров из более чем 100 стран мира.
ЦЕРН открывает Врата Бездны
ЦЕРН открыл свои двери для Google Maps Street View - | ЦЕРН был основан в 1953 году 12 странами-учредителями. |
Марсолье: ЦЕРН продолжит сотрудничать с учеными РФ, но не из институтов в России | ЦЕРН дает ученым разрешение свободно разбирать на части или взрывать все, что они захотят, только потому, что они пытаются найти частицу Бога. |
ЦЕРН открыл свои двери для Google Maps Street View | ЦЕРН — крупнейшая в мире лаборатория физики высоких энергий, она находится на границе Швейцарии и Франции, вблизи Женевы. |
Где расположен Церн? - IT-ликбез | ЦЕРН (CERN) — Европейская организация по ядерным исследованиям, крупнейшая в мире лаборатория физики высоких энергий. |
Разгадка появления Вселенной и путешествия в прошлое: для чего нужен Большой адронный коллайдер | Почти 500 российских ученых должны к ноябрю завершить работу в Европейской организации по ядерным исследованиям (ЦЕРН). |
Европейская организация по ядерным исследованиям. ЦЕРН
ЦЕРН (Европейская организация по ядерным исследованиям) — крупнейшая в мире лаборатория физики высоких энергий, расположенная на границе Швейцарии и Франции. Я присоединился к ЦЕРН в 1971 году, когда теоретическая физика высоких энергий находилась в хаотическом состоянии. ЦЕРН расположен там, где раньше располагался древний храм Аполлона.
ЦЕРН остановил Большой адронный коллайдер до весны 2023 года
Так же получилось и с предсказанием новой частицы — бозона Хиггса, что назван так по имени британского теоретика Питера Хиггса, который придумал этот бозон ещё в 1964 году. Суть была не в самой частице Хиггса, массу которой где только не предсказывали: в диапазоне от 52 ГэВ в 1999 году до 476 ГэВ в 2011 году. За без малого 20 лет с 1995 по 2012 год ускорительная физика не открыла ни одной частицы — факт, который шокировал бы пионеров физики элементарных частиц 1930-х и 1950-х годов… Масса бозона оказалась равной 125 ГэВ, а время его жизни до обидного малым: 10—24 секунды, теперь можно было переходить к изучению его свойств. И уже к концу 2013 года физики пришли к выводам: выявленный бозон Хиггса не выходит за пределы Стандартной модели и пока нет никаких экспериментальных указаний на физику за её пределами. Более того, по вариантам распада этого бозона и их вероятности выяснилось: обнаруженный бозон Хиггса — самый стандартный из всех ожидавшихся вариантов. Частица Хиггса, несмотря на свою необычность и драматически долгую дорогу к открытию в эксперименте, подтвердила старую добрую Стандартную модель. Так единственный полноценный успех ускорительной физики с 1990-х годов одновременно стал новым ударом по теориям суперсимметрии и суперструн.
Провал теории суперсимметрии и сомнительные перспективы слишком абстрактной теории суперструн — это, честно говоря, суперзакрытые темы физики частиц. Тем более — выносить это в печать. Ныне он занимает постоянную позицию в США, в Миннесотском университете. В октябре 2012 года в своей работе он откровенно призвал коллег-теоретиков сменить курс, искать что-то новое вместо любимых и «модных» в 1980-е годы супертеорий. Но для начала надо официально признать провал и бесполезность этих теорий. Хотя бы ради того, чтобы именно молодёжь из числа фанатов супертеорий около 2500—3000 учёных, по подсчётам Шифмана не превратилась в потерянное поколение, утратив способность рождать новые идеи вне общепринятого «тренда».
И какой же была реакция теоретической среды на такое резкое заявление? А никакой — теоретики сделали вид, что этого выступления просто не было. Им не хочется признавать крах этих теорий, не с руки менять статус-кво, нет желания переключаться на новое. Не реагировали они и на другие критические выступления против суперсимметрии ещё 2000-х годах, например, статьи американского теоретика Ли Смолина. Смолин даже книгу написал о проблемах с теорией суперструн и с её нездоровой почти монополией на научную истину в сфере теории частиц в США. Его книга 2006 года была провокационно названа «Проблема с физикой: возвышение теории струн, падение науки и что придёт потом» — в ней много внимания уделено процессам и методам научного исследования, этике и морали учёных.
Но теоретики отбросили всю эту критику, так как автор явно не «из их круга» — он никогда не был сторонником теории суперструн, а потому и не может восприниматься ими как достаточно одарённый, чтобы судить о ней! Впрочем, логика «человек не нашего круга — недостаточно хороший теоретик» уже не действует в случае с Михаилом Шифманом — бывшим сторонником суперсимметрии. Он сам с 1982 года был поражён элегантностью и красотой новой теории под мистическим названием «суперсимметрия» и написал много работ в её рамках. Но он нашёл в себе мужество и научную честность признать простой факт, что потратил это время зря, что некогда «модная» теория просто не работает. Неважно, насколько горько и обидно говорить: «но природе она не нужна», как это говорит с 2012 года Шифман, важно только то, насколько это близко к научной истине. Квантовая теория струн возникла в начале 1970-х годов.
Теория струн основана на гипотезе о том, что все элементарные частицы и их фундаментальные взаимодействия возникают в результате колебаний и взаимодействий ультрамикроскопических квантовых струн одномерных протяжённых объектов на масштабах порядка планковской длины, равной 10—35 метра. Ну а современные эксперименты работают с масштабами до 10—18 метра — значит, эта теория вообще непроверяема. Суперсимметрия сразу возникла в контексте версии теории струн, ради связи двух полей двух разных типов частиц: фермионов и бозонов. Для этого суперсимметрия предполагает удвоение как минимум числа элементарных частиц за счёт новых частиц. Каждой частице выдумывается так называемый суперпартнёр: для фотона — фотино, для кварка — скварк, для хиггса — хиггсино и так далее. Тут уже не обойтись красивыми словами про многомерное пространство, как в теории струн, тут надо предсказывать массы и проявления этих новых «суперпартнёров».
Чем теория суперсимметрии и занимается уже более 40 лет. Абсолютно безуспешно: ни одна из предложенных, рассчитанных, предсказанных «суперчастиц» этой теории никогда не была найдена ни в одном эксперименте. С открытием бозона Хиггса, который тоже отказался показывать даже малейшие признаки наличия у себя «суперпартнёра», теория суперсимметрии попала в патовую ситуацию: и предсказывать больше нечего, и успехи предъявить невозможно, так как их нет Но нет и признания провала. Сами теоретики в частных беседах упирают на особую «красоту» теории суперсимметрии, как это и отметил Шифман. Сторонники суперсимметрии уверены, что эта чисто субъективная красота перевешивает все негативные стороны теории, даже полное отсутствие её результатов. Странная позиция.
Законы природы не обязаны следовать за нашими мечтами и ощущениями красоты — как раз наоборот: мы должны эти законы максимально точно описать. Ещё в 30-е годы XX века, с рождением квантовой механики, физики обнаружили, что законы микромира на атомных и субатомных масштабах сильно отличаются от привычных нам законов природы в нашем макромире. В микромире человеческая логика уже не работает, а значит, и человеческие критерии красоты там тоже бесполезны. Увы, теоретическое сообщество продолжает хранить молчание — им проще делать вид, что всё хорошо и никакой проблемы нет. Синхрофазотрон ОИЯИ весом в 36 000 тонн и длиной окружности около 190 м вид на магниты сверху , введённый в строй в 1957 году в г. Вовремя сменить курс так же важно, как и его правильно выбрать.
Сколько было воздвигнуто ложных теорий в истории науки взять хотя бы геоцентрическую систему мира и теорию «теплорода» , но они пали под ударами критики и не выдержали конкуренции с более удачными теориями. Важными условиями такой смены парадигм являются открытая борьба научных школ, свобода критики «господствующей» теории без опасений за своё статус-кво, да и просто отсутствие запретных тем. И в теории, и в экспериментах физики частиц гибкость подходов должна играть ключевую роль: если теория не работает, надо разрабатывать новую, если новые ускорители слишком дороги, значит, надо модифицировать старые или работать с космическими частицами, развивать астрофизику. А если новых частиц на новых диапазонах энергии нет, значит, нужны более тонкие, но недорогие эксперименты на меньшей энергии, не с целью открыть новые частицы, а для уточнения других свойств, для работы на стыке наук. Примерно так уже и происходит в научных центрах: В Германии был принят в реализацию проект рентгеновского лазера на свободных электронах под названием XFEL, своего рода гибрид микроскопа с ускорителем, который изначально направлен на эксперименты в области биологии и молекулярной химии.
Стандартизация и открытые исследования ЦЕРН и его ученые активно работают над стандартизацией важных аспектов физических экспериментов. Они разрабатывают и используют общие наборы инструментов и методик исследования, чтобы обеспечить совместимость и повторяемость результатов. Более того, ЦЕРН является сторонником принципа открытой науки и старается делиться своими результатами и знаниями со всем научным сообществом.
Открытие бозона Хиггса 2012 год стал историческим для ЦЕРНа и физики в целом, когда ученые объявили о возможном обнаружении бозона Хиггса. Бозон Хиггса — это элементарная частица, которая играет важную роль в объяснении механизма выдачи массы частицам. Обнаружение бозона Хиггса было важным прорывом в понимании физики элементарных частиц и привело к присуждению Нобелевской премии в физике для ученых ЦЕРНа Франсуа Энглерта и Питера Хиггса. Международное сотрудничество ЦЕРН — это символ международного сотрудничества в области фундаментальной физики. Ученые исследуют проблемы, связанные с природой Вселенной, на пересечении различных национальностей, культур и научных подходов. ЦЕРН и его сотрудники повышают наше понимание мира, объединяя усилия с коллегами со всего света. Применения в технологиях Не только проведение фундаментальных исследований, но и разработка новых технологий является частью работы ЦЕРНа. Многие из технологических разработок, разработанных в рамках проектов ЦЕРН, имеют широкое применение в области медицины, информационных технологий и других отраслях.
Таким образом, ЦЕРН вносит долгосрочный и значительный вклад в развитие науки и технологий. Вот некоторые основные факты о ЦЕРНе. Комплексные исследования, международное сотрудничество и важные научные открытия делают ЦЕРН одной из самых уважаемых научных организаций в мире. Надеюсь, вы нашли эту информацию интересной и вдохновляющей! Что такое ЦЕРН? Основной задачей ЦЕРН является изучение структуры и взаимодействия элементарных частиц, которые составляют основу всей материи во Вселенной. Для этого организация использует мощные ускорители частиц и детекторы, способные выявлять и измерять различные физические процессы. Он был запущен в 2008 году и предоставил уникальную возможность для научных открытий, таких как свидетельство о существовании Бозоне Гиггса в 2012 году.
Работа в ЦЕРН также связана с многими другими проектами, включая исследование антиматерии, изучение темной материи и темной энергии, а также исследование фундаментальных взаимодействий природы. Исследования ЦЕРН имеют широкий спектр применений, от фундаментальной науки до технологических разработок, обмена знаниями и формирования международного сотрудничества. В целом, ЦЕРН играет критическую роль в развитии физики элементарных частиц и нашего понимания Вселенной в целом. Его научные достижения и инновационные идеи влияют на жизнь миллионов людей и способствуют прогрессу во многих областях, включая медицину, информационные технологии и окружающую среду. ЦЕРН продолжает проводить свои исследования и открывать новые горизонты в науке, давая нам возможность лучше понять и объяснить наш мир. Организация стремится открыть новые частицы и силы, которые могут быть ключом к пониманию физических законов и к воссозданию первых моментов после Большого взрыва. ЦЕРН также исследует природу темной материи и темной энергии, которые являются главными загадками современной физики. Этот уникальный инструмент используется для создания высокоэнергетических столкновений протонов и ядер, что позволяет исследовать особенности и поведение этих частиц на микроскопическом уровне.
БАК также играет важную роль в поиске новых частиц, таких как бозон Хиггса, который был открыт в 2012 году и подтверждает наше понимание фундаментальных законов природы. Одна из основных задач ЦЕРН — содействие международному сотрудничеству в области науки и исследований. Организация объединяет более 23 членских государств и около 8 тысяч ученых со всего мира, которые работают в ЦЕРНе и его экспериментальных установках.
Отныне любой желающий, где бы он не находился, может заглянуть в лаборатории и центры управления огромного комплекса и виртуально пройтись по бесконечным подземным тоннелям, где ученые проводят самые важные в этой жизни эксперименты, результаты которых вполне возможно смогут перевернуть все наше представление об этом мире. Кроме того, благодаря Street Viev у самих ученых появилась отличная возможность для того, чтобы можно под новым углом взглянуть на оборудование, с которым они работают.
Кроме того, благодаря Street Viev у самих ученых появилась отличная возможность для того, чтобы можно под новым углом взглянуть на оборудование, с которым они работают.
Исследователи ЦЕРН собрались отыскать тайно питающую нашу Вселенную «невидимую» материю
Навигация Google с радостью сообщает о том, что ее Google Maps Street View добрался теперь и до ЦЕРНа — крупнейшей в мире лаборатории физики высоких энергий, расположенной на границе Швейцарии и Франции. Для тех, кто по какой-то причине не знает, что такое ЦЕРН, то вкратце сообщим, что в ее недрах лучшие инженеры и физики стараются ответить на самые главные вопросы вселенной — «Из чего она состоит?
Однако она может оказаться самой настоящей… «частицей дьявола» — как элементарный носитель «безмассовости». Так все вокруг окажется на грани вселенского катаклизма. Этот позволило некоторым ученым сделать вывод: проводится махинация мирового масштаба с оккультной подоплекой. Нет никаких сомнений, что ЦЕРН связан с сетью подземных тоннелей под швейцарскими Альпами существует целая сеть пещер; Церн недалеко от озера, и за ним — горная цепь. И возможно именно он является ключевым центром управления различного рода секретных программ. Итак, из предыдущих постов мы узнали, что Церн, является штаб квартирой ЦРУ, которая известна своей связью с подземными мировыми туннеля и подземными базами, а также как главный исполнитель программ контроля за разумом, таких как Мк-Ультра и и многих других.
Перед смертью он сжег все до единой свои научные записи и уничтожил жесткие диски рабочего компьютера. Специалист не смог жить с теми знаниями, которые он заимел на этой работе. В частности, Мантилл понял, что эксперименты европейских ученых с Большим адронным коллайдером могут уничтожить все живое на Земле или даже во Вселенной. Предсмертная записка ученого молниеносно разлетелась по всей Сети. Вот что в ней говорилось: «Публикуя данную информацию, я строго нарушаю международные законы секретности и конфиденциальности, однако мне все равно. Если вы читаете это, значит я уже мертв по собственной воле. Мое имя доктор Эдвард Maнтилл, я работал физиком в Европейской организации по ядерным исследованиям, располагающейся в Женеве.
Моей специальностью были заряженные частицы, кварк-глюонная плазма и субатомные исследования.
Швейцарцы пообещали предоставить для размещения проекта 40 гектаров земли. А так выглядит ЦЕРН для туристов. В нем проводят регулярные экскурсии и читают лекции Изначально штат ЦЕРНа состоял из 114 сотрудников, директором организации был выбран лауреат Нобелевской премии Феликс Блох. В момент создания проекта физика элементарных частиц в основном занималась изучением атомных составляющих, поэтому в аббревиатуре зашифровано понятие «ядерные исследования».
Сегодня круг задач, стоящих перед учеными ЦЕРНа, стал гораздо шире. Можно добавить, что, кроме физики, в центре активно занимаются прикладными вопросами других научных дисциплин: медицина, энергетика, фармацевтика, информатика и др. Его основной задачей всегда было изучение элементарных частиц, а главным инструментом для этого — различного типа ускорители. Любое подобное устройство — это настоящее чудо инженерной мысли, в котором использованы новейшие технические достижения. Конструкционно ускоритель представляет собой обычную вакуумную трубку, где при помощи магнитов и электрических полей частицы разгоняются до огромных скоростей.
Все это окружено мириадами датчиков, десятками вспомогательных систем, мощнейшими вычислительными машинами. Он мог разгонять частицы с энергией 600 МэВ и проработал вплоть до 1990 года. В 1959 году началась эксплуатация протонного синхротрона PS с энергией 28 ГэВ. В 1971 году было завершено строительство первого в мире ускорителя протонов ISR с пересекающимися накопительными кольцами. Причем его размеры были настолько грандиозны, что часть устройства находилась в Швейцарии, а другая — во Франции.
Через несколько лет ученым ЦЕРНа удалось экспериментально подтвердить электрослабую теорию. Для этого в центре установили уникальную пузырьковую камеру «Гаргамель», изготовленную во Франции. Необходимо отметить, что в этом эксперименте участвовали все ускорители ЦЕРНа. Он начал работу в 1989 году. В 2000 году его демонтировали, чтобы получить место для Большого адронного коллайдера, работа которого началась в 2008 году.
Large Hadron Collider и частица Бога Большой адронный коллайдер, без сомнения, основной проект исследовательского центра. Это настолько верно, что нередко ЦЕРН и адронный коллайдер воспринимаются как слова-синонимы.
Таким образом, в нем размещаются PS и LHC, а также другие машины, используемые для отслеживания темной материи например, Cast и детектор AMS, которым он управляет удаленно и исследовать пределы физики, особенно в области антивещества с антипротонами и атомами антиводорода. Основанная в 1954 году, Лаборатория стала одним из первых совместных предприятий европейского масштаба и в настоящее время насчитывает 22 государства-члена. Это привело к открытию W- и Z-бозонов, создание первых атомов антиматерии и открытие частицы бозона Хиггса.
Российским ученым решили закрыть доступ к ЦЕРН и Большому адронному коллайдеру
Они позволяют нам лучше понять происхождение Вселенной, ее структуру и законы физики. Благодаря исследованиям ЦЕРН мы получаем новые знания о нашем мире и влияем на будущее научных открытий и прогресса. БАК — это огромное ускорительное сооружение, построенное в 2008 году, которое предоставляет возможность проводить уникальные эксперименты в области ядерной физики и элементарных частиц. Это многофункциональный комплекс, включающий в себя лаборатории и технические сооружения, а также открытые пространства. Здесь работают ученые и инженеры со всех уголков мира, чтобы вести эксперименты, исследования и разработки в области физики высоких энергий. Локация ЦЕРН выбрана с учетом различных факторов, таких как доступность, качество инфраструктуры и природные условия. Близость Женевского озера обеспечивает красивую природную обстановку и создает вдохновляющую атмосферу для работы и научных открытий.
Кроме того, расположение ЦЕРН позволяет ученым исследовать разные аспекты природы и расширять наши знания о фундаментальных свойствах Вселенной. Объединение ученых со всего мира в этом месте способствует обмену идеями и организации совместных исследовательских проектов. Они проходят в знаменитых ускорителях частиц, таких как Большой адронный коллайдер БАК , и в специализированных детекторах. Для этого ученые используют самые современные технологии и инструменты. Работа ученых в ЦЕРН требует многолетнего опыта и предельной точности. Исследования проводятся в междисциплинарных группах, где ученые обмениваются идеями, результатами и обсуждают дальнейшие пути развития.
Открытия и научные открытия, сделанные в ЦЕРН, имеют важное значение для развития фундаментальной науки и позволяют расширить наши знания о Вселенной в целом. Ученые ЦЕРН также активно работают с учеными из других организаций и университетов по всему миру. Они обмениваются данными и результатами исследований, участвуют в совместных проектах и обучают новым поколениям ученых. Работа ученых в ЦЕРН — это постоянный поиск новых знаний и открытий. Они направляют свои усилия на поиск ответов на фундаментальные вопросы о природе Вселенной и нашем месте в ней. Их работа вносит огромный вклад в развитие науки и даёт нам более глубокое понимание мира, в котором мы живем.
Две главные из них расположены возле швейцарского городка Мейрин и близ французского Превесан-Моэн. Инфраструктуру учреждения составляют лаборатории, рабочие кабинеты, технические и производственные помещения, столовые, конференц залы, жилые здания, а также ускорительный комплекс и криогенные системы для охлаждения магнитов. Обазовательный элемент Европейский Центр ядерных исследований также известен как подготовительный центр научных кадров. На его базе созданы школы, в которых студенты и молодые аспиранты могут совершенствовать свои знания в изучении физики частиц, ускорительной физики и вычислительной техники. Для студентов, аспирантов, школьных учителей и преподавателей высших учебных заведений доступны стажировки, образовательные программы и курсы, проводимые на родном языке слушателя, а также летние школы.
Организация была образована 29 сентября 1954 года [1]. В настоящее время число стран-членов возросло до 20. Кроме того, некоторые страны и международные организации имеют статус наблюдателя.
Над инфраструктурой в ЦЕРНе постоянно работают около 2500 человек [2] , ещё около 13. История[ править править код ] Вид внутри здания 40, в котором находятся множество офисов учёных, работающих в коллаборациях CMS и ATLAS После успеха международных организаций в урегулировании послевоенных проблем, ведущие европейские физики считали, что подобная организация необходима и для физических экспериментальных исследований.
Факт 4: Свести концы с концами Хотя коллайдер действительно огромен, точность при его строительстве и для его работы требуется поистине ювелирная.
Концы 27-километрового кольцевого тоннеля глубиной в 175 метров между Женевским озером и Юрскими горами, где и соорудили исполинскую конструкцию, соединили с точностью в пределах одного сантиметра. Ну а чего вы ждали, если хотели гонять протоны со скоростью 11 245 кругов в секунду по трубе, которую видно из космоса? Хотя протонные пучки очень плотные и интенсивные, в день получается разогнать только протоны из двух нанограммов водорода масса рассчитана в состоянии покоя.
Выходит, чтобы прокатить с ветерком по этому кольцу один грамм водорода, понадобилось бы около миллиона лет. Факт 5: Съешь еще этих мягких французских булок Ломать не строить. Просто удивительно, как даже маленькое животное может вызвать короткое замыкание в коллайдере и остановить работу этого чуда инженерной мысли.
А животных в женевских полях резвится немало. В 2016 году каменная куница решила пожевать кабель трансформатора, который был под напряжением в 66 тысяч киловольт. А в ноябре 2009 года птица уронила в вентиляционное отверстие в корпусе высоковольтного оборудования криосистемы кусок французской булки.
Ей повезло больше, чем каменной кунице: она сама осталась жива, хоть и без обеда, и преспокойно улетела, не дожидаясь обеспокоенных ученых. Факт 6: Питомник для компьютерных мышей Да, не протирайте глаза и не думайте, что это опечатка. На сайте CERN есть страничка , посвященная этому чудесному заведению.
На фотографиях компьютерные мышки резвятся в клетках и «едят» из тарелочек орешки и картофель, в общем, наслаждаются заслуженным отдыхом. Впервые питомник был открыт 1 апреля 2011 года в качестве первоапрельской шутки, но потом перекочевал на лужайку перед компьютерным центром CERN. Смысл этой аллегории в том, чтобы пользователи и сотрудники привыкали вбивать нужную ссылку в поле через клавиатуру, а не кликали на сомнительные подчеркнутые строчки, которые могут завести на подозрительный сайт, где можно подцепить вирус.
В мае 2012 года питомник был разрушен упавшим от ветра деревом, но позднее его открыли вновь. Выяснить, какие частицы скрываются в темной материи и из чего сделана темная энергия, — это работа, которую только предстоит сделать, поэтому открытие бозона Хиггса, за которое дали Нобелевскую премию в 2013 году, вовсе не ставит точку в карьере гигантского ускорителя. Всего около недели назад физикам удалось пронаблюдать один из типов распада таинственной частицы, который не опровергает положения Стандартной модели.
Мы собираемся усовершенствовать акселераторы и детекторы, чтобы коллайдер работал до 2035 года.
Фейк: «ЦЕРН открывает порталы в другие измерения»
Вид территории ЦЕРНа с птичьего полета. На аэрофотоснимке показано, где под землей пролегают туннели ускорителей. Один из таких подземных коллайдеров – SPS (Суперпротонный синхротрон) длиной в 6,9 км, с энергией протонов до 500 ГэВ, он стал основой Международного европейского института ЦЕРН/CERN, расположенного на границе Франции и Швейцарии, близ Женевы. Ученые ЦЕРН протестируют самый мощный в мире ускоритель элементарных частиц во время апрельского солнечного затмения для поиска "невидимой" материи, которая тайно питает нашу Вселенную. 5 июля ЦЕРН (Европейская организация ядерных исследований) начала новый эксперимент на обновленном Большом адронном коллайдере (БАК), который, по заявлениям, продлится безостановочно до 2026 года.
Что такое ЦЕРН и где он находится?
Европейский центр ядерных исследований где построен Большой адронный коллайдер, находится возле Женевы, на границе Швейцарии и Франции. ММ ЦЕРН – это дьявольский эксперимент, который якобы предполагает найти доказательства существования Большого Взрыва в начале творения Вселенной. Европейской организации по ядерным исследованиям, которая занимается изучением основных строительных блоков Вселенной и созданием самых мощных ускорителей частиц.