Новости катод и анод плюс и минус

Полярность катода по отношению к аноду может быть положительной или отрицательной в зависимости от того, как работает устройство. Определяем полярность диода: катод и анод — это минус или плюс. Полярность катода по отношению к аноду может быть положительной или отрицательной в зависимости от того, как работает устройство. Новости и общество Самодостаточность — это стремление к одиночеству или бегство от реальности? Что называют анодом и катодом, теоретические положения, принципы работы и способы применения в электрике на практике.

Где у светодиода плюс а где минус — 5 способ для быстрого определения

В него уже входят заряды, хотя по прежнему и не известно, что именно является их переносчиком. Однако, ясно, что они могут быть положительными и отрицательными. Начинается эпоха активного изучения электричества. А Джордж Стони рассчитывает заряд одного такого иона и предлагает термин "электрон" для минимального неделимого заряда. Электрон в переводе с греческого значит "янтарь", что отсылает нас к представлениям о "смоляном токе".

А другой эксперимент Жана Перрена показывает, что катодные лучи состоят из отрицательно заряженных частиц.

Анод из драгоценных металлов используют для того, чтобы повысить коррозионную стойкость, улучшить эстетические свойства предметов, а также для других целей. Кроме того, они пригодятся и для того, чтобы повысить электропроводность изделий.

В вакуумных электронных приборах анод — это специальный электрод, который способен притягивать к себе любые летящие электроны, которые испущены катодом. В рентгеновских трубках и электронных лампах он имеет такую конструкцию, когда полностью поглощает все электроны. В электронно-лучевых трубках аноды являются элементами электронной пушки, которые поглощают только часть летящих электронов, формируя при этом электронный луч после себя.

В полупроводниковых приборах электроды, которые подключаются к положительному источнику тока, когда прибор открыт, то есть он имеет небольшое сопротивление, называют анодом, а тот, что подключен к отрицательному полюсу, соответственно, — катодом. Это определяется особенностями рассматриваемых процессов. К примеру, в электрохимии считают, что катод — это электрод, на котором протекает процесс восстановления, а анод — это электрод, на котором протекает процесс окисления.

При активной работе электролизера внешний источник тока обеспечивает на одном электроде избыток электронов и здесь происходит восстановление металла. Этот электрод является катодом. А на другом электроде, в свою очередь, обеспечивается недостаток электронов и происходит окисление металла, и его называют анодом.

При работе гальванического элемента, на одном из электродов избыток электронов обеспечивается уже не внешним источником тока, а именно реакцией окисления металла, то есть здесь отрицательным будет уже анод. Электроны, которые проходят через внешнюю цепь, будут расходоваться на протекание реакции восстановления, то есть катодом можно назвать положительный электрод. Исходя из такого толкования, для аккумулятора аноды и катоды меняются местами в зависимости от того, как направлен ток внутри аккумулятора.

В электротехнике анодом называют положительный электрод. Так электрический ток течет от анода к катоду, а электроны — наоборот. Только в одном направлении.

Когда-то давно применялись ламповые диоды. Но сейчас используются в основном полупроводниковые диоды. В отличие от ламповых они значительно меньше по размеру, не требуют цепей накала и их очень просто соединять различным образом.

Условное обозначение диода на схеме На рисунке показано условное обозначение диода на схеме. Буквами А и К соответственно обозначены анод диода и катод диода. Анод диода — это вывод, который подключается к положительному выводу , непосредственно или через элементы схемы.

При зажигании светодиода не стоит продолжать увеличивать напряжение, так как он может сгореть. Вместо регулируемого блока питания, можно воспользоваться любой батареей напряжением 4. В качестве батареи можно использовать несколько элементов на 1. Подключать светодиод к батарее напрямую нельзя. Он может выйти из строя. Для проверки работоспособности последовательно со светодиодом нужно подключить токоограничивающий резистор. Сопротивление резистора для маломощных светоизлучающих диодом может составлять от 680 Ом до нескольких кОм. Для мощных светодиодов подойдет резистор в несколько десятков Ом.

Определение полярности по технической документации Исчерпывающую информацию о светодиодах можно получить из технической документации завода производителя. Она отражает данные о массе и габаритах led, его цоколевке и электрических параметрах. При крупных поставках такая документация обязательно имеется в сопроводительных документах. К сожалению, продавцы, торгующие в розницу, не всегда могут предоставить интересующие данные. К счастью, зная марку светоизлучающего прибора, информацию о назначении его выводов всегда можно найти в интернете. Итоги Мы рассмотрели несколько способов как определить плюс и минус светодиода. Их можно применять по одному, или перепроверять результат несколькими способами. Ведь каждый из них не является идеальным.

Визуально и тем более по технической документации невозможно судить о работоспособности данного экземпляра LED. С помощью тестера трудно прозвонить мощный сверхъяркий светоизлучающий диод. Проверка путем подачи напряжения дает точный результат, но требует принятия мер предосторожности. Где плюс, а где минус? Обратное его включение в электрическую цепь не даст такого эффекта и даже может вывести светодиод из строя. Чтобы избежать неприятностей в эксплуатации, этот электронный компонент нужно протестировать, т. Приведенные ниже методики определения вывода минуса и плюса чаще всего применяют для маломощных излучающих диодов в корпусе диаметром 3. Визуальное различие выводов анода и катода Новый светодиод, как правило, имеет два вывода ножки , один из которых немного длиннее другого.

Длинный вывод — это анод. Его подключают к плюсу источника питания. Короткий вывод — это катод, который соединяют с минусом или общим проводом. Иногда вывод катода отмечают точкой или небольшим срезом на корпусе. Паяный светодиод или бывший в эксплуатации имеет укороченные ножки одной длины. В этом случае определить где плюс, а где минус нужно путём внимательного рассмотрения кристалла сквозь пластиковую линзу. Анод плюс выделяется гораздо меньшим размером контакта внутри линзы по сравнению с катодом. Контакт катода минус , в свою очередь, напоминает флажок, на котором размещается кристалл.

При ремонте электронных блоков могут попадаться светоизлучающие диоды с нестандартной цоколевкой. Производитель может маркировать их со стороны ножек или делать утолщение одного из выводов. Иногда цоколевка таких светодиодов интуитивно не понятна, а особенное строение не позволяет визуально определить полярность.

Переключение предела измерения ёмкости ручное. Максимальное значение 100 мкФ. У этого измерительного прибора автоматический режим, необходимо только его выбрать, как показано на картинке. Измерительный пинцет от Mastech также автоматически измеряет ёмкость, необходимо только выбрать режим кнопкой FUNC, нажимая её, пока не появится индикация F. Для проверки ёмкости, считываем на корпусе конденсатора её значение и ставим заведомо больший предел измерения на приборе. После подсоединения щупов к выводам конденсатора ждём показаний на экране, к примеру время измерения ёмкости 40 мкФ первым прибором — менее одной секунды, вторым — более одной минуты, так что следует ждать. Если номинал не соответствует указанному на корпусе конденсатора, то его необходимо заменить и если нужно подобрать аналог. Категорически нельзя применять электролитические конденсаторы узнать их можно по меньшим размерам, при той же ёмкости, и обозначению плюс и минус на корпусе. Как следствие применения — термическое разрушение. Для этих целей производители специально выпускают неполярные конденсаторы для работы в цепи переменного тока, которые имеют удобное крепление и плоские клеммы, для быстрой установки. Если нужного номинала нет, то его можно получить параллельным соединением конденсаторов. Такая замена абсолютно равноценна одному конденсатору большей ёмкости. Если во время замены перепутались провода, то правильное подключение можно посмотреть по схеме на корпусе или здесь: Схема подключения конденсатора к компрессору Типы конденсаторов Для запуска мощных двигателей компрессоров применяют маслонаполненные неполярные конденсаторы. Корпус внутри заполнен маслом для хорошей передачи тепла на поверхность корпуса. Корпус обычно металлический, аллюминиевый. Самые доступные конденсаторы такого типа CBB65. Для запуска менее мощной нагрузки, например двигателей вентиляторов, используют сухие конденсаторы, корпус которых, обычно, пластмассовый. Клеммы для удобства соединения сдвоенные или счетверённые. Как определить анод и катод Электрическая схема катода и анода: Различие между катодом и анодом основано исключительно на токе, а не на напряжении. Металл, используемый для катода, имеет значительно большее количество электронов, чем нейтроны или протоны. Например, один из потребителей энергии находится в прямом включении. Далее, ток по аноду из внешней цепи проникает в элемент. Во внешнюю цепь прямо через катод из элемента выходит электрический ток. Это чем-то напоминает перевёрнутое изображение. Если данные обозначения сложные, то тут разобраться с ними могут только химики. Теперь надо сделать обратное включение. В этом случае диоды полупроводникового типа почти не будут проводить электрический ток. Тем не менее, есть вероятность обратного пробоя у элементов. Электровакуумные диоды например, радиолампы совсем не обладают способностью проводить ток обратного типа. Условно принято считать, что ток через них не протекает. В связи с этим формально выводы анода и катода у диодов не отвечают за выполнение этих функций. При катодной защите металлический анод электрически связан с защищаемой системой и частично разъедает или растворяет металл защищаемой системы. Этот металлический анод большей степени реагирует на коррозионную среду защищаемой системы. Корпус железного или стального судна может быть защищен цинковым анодом, который растворяется в морской воде и предотвращает коррозию корпуса. Менее очевидным примером такого типа защиты является процесс цинкования железа. Такой процесс покрывает железные конструкции такие как ограждение покрытием из металлического цинка. Пока цинк остается неповрежденным, железо защищено от коррозии. С течением времени цинковое покрытие становится поврежденным, в результате потрескивания или физического повреждения. Назначение диода, анод диода, катод диода, как проверить диод мультиметром Назначение диода — проводить электрический ток только в одном направлении. Когда-то давно применялись ламповые диоды. Но сейчас используются в основном полупроводниковые диоды. В отличие от ламповых они значительно меньше по размеру, не требуют цепей накала и их очень просто соединять различным образом. Условное обозначение диода на схеме На рисунке показано условное обозначение диода на схеме. Буквами А и К соответственно обозначены анод диода и катод диода. Анод диода — это вывод, который подключается к положительному выводу источника питания, непосредственно или через элементы схемы. Катод диода — это вывод из которого выходит ток положительного потенциала и далее через элементы схемы попадает на отрицательный электрод источника тока. А в обратном направлении диод ток не пропускает. Если каким-то из своих выводов диод подключается к источнику переменного напряжения, то на другом его выводе получается постоянное напряжение с полярностью, зависящей от того, как диод подключен.

Катод и анод — где минус, а где плюс?

Обозначение анода и катода Фарадей записывает: «На основании этого представления мы предлагаем назвать ту поверхность, которая направлена на восток — анодом, а ту, которая направлена на запад — катодом». В основе новых терминов лежал древнегреческий язык и в переводе они значили: анод — путь солнца вверх, катод — путь солнца вниз. Мы же рекомендуем пользоваться ими, ибо в них корнем слова является ХОД и, во всяком случае, это напомнит пользователю термина, что без движения тока термин не применим. Для желающего проверить рассуждения создателя термина с помощью других правил, например правила пробочника, сообщаем, что северный магнитный полюс Земли лежит в Антарктиде, возле Южного географического полюса. В том числе и в зарубежных справочниках и энциклопедиях. Поэтому в электрохимии пользуются другими определениями, более понятными читателю. У них анод — это электрод, где протекают окислительные процессы, а катод — это электрод, где протекают восстановительные процессы. В этой терминологии нет места электронным приборам, но при электротехнической терминологии указать анод радиолампы, например, легко. В него входит электрический ток. Не путать с направлением электронов. Как работает батарейка.

Основные свойства катодов Любой электровакуумный прибор имеет электрод, предназначенный для испускания эмиссии электронов. Катод должен отдавать с единицы поверхности большой ток эмиссии при возможно низкой температуре нагрева и обладать большим сроком службы. Нагрев катода в электровакуумном приборе производится протекающим по нему током. Такие термоэлектронные катоды разделяются на две основные группы: катоды прямого накала, катоды косвенного накала подогревные. Катоды прямого накала представляют собой металлическую нить, которая непосредственно разогревается током накала и служит для излучения электронов. Поверхность излучения катодов прямого накала невелика, поэтому от них нельзя получить большой ток эмиссии. Малая теплоемкость нити не позволяет использовать для нагрева переменный ток. Кроме того, при нагреве переменным током температура катода не постоянна во времени, а следовательно, меняется во времени и ток эмиссии. Положительным свойством катода прямого накала является его экономичность, которая достигается благодаря малому количеству тепла, излучаемого в окружающую среду вследствие малой поверхности катода. Катоды прямого накала изготовляются из вольфрамовой и никелевой проволоки.

Для повышения экономичности катода вольфрамовую или никелевую проволоку керн «активируют» — покрывают пленкой другого элемента. Такие катоды называются активированными. При покрытии керна электроотрицательной пленкой, например кислородом, работа выхода катода увеличивается. Подогревные катоды выполняются в виде никелевых гильз, поверхность которых покрывается активным слоем металла, имеющим малую работу выхода. Внутри катода помещается подогреватель— вольфрамовая нить или спираль, подогрев которой может осуществляться как постоянным, так и переменным Как работает гальванизация. Для изоляции подогревателя от гильзы внутренность последней покрывается алундом Аl2O3.

При прямом включении лампочка загорится, значит, плюс батарейки — на аноде и аналогично минус — на другом электроде. Электроды светодиода можно идентифицировать с помощью постоянного ИП с заведомо известной полярностью и включенного последовательно резистора, ограничивающего ток. Свечение элемента укажет на прямое включение.

Для этой цели можно взять батарейку RG2032 на 3 вольта и резистор сопротивлением 1кОм. Включение светодиода через ограничивающий резистор Что касается полупроводников, всегда существует строгое соответствие наименований. В других случаях правильное определение проходящих электрохимических реакций поможет чётко ориентироваться в отождествлении электродов. На аноде анионы отрицательные ионы под действием электрического потенциала вынуждены вступать в химическую реакцию и испускать электроны окисление , которые затем текут вверх и попадают в цепь управления. Этот процесс широко используется при рафинировании металлов. Медные катоды, полученные с помощью этого метода, также называют электролитической медью. Исторически сложилось так, что когда для электролиза требовались инертные аноды, выбирали графит во времена Фарадея его называли плюмбаго или платину. Было обнаружено, что они являются одними из наименее реактивных материалов для анодов. Платина разрушается очень медленно по сравнению с другими материалами, а графит крошится и может выделять углекислый газ в водных растворах, но в остальном не участвует в реакции.

Виды анодов Защита магниевым анодом — это электрохимический метод. Он состоит в том, что к защищаемой емкости подсоединяется анод. Одновременно поверхность металла делается эквипотенциальной и на её площадях проходит исключительно катодный процесс. Вызывающий коррозию анодный процесс, переходит на магниевый анод. Магниевый Анод из магния Магниевый анод для бойлера, выполняется из обычного стержня с нанесенной резьбой. На нем устроен металлический валик из серебристого металла. В ходе использования, магниевый анод подвержен медленному растворению, до полного исчезновения. В это время прекращается процесс катодной защиты, и стальная емкость опять подвергается коррозии. Аноды выпускаются с разными размерами по длине и диаметрам поперечного сечения На это нужно обращать внимание при приобретении нового защитного электрода, для того чтобы он мог подойти для нужной геометрии бака В последнее время выпускаются водонагревательные аппараты, в которых устанавливают два анода.

В напольных нагревательных аппаратах, они размещаются сверху, а в настенных — снизу. Титановый Титановый анод Современные водонагревательные установки оснащаются титановым анодом, который служит особой антикоррозионной защитой поверхностей внутреннего бака. Срок службы, такого электрода зависит от качества воды и составляет до 7 лет. Титановый анод выпускается с индивидуальным ИП и может использоваться с баками до 300 л. Для стабильной защиты на протяжении 24 часов он подключается непосредственно в розетку, при этом потребление электроэнергии на собственные нужды анода очень низкое. Постоянный ток, необходимый для защитной функции устанавливается внешним регулятором. Титановый стержень функционирует, как питающий и измерительный электрод. Старый и новый титановый анод Когда на непродолжительное время выключается подвод тока. Анод измеряет разность потенциалов, которая рабочей программой сравнивается с изначально заданным потенциалом.

По полученным результатам устанавливается защитная сила тока. При эксплуатации, такой анод не разрушается и поэтому не нуждается в замене на протяжении всего периода эксплуатации бойлера. Алюминиевый Алюминиевый анод Это еще один вариант защитного электрода, покрытый алюминиевым напылением. Он также выполнен в виде обыкновенного прутка с резьбой. При подогреве воды, расширяется металл, сплав корпуса удлиняется, утрачивая свои характеристики. На поверхности бака образуются микротрещинки. После чего кислород, находящийся в воде начинает окислять металл, вызывая необратимые коррозионные процессы. Стальной корпус и электрический нагревательный элемент создают гальваническую пару, при этом корпус становится анодом. Для того, чтобы он не разрушался под воздействием воды, изготовители разместили около ТЭНа сплав, в состав которого входит алюминий.

Он берет на себя роль анода — в результате чего весь агрессивный кислород расходуется на его окисление, а емкость остается целой. Алюминиевый анод не дает окисляться элементам бойлера, но он имеет весьма утонченную конструкцию и легко повреждается от механического удара. Обозначение в электрохимии и цветной металлургии Понятие анодов в электролитических процессах применимо в отношении положительно заряженных электродов. Электролиз, с помощью которого выделяются или очищаются различные химические элементы, — это влияние электрического тока на электролит. Электролитом выступают растворы солей или кислот. Другим электродом, участвующим в этой реакции, выступает катод. На отрицательно заряженном катоде К осуществляется реакция восстановления, на аноде А — процесс окисления. При этом «А» может частично разрушаться, участвуя в очищении металлов от нежелательных добавок. В металлургической промышленности аноды используют при нанесении защитных слоёв на продукт электрохимическим методом гальваника или электро-рафинированием Электрическое очищение позволяет растворять на «А» черновой металл с примесями и осаждать его на «К» уже в очищенном виде В металлургической промышленности аноды используют при нанесении защитных слоёв на продукт электрохимическим методом гальваника или электро-рафинированием.

Принято считать нормальный потенциал водорода за нуль. В табл. Если в электролите имеются ионы разных металлов, то первыми на катоде выделяются ионы, имеющие меньший отрицательный нормальный потенциал медь, серебро, свинец, никель , щелочноземельные металлы выделить труднее всего. Кроме того, в водных растворах всегда имеются ионы водорода, которые будут выделяться ранее, чем все металлы, имеющие отрицательный нормальный потенциал, поэтому при электролизе последних значительная или даже большая часть энергии затрачивается на выделение водорода. Два разнополярных электрода Путем специальных мер можно воспрепятствовать в известных пределах выделению водорода, однако металлы с нормальным потенциалом меньше 1 В например, магний, алюминий, щелочноземельные металлы получить электролизом из водного раствора не удается. Их получают разложением расплавленных солей этих металлов. Нормальные электродные потенциалы веществ являются минимальными, при них начинается процесс электролиза, практически требуются большие значения потенциала для развития процесса. Разность между действительным потенциалом электрода при электролизе и нормальным для него потенциалом называют перенапряжением. Оно увеличивает потери энергии при электролизе. С другой стороны, увеличивая перенапряжение для ионов водорода, можно затруднить его выделение на катоде, что позволяет получить электролизом из водных растворов ряд таких более отрицательных по сравнению с водородом металлов, как свинец, олово, никель, кобальт, хром и даже цинк.

Это достигается ведением процесса при повышенных плотностях тока на электродах, а также введением в электролит некоторых веществ. Это интересно! Все о полупроводниковых диодах. Течение катодных и анодных реакций при электролизе определяется следующими двумя законами Фарадея. В действительности масса выделившегося вещества всегда меньше указанной, что объясняется рядом побочных процессов, проходящих в ванне например, выделением водорода на катоде , утечками тока и короткими замыканиями между электродами. Выход по току существенно зависит от плотности тока на электроде. С увеличением плотности тока на электроде выход по току растет и повышается эффективность процесса. Устройство гальванической цепи. Из этой мощности только первая составляющая расходуется на проведение реакций, остальные являются тепловыми потерями процесса. Лишь при электролизе расплавленных солей часть теплоты, выделяющейся в электролите IUэ, используется полезно, так как расходуется на расплавление загружаемых в электролизер солей.

Эта величина носит название выхода вещества по энергии. Это «ГОСТ 15596-82. Термины и определения». Там на странице 3 можно прочесть следующее: «Отрицательный электрод химического источника тока это электрод, который при разряде источника является анодом». То же самое, «Положительный электрод химического источника тока это электрод, который при разряде источника является катодом». Термины выделены мной. Но тексты правила и ГОСТа противоречат друг-другу.

Анионы органических кислот окисляются особым образом: радикал, примыкающий к карбоксильной группе, удваивается, а сама карбоксильная группа COO превращается в углекислый газ - CO2. Примеры решения В процессе тренировки вам могут попадаться металлы, которые пропущены в ряду активности. На этапе обучения вы можете пользоваться расширенным рядом активности металлов. Теперь вы точно будете знать, что выделяется на катоде ;- Итак, потренируемся. Иногда в заданиях требуется записать реакцию электролиза. Сообщаю: если вы понимаете, что образуется на катоде, а что на аноде, то написать реакцию не составляет никакого труда. Анион не содержит кислорода, выделяется галоген - хлор. Мы пишем уравнение, так что не можем заставить натрий испариться бесследно : Натрий вступает в реакцию с водой, образуется NaOH. Анион кислородсодержащий, поэтому в реакции выделяется кислород. Сульфат-ион никуда не исчезает, он соединяется с водородом воды и превращается в серую кислоту.

Плюс и минус у светодиода. Определяем полярность LED

плюс или минус? Чтобы успешно решать задания по этой теме и писать реакции, необходимо разделять процессы на катоде и аноде. В этой статье мы расскажем, что это такое анод и катод, а также как определить где они находятся в электролизере, диоде и у батарейки, что из них плюс, а что минус. Определяем полярность диода: катод и анод — это минус или плюс. Почему в обозначениях диодного моста в схеме катоды диодов обозначаются как плюс а аноды как минус.

Что такое анод и катод?

Термины анод, катод, положительный и отрицательный не являются синонимами, их иногда можно спутать, что может привести к ошибкам. Если подать на анод плюс, а на катод минус, то у нас диод “откроется” и электрический ток спокойно по нему потечет. Понятие катода и анода, а точнее плюса и минуса в вакуумных и полупроводниковых приборах связано с возможностью протекания тока только в одном направлении или в двух. Новости и общество Самодостаточность — это стремление к одиночеству или бегство от реальности?

Определяем полярность диода: катод и анод

Что такое электролиз? Анод и катод. Физико-химический процесс При поиске катода и анода прибора с 3 и 4 выводами сложность заключается в поиске общего минуса или плюса.
Диод: анод и катод, полярность Итак, при зарядке плюс аккумулятора станет анодом, а минус будет катодом.

Что такое анод и катод — простое объяснение

Ток будет идти через диод, если отвод анод подключить к «плюсу», отвод «катод» — к «минусу». Катод и анод: где плюс и минус. В электрохимии и электрических цепях, обозначения «плюс» и «минус» зависят от конкретного контекста. В этой статье мы расскажем, что это такое анод и катод, а также как определить где они находятся в электролизере, диоде и у батарейки, что из них плюс, а что минус. Вывод один – на анод поступает плюс, а катод подсоединяется к минусу.

Плюс и минус у светодиода. Определяем полярность LED

Электролитические процессы: Анод является положительным электродом, куда направляются электроны из внешнего источника электрического тока, что ведет к окислению веществ у анода. Катод в этих системах отрицательный, на нем происходит восстановление, так как электроны перемещаются из раствора на электрод. Гальванические элементы и батареи: Анод в гальванических батареях является отрицательным электродом, на нём происходит выделение электронов в результате химической реакции окисления. Катод — положительный электрод, где протекает восстановление, с потреблением электронов из внешней цепи. Топливные элементы: Анод отрицательный, здесь происходит окисление топлива например, водорода , в результате которого образуются электроны, участвующие в электрохимической реакции. Катод положительный, здесь происходит реакция восстановления с участием электронов и оксиданта например, кислорода , образуя воду или другие продукты в зависимости от типа топливного элемента. Полупроводниковые устройства: В диодах и транзисторах анод и катод определяются по направлению протекания тока. Анод обычно является стороной устройства, где входят или выходят дырки положительные носители заряда , а катод- стороной, где входят или выходят электроны. В светодиодах и других подобных полупроводниковых устройствах катод является стороной с отрицательным зарядом, где электроны вмешиваются в рекомбинацию с дырками для создания фотонов света. В каждом из этих случаев анод и катод выполняют фундаментальные функции окисления и восстановления, но их точная природа и следствия этих функций зависят от химии и структуры системы, в которой они используются. В гальванических элементах движение электронов от анода к катоду создает полезную электрическую энергию, тогда как в электролизе внешнее электричество необходимо для инициирования реакции.

В полупроводниковых устройствах анод и катод управляют направлением потока электронов и других носителей заряда, чем определяют функцию устройства. Анод и катод в электрохимических системах Практическое применение знаний об аноде и катоде Знание о том, что такое анод и катод, а также понимание их функций имеет огромное значение в различных областях техники и технологий. Практическое применение этих знаний можно найти во множестве примеров: Сферы применения Описание Батареи и аккумуляторы Понимание того, как работают анод и катод, важно для разработки и улучшения химических источников тока, таких как батареи для мобильных телефонов, электромобилей и домашних хранилищ энергии. Это знание используется для оптимизации производительности, увеличения срока службы и поддержания безопасности таких устройств. Электролиз В промышленном масштабе электролиз применяется для очистки металлов, например, в производстве алюминия и других цветных металлов. Анодные и катодные процессы, какими являются окисление и восстановление, критически важны для эффективности и экономической рентабельности этих процессов. Коррозионная защита Для предотвращения коррозии металлических структур, таких как трубопроводы или корпуса судов, применяют защиту с использованием «жертвенных» анодов. Эти аноды обычно изготовлены из более активного металла и преднамеренно «жертвуются», окисляясь и защищая основной металл от коррозии.

N-тип называют полупроводник с примесью, в котором основными носителями служат электроны, поскольку в этом материале их избыток. P-тип — полупроводник с недостатком электронов. Такую проводимость называют дырочной. Если эти два типа соединить вместе, то получим диод. Как работает диод Основа работы диода заключается в разной проводимости двух полупроводников в этой статье речь только о них , соединенных вместе. Полупроводник типа n пропускает электроны, а p-типа — дырки. Если полярность диода соблюдена, то есть на n-тип подается минус, а на p-тип — плюс, то на каждый тип подается прямое напряжение и диод открыт. Если знаки питания поменять местами, то есть подать обратное напряжение, то диод будет закрыт. Почему такое происходит? В месте соединения двух полупроводников разной проводимостью образуется небольшая область смещения. Это когда электроны с n-типа частично переходят в область p-типа. В этом месте нет свободных электронов и дырок. Во время подключения прямого напряжения недостаток электронов и дырок восполняется источником питания, то есть закрытая для перехода носителей заряда зона почти исчезает. Электроны, под действием электродвижущей силы, действующей в источнике питания, перепрыгивая из дырки в дырку, проходят участок p-типа и попадают на проводник. Что будет, если поменять полярность питания: к участку n-типа подключить плюс, а к p-типа — минус? В этом случае электроны на участке n-типа отодвинутся к источнику питания, расширяя закрытую зону, тем самым увеличив внутреннее сопротивление диода. В этом случае диод будет закрыт. Конечно, если повысить напряжение на диоде, то электроны смогут проскочить насыщенную область и через диод пойдет ток. Некоторые диоды работают именно в таком режиме, их называют стабилитронами. Но выпрямительные диоды не «любят» такие условия и могут выйти из строя. Да и для стабилитронов оговаривается не только обратное напряжение, но и ток, при котором они могут работать. Если превысить указанные значения, то может произойти необратимый процесс — тепловой пробой и прибор выйдет из строя. Катод и анод: где плюс и минус Хотя у прибора всего два вывода необходимо знать, как определить полярность диода, чтобы не поставить его в обратном направлении? У диода имеется: анод; катод. Слово, переведенное с греческого как анод, может означать вверх или от него. Вакуумные диоды на схемах изображаются в виде вытянутого круга, вверху которого располагается анод в виде перевернутой буквы «Т». Катод располагается внизу и обозначается горизонтальной круглой скобкой с отводом. Электроны отрываются от катода и летят вверх, в сторону анода. Попадая на анод, они выходят во внешнюю цепь «от него». В этом случае анод должен быть подключен к положительному полюсу источника питания, а катод — к отрицательному.

В статье будет подробно рассказано о том, что такое Анод и катод, а также для чего именно они нужны и какие физические законы за ними стоят. В качестве дополнения, настоящая статья имеет два ролика и статью, которую можно скачать по ссылке. Анод и катод Процессы, протекающие при электролизе Электролиз получил широкое распространение в металлургии цветных металлов и в ряде химических производств. Такие металлы, как алюминий, цинк, магний, получают главным образом путем электролиза. Кроме того, электролиз используется для рафинирования очистки меди, никеля, свинца, а также для получения водорода, кислорода, хлора и ряда других химических веществ. Сущность электролиза заключается в выделении из электролита при протекании через электролитическую ванну постоянного тока частиц вещества и осаждении их на погруженных в ванну электродах электроэкстракция или в переносе веществ с одного электрода через электролит на другой электролитическое рафинирование. В обоих случаях цель процессов — получение возможно более чистых незагрязненных примесями веществ. Любой электровакуумный прибор имеет электрод, предназначенный для испускания эмиссии электронов. Этот электрод называется катодом. Электрод, предназначенный для приема эмиттированных катодом электронов, называется анодом. На анод подают более высокий и положительный относительно катода потенциал. В отличие от электронной электропроводности металлов в электролитах растворах солей, кислот и оснований в воде и в некоторых других растворителях, а также в расплавленных соединениях наблюдается ионная электропроводность. Электролиты являются проводниками второго рода. В этих растворах и расплавах имеет место электролитическая диссоциация — распад на положительно и отрицательно заряженные ионы. Химия электролиза. Если в сосуд с электролитом — электролизер поместить электроды, присоединенные к электрическому источнику энергии, то в нем начнет протекать ионный ток, причем положительно заряженные ионы — катионы будут двигаться к катоду это в основном металлы и водород , а отрицательно заряженные ионы — анионы хлор, кислород — к аноду. У анода анионы отдают свой заряд и превращаются в нейтральные частицы, оседающие на электроде. У катода катионы отбирают электроны у электрода и также нейтрализуются, оседая на нем, причем выделяющиеся на электродах газы в виде пузырьков поднимаются кверху. Электрический ток во внешней цепи представляет собой движение электронов от анода к катоду. При этом раствор обедняется, и для поддержания непрерывности процесса электролиза приходится его обогащать. Так осуществляют извлечение тех или иных веществ из электролита электроэкстракцию. Если же анод может растворяться в электролите по мере обеднения последнего, то частицы его, растворяясь в электролите, приобретают положительный заряд и направляются к катоду, на котором осаждаются, тем самым осуществляется перенос материала с анода на катод. Так как при этом процесс ведут так, чтобы содержащиеся в металле анода примеси не переносились на катод, такой процесс называется электролитическим рафинированием. Такой потенциал называется нормальным потенциалом вещества. Если на электрод подать более отрицательный потенциал, то на нем начнется выделение вещества катодный процесс , если же более положительный, то начнется его растворение анодный процесс. Значение нормальных потенциалов зависит от концентрации ионов и температуры. Принято считать нормальный потенциал водорода за нуль.

А ниппелем мы будем называть радиоэлемент — диод. И в этой статье мы познакомимся с ним поближе. Что такое диод Полупроводниковый диод представляет из себя элемент, который пропускает электрический ток только в одном направлении и блокирует его прохождение в другом направлении. Это своеобразный ниппель ;-. Некоторые диоды выглядят почти также как и резисторы: А некоторые выглядят чуточку по другому: Есть также и SMD исполнение диодов: Диод имеет два вывода, как и резистор, но у этих выводов, в отличие от резистора, есть определенные названия — анод и катод а не плюс и минус, как говорят некоторые неграмотные электронщики. Но как же нам определить, что есть что? Есть два способа: 1 на некоторых диодах катод обозначают полоской, отличающейся от цвета корпуса 2 можно проверить диод с помощью мультиметра и узнать, где у него катод, а где анод. Заодно проверить его работоспособность. Этот способ железный ;-. Как проверить диод с помощью мультиметра можно узнать в этой статье. А если же на анод подать минус, а на катод — плюс, то ток через диод не потечет. Своеобразный ниппель ;-. На схемах простой диод обозначают вот таким образом: Где находится анод, а где катод очень легко запомнить, если вспомнить воронку для наливания жидкостей в узкие горлышки бутылок. Воронка очень похожа на схему диода. Наливаем в воронку, и жидкость у нас очень хорошо бежит, а если ее перевернуть, то попробуй налей-ка через узкое горлышко воронки ;-. Характеристики диода Читайте также: Как снять показания счетчика электроэнергии день ночь Для объяснения параметров диода, нам также потребуется его ВАХ 1 Обратное максимальное напряжение Uобр — это такое напряжение диода, которое он выдерживает при подключении в обратном направлении, при этом через него будет протекать ток Iобр — сила тока при обратном подключении диода. При превышении обратного напряжения в диоде возникает так называемый лавинный пробой, в результате этого резко возрастает ток, что может привести к полному тепловому разрушению диода. В нашем исследуемом диоде это напряжение равняется 700 Вольт. В нашем случае это 2 Ампера. В нашем случае максимальная частота диода будет 30 кГц. Если частота будет больше, то наш диод будет работать неправильно. Виды диодов Стабилитроны Стабилитроны представляют из себя те же самые диоды. Даже из названия понятно, чтоб стабилитроны что-то стабилизируют. А стабилизируют они напряжение. Но чтобы стабилитрон выполнял стабилизацию, требуется одно условие. Они должны подключатся противоположно, чем диоды. Анод на минус, а катод на плюс. Странно не правда ли? Но почему так? Давайте разберемся. В Вольт амперной характеристике ВАХ диода используется положительная ветвь — прямое направление, а вот в стабилитроне другая часть ветки ВАХ — обратное направление. Снизу на графике мы видим стабилитрон на 5 Вольт. Сколько бы у нас не изменялась сила тока, мы все равно будем получать 5 Вольт ;-. Круто, не правда ли? Но есть и подводные камни. Сила тока не должны быть больше, чем в описании на диод, иначе он выйдет из строя от высокой температуры — Закон Джоуля-Ленца. Главный параметр стабилитрона — это напряжение стабилизации Uст. Измеряется в Вольтах. На графике вы видите стабилитрон с напряжением стабилизации 5 Вольт. Также есть диапазон силы тока, при котором будет работать стабилитрон — это минимальный и максимальный ток Imin, Imax Выглядят стабилитроны точно также, как и обычные диоды: На схемах обозначаются вот так: Светодиоды Светодиоды — особый класс диодов, которые излучают видимый и невидимый свет. Невидимый свет — это свет в инфракрасном или ультрафиолетовом диапазоне. Но для промышленности все таки большую роль играют светодиоды с видимым светом. Они используются для индикации, оформления вывесок, светящихся баннеров, зданий а также для освещения. Светодиоды имеют такие же параметры, как и любые другие диоды, но обычно их максимальный ток значительно ниже. Предельное обратное напряжение Uобр может достигать 10 Вольт. Максимальный ток Imax будет ограничиваться для простых светодиодов порядка 50 мА. Для осветительных больше. Поэтому при подключении обычного диода нужно вместе с ним последовательно подключать резистор. Резистор можно рассчитать по нехитрой формуле, но в идеале лучше использовать переменный резистор, подобрать нужное свечение, замерять номинал переменного резистора и поставить туда постоянный резистор с таким же номиналом. Лампы освещения из светодиодов потребляют копейки электроэнергии и стоят дешево. Очень большим спросом пользуются светодиодные ленты, состоящие из множества SMD светодиодов. Смотрятся очень красиво. На схемах светодиоды обозначаются так: Не забываем, что светодиоды делятся на индикаторные и осветительные. Индикаторные светодиоды обладают слабым свечением и используются для индикации каких-либо процессов, происходящих в электронной цепи. Для них характерно слабое свечение и малый ток потребления Ну и осветительные светодиоды — это те, которые используются в ваших китайских фонариках, а также в LED-лампах Светодиод — это токовый прибор, то есть для его нормальной работы требуется номинальный ток, а не напряжение.

Что такое анод и катод — простое объяснение

Больше по теме В статьях и заметках на нашем канале частенько проскакивают слова анод и катод. Эти термины пронизываются все технические науки и будут встречаться регулярно. На первый взгляд они должны быть знакомы нам ещё этак класса из 8 школьной программы, но кто же её когда помнит : Давайте раз и навсегда разберемся с тем, что такое анод и что такое катод и когда используются эти термины. Начнем с самого простого. Анод и катод впервые встречаются нам в курсе химии. Катод от греческого "ход вниз", анод от греческого "ход вверх". Главная путаница тут с тем, где плюс, а где минус. Однозначно тут ответить нельзя, так как зависит всё от ситуации. Электрический ток, как нам известно, есть упорядоченное направленное движение частиц.

Если всё сильно упростить и даже немного исказить, что допустимо для общего понимания вопроса , то для существования этого тока нужны сами частицы. Их нужно где-то брать. Берутся они из источника тока.

Зеебеком явления термоэлектричества имела хождение гипотеза о том, что магнетизм Земли обусловлен разностью температур полюсов и экватора, вследствие чего возникают токи вдоль экватора. Она не подтвердилась, но послужила Фарадею в качестве «естественного указателя» при создании новых терминов. Магнетизм Земли имеет такую полярность, как если бы электрический ток шел вдоль экватора по направлению кажущегося движения солнца. Фарадей записывает: «На основании этого представления мы предлагаем назвать ту поверхность, которая направлена на восток — анодом, а ту, которая направлена на запад — катодом». В основе новых терминов лежал древнегреческий язык и в переводе они значили: анод — путь солнца вверх, катод — путь солнца вниз. Мы же рекомендуем пользоваться ими, ибо в них корнем слова является ХОД и, во всяком случае, это напомнит пользователю термина, что без движения тока термин не применим. Для желающего проверить рассуждения создателя термина с помощью других правил, например правила пробочника, сообщаем, что северный магнитный полюс Земли лежит в Антарктиде, возле Южного географического полюса.

В том числе и в зарубежных справочниках и энциклопедиях. Поэтому в электрохимии пользуются другими определениями, более понятными читателю. У них анод — это электрод, где протекают окислительные процессы, а катод — это электрод, где протекают восстановительные процессы. В этой терминологии нет места электронным приборам, но при электротехнической терминологии указать анод радиолампы, например, легко. В него входит электрический ток. Не путать с направлением электронов. Автор статьи: Борис Хасапов.

Поместили два электрода из разных металлов в раствор электролита.

Раствор электролита начал реагировать с каждым из электродов параллельно выполняя транспортную функцию для переноса заряженных частиц от одной пластины к другой пластине. Один электрод восстанавливается, а другой окисляется. Получается электрический ток. Если к этим электродам подключить внешнюю нагрузку, то получится электрическая цепь. Заряд будет "пробегать" по этой внешней нагрузке например по лампочке и появится электрический ток. Ну а катод и анод - это просто заумные названия положительного и отрицательного электрода в такой системе. На аноде происходит окислительная реакция а сам он восстановитель в системе. С него уходят заряженные частицы в цепь.

На катоде происходит восстановительная реакция, а сам он окислитель. В цепи он принимает заряженные частицы. Есть тут и заковырка, куда же без неё : Мало запомнить, что анод - это минус, а катод - это плюс.

Если прибор показывает «бесконечное» сопротивление, то щупы следует поменять местами. Если мультиметр покажет некоторое конечное значение сопротивления, это означает, что прибор подключен с соблюдением полярности, и мы определили, где у светодиода плюс и минус. Есть один важный нюанс. У некоторых стрелочных приборов полярность щупов в режиме измерения напряжения и в режиме омметра не совпадают.

Такой особенностью обладают, например, старые тестеры ТЛ — 4М. Поэтому желательно проверить, нет ли расхождений в полярности тестера в различных режимах измерения с помощью другого прибора или вольтметра постоянного напряжения. Мультиметром можно воспользоваться и для определения полярности. Порядок действий такой же, как при определении плюса и минуса обычного диода. При исправном светодиоде и правильном его подключении он даже может начать светиться. Однако, этот способ определения полярности срабатывает далеко не всегда. Дело в том, что падение напряжения открытого светодиода может составлять 1.

Это значительно больше, чем у обычного полупроводникового диода. Величина падения напряжения зависит от цвета и мощности светоизлучающего диода. Тестеры с низковольтным питанием не имеют на своих зажимах достаточного напряжения для открытия светодиода. Такими приборами измерения выполнить не удастся. Как определить полярность по внешнему виду Существует множество типов корпусов светодиодов. Широко распространены светоизлучающие диоды в цилиндрических корпусах диаметром 3, 5 и более миллиметров. Выпускается много SMD светодиодов для поверхностного монтажа, которые различаются как типом корпуса, так и размерами кристаллов.

Мощные сверхъяркие светодиоды размещаются на теплоотводах и имеют планарные плоские выводы. Опытные специалисты без труда определяют назначение выводов по внешнему виду. Проще всего определять полярность мощных светодиодов. Неплохо дело обстоит со светодиодами в цилиндрических корпусах. У них полярность можно определить по нескольким признакам. Например, внутри корпуса светоизлучающего диода можно рассмотреть два электрода имеющие разную площадь. У катода площадь электрода заметно больше.

Этот электрод является минусом. Еще одним признаком, по которому можно определить катод цилиндрического led, это скос на юбке прибора. У новых выводы имеют различную длину. Более длинный вывод подсказывает, где плюс у светодиода анод. Светодиоды для поверхностного монтажа тоже имеют отличительные признаки назначения выводов. Ключ указывает на минус катод. На корпусах некоторых типов SMD светодиодов наносятся специальные символы позволяющие определить полярность прибора.

Некоторые из них показаны на фото. Для закрепления изложенного материала рекомендуем посмотреть видео о том, как определить визуально где у светодиода плюс, а где минус Определение полярности путем подачи питания Наиболее наглядным способом определения полярности LED является подключение к источнику напряжения. Этот метод позволяет проверить исправность светодиода и определить его полярность.

Похожие новости:

Оцените статью
Добавить комментарий