Нужны ОБЪЯСНЕНИЯ, ПОЧЕМУ минус умножить на минус получается плюс. Это первое впечатление, со временем все минусы -оказываются плюсы. Правило минус на минус дает плюс помогает легко выполнить вычитание двух отрицательных чисел.
Минус на минус даёт нам плюс...
Почему минус на минус даёт плюс? Сохраните себе это видео, чтобы вернуться к нему в любой момент! Например, сегодня от индекса экономических настроений институциональных инвесторов Германии (ZEW) никто ничего хорошего и не ждал: предполагалось, что он понизится с и без того отрицательных апрельских значений минус 2,1 до минус 5,7. Новости. Агрегатор всех онлайн курсов Правда, в 2014 году она вернула ее на положительный уровень, а в 2015-м снова загнала ставку «в минус».
Финансовая сфера
Справедливая математика: разбираемся в тайнах операции «плюс» и «минус» | С просьбой объяснить все «плюсы» и «минусы» майских платежек редактор портала обратился к бухгалтеру центра расчетов с потребителями Алевтине Мальцевой. |
Почему минус на минус даёт плюс? Сохраните себе это видео | Резерв Математик Андрей | Мы сформулируем аксиомы кольца (которые, естественно, похожи на правила действий с целыми числами), а затем докажем, что в любом кольце при умножении минуса на минус получается плюс. |
Математика плюс на плюс: Минус на плюс что дает? | Минус на минус даёт плюс. |
Плюс на минус дает... плюс | Что дает плюс на минус в математике Зачем нужен знак плюс перед минусом в математике и как он влияет на решение выражений. |
Как умножать отрицательные числа
Умножение чисел с одинаковыми знаками Чтобы перемножить два отрицательных числа, надо перемножить их модули. Пример 1. Умножение чисел с разными знаками Чтобы перемножить два числа с разными знаками, надо: 1 перемножить модули этих чисел; 2 перед полученным числом поставить знак минус. Пример 2. Пример 3. Деление чисел с одинаковыми знаками Действует тожк правило, что при умножении положительных или отрицательных чисел.
Так вот, возвращаясь к вашей жизни на берегу океана.
По радио передали сводку, что ветер усилиться в минус три раза. То есть, нам фактически передали два параметра ветер станет в три раза сильнее; ветер сменит направление на противоположное! Вот этот знак минус и указал, что надо "поменять знак" у итогового результата. И что получается в случае двух минусов? Дул ветер со скоростью минус два метра в секунду, со стороны моря отрицательный ветер , он усилиться в три раза и сменит направление! То есть, станет дуть в положительном направлении.
Вот, два минуса и дали нам плюс. А вот объяснение с логической точки зрения. Мама утверждает сыну, что он разбил тарелку. Ответ был отрицательным - сын отвечает, что он не разбивал тарелку. То есть, утверждение мамы было ложным, то есть, отрицательным. А вечером сын сказал, что он наврал.
То есть, произошло отрицание его отрицательного ответа. А значит утверждение о том, что он разбил тарелку, стало положительным.
Что говорят математики? При умножении или делении положительных и отрицательных чисел в результате получается отрицательное число. Что приводит к минусу за минус? Когда мы умножаем или делим, всегда есть плюс.
Что дает плюс за плюс? Все очень просто. Умножение или деление плюса на плюс всегда дает плюс. Минус на минус, плюс на плюс. Надеюсь, вы помните: минус на минус дает плюс, плюс на плюс дает минус. Что скажут математики? Когда вы умножаете и делите положительные или отрицательные числа, результатом будет положительное число.
Если все понятно при умножении и делении двух знаков плюс результат — тот же знак плюс , то ничего не понятно при умножении и делении двух знаков минус. Если два знака плюс дают плюс, то два знака минус логически должны давать минус. Такой большой, жирный минус. Но такого не существует. Математики смотрят на это по-другому. Так почему же минусы становятся плюсами? Уверяю вас, математики интуитивно решили проблему правильного умножения и деления плюса и минуса.
Они написали правила в учебниках, не вдаваясь в излишние подробности. Чтобы правильно ответить на вопрос, нужно понять, что означают знаки плюс и минус в математике. У всего есть две стороны. У всего есть положительная и отрицательная сторона. Давайте не будем брать такую очевидную вещь, как аккумулятор, а поговорим о характере. Каждая черта характера имеет положительный и отрицательный аспект. Примеры умножения отрицательных чисел Пример 1.
Правило плюс на минус. Правило минус на минус. Минус на минус дает плюс правило. Сложение и вычитание с минусом и плюсом. Формулы с минусами и плюсами. Минус на минус математика правило.
Минус на минус плюс математика правила. Минус на минус при сложении. Сложение с минусом и плюсом. Минус на минус дает плюс. Плюс на минус дает. Плюс на плюс дает минус.
Знаки в алгебре плюсы и минусы. Минус и плюс в математике. Минус на минус плюс на минус. Минус на минус плюс на плюс. Знаки в математике плюс на минус. Правило знаков в математике.
Минус на минус плюс минус на плюс минус. Минус на минус плюс на плюс плюс на минус минус на плюс. Минус на минус дает. Правило умножения и деления чисел с разными знаками. Умножение минус на минус. Сложение умножение и деление чисел с разными знаками.
Минус на плюс при сложении. Минус на минус плюс. Миус наминус дает плюс. Минус на мину сдаёт плюс. Деление плюс на минус. Деление минус на минус дает.
При делении минус на плюс дает. При умножении минус на плюс дает. Что даёт минус на плюс при сложении.
Минус на минус дает плюс
Правило минус на минус. Минус на минус дает плюс правило. Сложение и вычитание с минусом и плюсом. Формулы с минусами и плюсами.
Минус на минус математика правило. Минус на минус плюс математика правила. Минус на минус при сложении.
Сложение с минусом и плюсом. Минус на минус дает плюс. Плюс на минус дает.
Плюс на плюс дает минус. Знаки в алгебре плюсы и минусы. Минус и плюс в математике.
Минус на минус плюс на минус. Минус на минус плюс на плюс. Знаки в математике плюс на минус.
Правило знаков в математике. Минус на минус плюс минус на плюс минус. Минус на минус плюс на плюс плюс на минус минус на плюс.
Минус на минус дает. Правило умножения и деления чисел с разными знаками. Умножение минус на минус.
Сложение умножение и деление чисел с разными знаками. Минус на плюс при сложении. Минус на минус плюс.
Миус наминус дает плюс. Минус на мину сдаёт плюс. Деление плюс на минус.
Деление минус на минус дает. При делении минус на плюс дает. При умножении минус на плюс дает.
Что даёт минус на плюс при сложении. Минус и минус дают плюс правила.
Вспоминая о переместительных законах и о свойствах числа 0, можно рассмотреть сумму всех трех чисел: C, V и D. Попробуем выяснить значение V. Для того чтобы понять, почему все же «плюс» на «минус» дает «минус», необходимо разобраться со следующим.
Так, для элемента -C противоположными являются C и - -C , то есть между собой они равны. А это значит, что прибавление произведения 0 х V никак не меняет установленную сумму. Ведь это произведение равняется нулю. Зная все эти аксиомы, можно вывести не только, сколько «плюс» на «минус» дает, но и что получается при умножении отрицательных чисел. Умножение и деление двух чисел со знаком «-» Если не углубляться в математические нюансы, то можно попробовать более простым способом объяснить правила действий с отрицательными числами.
Этот пример объясняет, почему в выражении, где идут два «минуса» подряд, упомянутые знаки следует поменять на «плюс». Теперь разберемся с умножением. Аналогично можно доказать, что и в результате деления двух отрицательных чисел выйдет положительное. Общие математические правила Конечно, такое объяснение не подойдет для школьников младших классов, которые только начинают учить абстрактные отрицательные числа.
Называть фамилии не стану. Кроме одной, которая к категории молодых да ранних не относится. Зачем было приглашать Геннадия Орлова?
Нет, ну правда, зачем? Да, он лучше многих прочих, он разбирается в футболе как виде спорта, он, если можно так сказать применительно к человеку еще из советской школы комментаторов, обладает большим потенциалом. Но так уж сложилась его судьба, что долгие годы он комментировал на местном ТВ только «Зенит». А среда определяет человека, все же. Потому пригласив такого человека на общероссийский уровень, получилось нечто совсем уж невразумительное: как ни пытается Орлов делать вид, что он нейтрален, но годы неприкрытого беления за «Зенит» дают о себе знать, что не вызывает ничего другого, кроме как раздражение. Если оставить за скобками историю с ежегодным дележом эксклюзивных, вроде бы, прав со «Спортом», то могло получиться все на удивление любопытно. Но не получилось.
Новая техника, флеш-интервью, разбивка тура на несколько дней, чтобы можно было посмотреть почти все матчи в прямом эфире, комментатор и корреспондент у бровки поля, ряд матчей в HD — все это здорово, все это шаг вперед... Но вот мы вновь в 2010-м. Далеко за примерами ходить не буду — «Алания» — «Зенит» — первый матч после ЧМ. Что же мы видим? Картинка с двух камер, с трех? Повторы с одного ракурса. Голос Орлова, будто из бункера, но, главное, постоянная потеря связи с корреспондентом на месте, в роли которого был Алексей Андронов.
Орлов спрашивает — Андронов отвечает — телезрители не слышат. Андронов берет интервью у игрока — звука нет. У Спаллетти — вновь ничего не слышно. А картинка из Новосибирка? Господа, при всех сложностях, но это epic fail. Пересвет белого, не видно даже номеров. Квалификация местных корреспондентов тоже зачастую вызывает огромные вопросы.
И веяние последнего времени — в трансляциях чемпионата России в конце некоторых матчей почему-то вовсе отсутствуют повторы хотя бы даже голов. Совершенная дикость какая-то. Иными словами, вновь ощущение того, что энтузиазм был, но давно угас, и теперь РФПЛ для НТВ-Плюс едва ли ни как чемодан без ручки, причем дорого чемодан-то.
Часто приходится и делить одни величины на другие, но здесь результат не всегда выражается натуральным числом — так появились дробные числа. Без вычитания, конечно, тоже не обойтись. Но на практике мы, как правило, вычитаем из большего числа меньшее, и нет нужды использовать отрицательные числа. Этим можно объяснить, почему люди долго не пользовались отрицательными числами. В индийских документах отрицательные числа фигурируют с VII века н. Их применяли для учета долгов или в промежуточных вычислениях для упрощения решения уравнений — это был лишь инструмент для получения положительного ответа. Тот факт, что отрицательные числа, в отличие от положительных, не выражают наличие какой-либо сущности, вызывал сильное недоверие. Люди в прямом смысле слова избегали отрицательных чисел: если у задачи получался отрицательный ответ, считали, что ответа нет вовсе. Это недоверие сохранялось очень долго, и даже Декарт — один из «основателей» современной математики — называл их «ложными» в XVII веке! При таком решении нам даже не встретились отрицательные числа. Что демонстрирует этот нехитрый пример? Во-первых, становится понятна логика, которой определялись правила действий над отрицательными числами: результаты этих действий должны совпадать с ответами, которые получаются другим путем, без отрицательных чисел. Во-вторых, допуская использование отрицательных чисел, мы избавляемся от утомительного если уравнение окажется посложнее, с большим числом слагаемых поиска того пути решения, при котором все действия производятся только над натуральными числами. Более того, мы можем больше не думать каждый раз об осмысленности преобразуемых величин — а это уже шаг в направлении превращения математики в абстрактную науку. Правила действий над отрицательными числами сформировались не сразу, а стали обобщением многочисленных примеров, возникавших при решении прикладных задач. Вообще, развитие математики можно условно разбить на этапы: каждый следующий этап отличается от предыдущего новым уровнем абстракции при изучении объектов. Так, в XIX веке математики поняли, что у целых чисел и многочленов, при всей их внешней непохожести, есть много общего: и те, и другие можно складывать, вычитать и перемножать. Эти операции подчиняются одним и тем же законам — как в случае с числами, так и в случае с многочленами. А вот деление целых чисел друг на друга, чтобы в результате снова получались целые числа, возможно не всегда. То же самое и с многочленами. Потом обнаружились другие совокупности математических объектов, над которыми можно производить такие операции: формальные степенные ряды , непрерывные функции... Наконец, пришло понимание, что если изучить свойства самих операций, то потом результаты можно будет применять ко всем этим совокупностям объектов такой подход характерен для всей современной математики. В итоге появилось новое понятие: кольцо. Это всего-навсего множество элементов плюс действия, которые можно над ними производить. Основополагающими здесь являются как раз правила их называют аксиомами , которым подчиняются действия, а не природа элементов множества вот он, новый уровень абстракции! Желая подчеркнуть, что важна именно структура, которая возникает после введения аксиом, математики говорят: кольцо целых чисел, кольцо многочленов и т. Отталкиваясь от аксиом, можно выводить другие свойства колец. Мы сформулируем аксиомы кольца которые, естественно, похожи на правила действий с целыми числами , а затем докажем, что в любом кольце при умножении минуса на минус получается плюс. Кольцом называется множество с двумя бинарными операциями т. Заметим, что кольца, в самой общей конструкции , не требуют ни перестановочности умножения, ни его обратимости т. Если вводить эти аксиомы, то получаются другие алгебраические структуры, но в них будут верны все теоремы, доказанные для колец. Для этого нам потребуется установить некоторые факты. Сперва докажем, что у каждого элемента может быть только один противоположный. В самом деле, пусть у элемента A есть два противоположных: B и С. Заметим теперь, что и A, и - -A являются противоположными к одному и тому же элементу -A , поэтому они должны быть равны. Значит, это произведение равно нулю. А то, что в кольце ровно один ноль ведь в аксиомах сказано, что такой элемент существует, но ничего не сказано про его единственность! Евгений Епифанов 1 Почему минус один умножить на минус один равно плюс один? Мы сначала постараемся понять это, исходя из истории развития арифметики, а потом ответим на этот вопрос с точки зрения современной математики. Но числа сами по себе довольно бесполезны - нужно уметь с ними обращаться. Сложение наглядно и понятно, к тому же сумма двух натуральных чисел - тоже натуральное число математик сказал бы, что множество натуральных чисел замкнуто относительно операции сложения. Умножение - это, по сути, то же сложение, если мы говорим о натуральных числах. В жизни мы часто совершаем действия, связанные с этими двумя операциями например, делая покупки, мы складываем и умножаем , и странно думать, что наши предки сталкивались с ними реже - сложение и умножение были освоены человечеством очень давно. Часто приходится и делить одни величины на другие, но здесь результат не всегда выражается натуральным числом - так появились дробные числа. Их применяли для учета долгов или в промежуточных вычислениях для упрощения решения уравнений - это был лишь инструмент для получения положительного ответа. Это недоверие сохранялось очень долго, и даже Декарт - один из «основателей» современной математики - называл их «ложными» в XVII веке! Более того, мы можем больше не думать каждый раз об осмысленности преобразуемых величин - а это уже шаг в направлении превращения математики в абстрактную науку. Эти операции подчиняются одним и тем же законам - как в случае с числами, так и в случае с многочленами. Потом обнаружились другие совокупности математических объектов, над которыми можно производить такие операции: формальные степенные ряды, непрерывные функции... Заметим, что кольца, в самой общей конструкции, не требуют ни перестановочности умножения, ни его обратимости т. Заметим теперь, что и A , и — —A являются противоположными к одному и тому же элементу —A , поэтому они должны быть равны. Но для уровня старшекласника-первокурсника. Допустим мы идем вдоль дороги, нас обгоняет машина и начинает удаляться. Время растет - и расстояние до нее растет. Скорость такой машины будем считать положительной, она может быть например 10 метров в секунду. Кстати, а сколько это километров в час?
Каспийский Груз - минус на минус дает плюс
В индийских документах отрицательные числа фигурируют с VII века н. Их применяли для учета долгов или в промежуточных вычислениях для упрощения решения уравнений — это был лишь инструмент для получения положительного ответа. Тот факт, что отрицательные числа, в отличие от положительных, не выражают наличие какой-либо сущности, вызывал сильное недоверие. Люди в прямом смысле слова избегали отрицательных чисел: если у задачи получался отрицательный ответ, считали, что ответа нет вовсе. Это недоверие сохранялось очень долго, и даже Декарт — один из «основателей» современной математики — называл их «ложными» в XVII веке! При таком решении нам даже не встретились отрицательные числа.
Что демонстрирует этот нехитрый пример? Во-первых, становится понятна логика, которой определялись правила действий над отрицательными числами: результаты этих действий должны совпадать с ответами, которые получаются другим путем, без отрицательных чисел. Во-вторых, допуская использование отрицательных чисел, мы избавляемся от утомительного если уравнение окажется посложнее, с большим числом слагаемых поиска того пути решения, при котором все действия производятся только над натуральными числами. Более того, мы можем больше не думать каждый раз об осмысленности преобразуемых величин — а это уже шаг в направлении превращения математики в абстрактную науку. Правила действий над отрицательными числами сформировались не сразу, а стали обобщением многочисленных примеров, возникавших при решении прикладных задач.
Вообще, развитие математики можно условно разбить на этапы: каждый следующий этап отличается от предыдущего новым уровнем абстракции при изучении объектов. Так, в XIX веке математики поняли, что у целых чисел и многочленов, при всей их внешней непохожести, есть много общего: и те, и другие можно складывать, вычитать и перемножать.
Казалось бы мелочь,а если разОБРАться....? Вот тот самый ПРАВильный равносторонний крест,подробнее о кресте.
Один мальчик большой, другой поменьше, размер имеет значение, мелкий дохляк в результате горевал в углу аквариума, а победитель охаживал довольную самочку. Так вот жена моя взяла наглость каждый раз при их битвах тыкать мне о законах природы и мужской конкуренции в отношениях. Мне стало жалко горемыку-дохляка, пошёл я в тот же магазин и купил 2-х самочек, не иначе. Отношения в прайде резко изменились, самочка стала резко недовольна пополнением, за моего дохляка участились даже драки среди самок.
Вместе с тем, ООО «АдвМьюзик» не является владельцем, администратором или хостинг-провайдером сайта, не размещает, и не влияет на размещение на сайте любых авторских произведений и фонограмм. По вопросам, связанным с использованием контента заявленных выше Правообладателей, просьба обращаться на support advmusic.
Правила знаков
Минус на минус даёт плюс | — Когда все узнали об успехе программы «Минус 100» в 2007 году, приходилось слышать мнение, что тот результат достигнут административным ресурсом. |
Почему минус на минус всегда даёт плюс? | Таким образом, правило минус на минус дает плюс можно объяснить с помощью основного принципа отрицательных чисел и свойств умножения. |
Минус на минус дает плюс . НСОТ решили усовершенствовать | Плюс на минус даёт правило. |
Минус На Минус Дает Плюс! | минус на минус дает плюс. |
«Минус на минус» дает плюс
«Минус на минус» дает плюс | Минус на минус, плюс на плюс. Умножение и деление отрицательных или положительных чисел в результате дает положительное число. |
Финансовая сфера | "минус на минус всегда даст нам в результате плюс". |
Правило минус на минус дает | Если к минус движению прибавить минус пищевое воздержание, то в результате получим плюс килограммы. |
Почему минус на минус дает плюс? » ЯУстал - Источник Хорошего Настроения | Готовься к ОГЭ и ЕГЭ по математике вместе со мной: мне, чтобы задать вопрос или записаться на курсы подготовки. |
Финансовая сфера | Минус, умноженный на минус, дает плюс; минус, умноженный на плюс, дает минус; а знаком минуса является усеченный Ψ, перевернутый вверх ногами, таким образом, Λ [с третьей центральной ветвью]. |
Когда минус дает плюс
Когда умножение минус на минус дает плюс, а когда – минус? Лучший ответ: Таня Масян. минус на минус даёт плюс, плюс на плюс даёт плюс, плюс на минус даёт минус. более месяца назад. Новости компании. Почему говорят, что два плюса дают минус? При вычитания двух чисел, в которых оба отрицательные, следует знать правило: минус на минус дает плюс.
Почему «минус на минус даёт плюс»? Простейшие доказательства
Отрицательные числа — это числа со знаком «минус». «Минус» на «минус» дает «плюс» – об этом знают все без исключения. Плюс на минус всегда даёт минус. С просьбой объяснить все «плюсы» и «минусы» майских платежек редактор портала обратился к бухгалтеру центра расчетов с потребителями Алевтине Мальцевой.
.МИНУС на МИНУС даёт ПЛЮС
Пример 1. Умножение чисел с разными знаками Чтобы перемножить два числа с разными знаками, надо: 1 перемножить модули этих чисел; 2 перед полученным числом поставить знак минус. Пример 2. Пример 3. Деление чисел с одинаковыми знаками Действует тожк правило, что при умножении положительных или отрицательных чисел.
Чтобы разделить отрицательное число на отрицательное два отрицательных числа , надо разделить модуль делимого на модуль делителя.
Противоположные числа — это числа, которые отличаются друг от друга знаками. Модули противоположных чисел равны: у положительного числа он равен самому числу, а у отрицательного — противоположному, то есть положительному. Умножение чисел с одинаковыми знаками Чтобы перемножить два отрицательных числа, надо перемножить их модули. Пример 1.
Умножение чисел с разными знаками Чтобы перемножить два числа с разными знаками, надо: 1 перемножить модули этих чисел; 2 перед полученным числом поставить знак минус. Пример 2.
Пусть мёд — это положительные числа, а дёготь — это числа отрицательные. Смотрим на картинки и описываем правила. Если в бочку дёгтя добавить ложку мёда, получится бочка дёгтя. Если в бочку мёда добавить ложку дёгтя, получится бочка дёгтя. Если в бочку дёгтя добавить ложку дёгтя, получится бочка мёда. Если в бочку мёда добавить ложку мёда, получится бочка мёда.
Первых два примера с натяжкой можно принять. Последний пример вообще не вызывает вопросов. А вот с предпоследним примером возникают очень большие проблемы — в жизни такого не бывает. Здесь возможны два варианта: 1. Математики не правильно записали свое правило. Мы не правильно применяем математическое правило. Лично я за второй вариант. Объясню почему.
Математику не только нужно знать, но нею ещё нужно уметь пользоваться. Приведу пример из собственного опыта. Один учитель математики на уроках нам говорил: «математика — это точная наука, два раза соври — получится правда». Это утверждение однажды мне очень пригодилось. Как-то я решал сложную задачу с длинным решением. Я точно знал, какой результат должен быть. Но результат был другим. Я долго искал ошибку в расчетах, но не смог ее найти.
Тогда, за несколько действий до итогового результата, я изменил одно число так, чтобы результат получился правильным. Я в расчетах соврал два раза и получил правильный результат. Математические вычисления в тот раз никто не проверял и я получил хорошую оценку.
Казалось бы мелочь,а если разОБРАться....? Вот тот самый ПРАВильный равносторонний крест,подробнее о кресте.