Та материя, сутью которой являются струны, составляет только 5% массы Вселенной — ее видимая часть. Теория струн основана на идее физики о том, что все известные силы, частицы и взаимодействия могут быть связаны. Теория струн сейчас — это лучшая попытка объединить общую теорию относительности и квантовую механику, поскольку сами струны несут в себе гравитационную силу, а их вибрация является случайной, как и предсказывает квантовая механика. Причина, по которой теория струн является потенциальной теорией всего, заключается в том, что она предсказывает, что все формы материи состоят из струн, и, следовательно, все на самом деле состоит из одного и того же «вещества».
Теория струн и квантовая механика
Теория суперструн кратко и понятно, просто и элегантно объясняет переход длины в массу. Теория струн предположительно решает эту проблему и стремится описать гравитацию в соответствии с принципами квантовой механики, называются теориями квантовой гравитации. Теория струн воспринималась как теория ядерного взаимодействия (в ядре атома удерживаются нейтроны и протоны). Теория струн для чайников, предполагает объединение идей квантовой механики и теории относительности, представляя элементарные частицы, составляющие атом из ультрамикроскопических волокон, называемых струнами. Теория струн предположительно решает эту проблему и стремится описать гравитацию в соответствии с принципами квантовой механики, называются теориями квантовой гравитации.
Теория суперструн кратко и понятно
Антропный принцип в теории струн. Comments Off on Теория струн кратко и понятно. А теория струн может объединить эти две теории, например если сказать что световая волна это и есть струна с набором гармоник, которая и соответствует фотону. Теория струн. Кратко и понятно. В связи с этим видео возникла ассоциация с фразой из Библии о том, что во время Апокалипсиса "небеса свернутся, как свиток". В рамках теории струн получено описание Вселенной с реалистичным значением плотности темной энергии.
Войти на сайт
Он не объединил эти теории полностью, но объединил их в достаточной мере, чтобы делать конкретные космологические предсказания, которые позволяли кое-что в этой самой космологии объяснить. В 1997 году Хокинг уже на пару с Кипом Торном заключил пари на полное издание Британской энциклопедии с Джоном Прескиллом, профессором Калифорнийского технологического института и директором Института квантовой информации. Прескилл утверждал, что информация в черной дыре не исчезает — просто мы не в состоянии расшифровать то, что дыра излучает. В августе 2004 года на Международной конференции по общей теории относительности и космологии в Дублине Хокинг признал правоту Прескилла и предложил примерный механизм излучения информации правда, не принятый до конца научным сообществом. Как бы то ни было, возник вопрос. Квантовая механика требует, чтобы информация сохранялась. Это означает, что излучение дыры должно нести информацию о том, что в нее попало. Однако расчеты Хокинга показали, что излучение дыры имеет тепловой спектр.
Это означает, что дыра излучает как абсолютно черное тело определенной температуры — в частности, это излучение не несет никакой информации о том, что в эту самую дыру упало. Возникает проблема исчезновения информации в черной дыре, которую сам Хокинг считал вовсе не проблемой, а просто законом природы. Мол, так устроена жизнь и информацию можно уничтожить. Потом пришла теория струн. И только совсем недавно, летом 2012 года, когда физики стали разбираться в тонкостях того, что происходит с информацией в черной дыре, как она «вырывается» наружу, они обнаружили, что три факта о черных дырах, которые до последнего времени считались верными, на самом деле противоречат друг другу. Речь идет о представлении горизонта событий черной дыры как гладкого региона пространства, в окрестностях которого ничего особенного, вообще говоря, не происходит; представлении о том, что квантовая механика унитарна то есть, в частности, требует сохранения информации , а также о том, что при достаточно низких энергиях на достаточном удалении от самой дыры применимы методы квантовой теории поля. Как разрешить это противоречие, пока никто не знает.
Это, кстати, заставляет уже многих ученых ставить под сомнение саму теорию струн. Например, тот же Леонард Зюскинд, которого я упоминал выше, в связи с этим парадоксом выдвинул гипотезу, что, мол, теория струн в современном понимании, возможно, не полностью квантует гравитацию. А мы в это верили многие десятилетия. И это здорово, это именно то, что нужно — пусть не реальные эксперименты, а теоретические, но они заставляют ученых пересматривать теорию. Это чем-то напоминает зеркальную симметрию, о которой мы говорили раньше, только это соответствие более кардинальное. Дело в том, что на первый взгляд между этими теориями нет вообще ничего общего, ничего, что даже отдаленно могло бы их связывать. Но дело даже не в том, что две такие разные теории оказываются одним и тем же.
Ее просто нет в уравнениях. А раз нет гравитации, то, значит, нет и проблем с унитарностью — ведь они появляются только в присутствии гравитации. Из этого, например, можно с уверенностью заключить, что всякая квантовая теория гравитации должна быть унитарной. Я даже больше скажу — в ту половину двойственности, которая с гравитацией, можно вписать черную дыру. Но при переходе к суперсимметричной части двойственности черная дыра превращается просто в нагретое скопление частиц. Такой объект, конечно, унитарен. Значит, и черные дыры в теории струн должны быть унитарны и никакая информация никуда не девается.
Кроме таких вот теоретических построений эта двойственность где-нибудь еще используется? Да, конечно. Оказалось, например, что если вам нужно работать с кварк-глюонной плазмой этим, в частности, занимаются физики на Релятивистском коллайдере тяжелых ионов в Нью-Йорке , стандартные методы теории поля не очень помогают — математика оказывается очень сложной. А в теории струн математика, как ни странно, оказывается проще. То есть эта двойственность помогает при помощи теории струн узнать что-то о частицах. Тут, правда, надо сделать замечание. Но она в некотором смысле близка к действительности — эта близость объясняется высокими температурами.
И эта близость позволяет получать результаты, которые остаются верны и на самом деле. В заметке в Quanta Magazine утверждалось, что физикам удалось обнаружить связанный с ней замечательный объект... О, вы говорите про амплитуэдр! Да, про него. Амплитуэдр глазами художника Это очень интересный и важный результат. Дело в том, что может так случиться, что традиционные методы вычислений в квантовой теории поля, разработанные еще самим Ричардом Фейнманом, не оптимальны. Точнее, даже совсем не оптимальны — вычисления можно делать легче и быстрее.
В частности, это может объяснить, почему эти самые вычисления такие сложные — редко когда удается посчитать что-то с точностью выше второго-третьего порядков. Авторы работы про амплитуэдр, по сути, пытаются свести расчеты к вычислению объема некоторой очень сложной, красивой, многомерной фигуры. Как вычислить объем такой фигуры? Нужно поместить ее в подходящую многомерную воду и посмотреть на объем, который она вытолкнет. Но если я разобью эту фигуру на миллион кусков, то измерить тот же объем в миллион раз сложнее — нужно померить объем каждого куска и сложить их. Диаграмма Фейнмана Вполне может оказаться, что диаграммы Фейнмана — это и есть разбиение амплитуэдра на куски и последовательное измерение объема каждого из них. А физики под руководством профессора физики Института перспективных исследований в Принстоне Нима Аркани-Хамеда просто хотят вычислить все вещи скопом.
В заключение не могу не спросить вас о вашей книге и мультимедийном спектакле «Икар на краю времени». Моя книжка, на основе которой поставлен спектакль, — для детей и немного для родителей. Это довольно сильно отличается от того, что я делал раньше. Это переосмысление древнегреческого мифа об Икаре — мальчике, который вопреки предостережениям своего отца подлетел слишком близко к Солнцу. Его крылья, как мы помним, сделанные из перьев и воска, растаяли как отец и говорил , он упал и разбился. В моей книжке у мальчика нет крыльев из воска — у него космический корабль. И летит он не к Солнцу, а к черной дыре.
Он не гибнет, но из-за эффекта замедления времени после возвращения выясняет, что с момента старта прошло 10 тысяч лет. На написание этой книжки меня подтолкнуло вот что. Сам миф об Икаре мне никогда не нравился. Что, по сути, говорит этот миф? Делай то, что тебе говорят старшие, иначе умрешь. Сцена из спектакля «Икар на краю земли» Фото: polymus. Вот, например, «Чарли и шоколадная фабрика» утверждает, что ты не просто умрешь, а умрешь довольно неприятной смертью Надо понимать, что весь этот социальный контроль, весь посыл этой легенды в точности противоположен тому, что должен делать настоящий ученый.
Он-то как раз должен идти против всех, не слушая, что ему говорят. И это путь к изменениям — часто довольно болезненным.
Можно сказать, что это некая "современная таблица Менделеева" - это состав, ингридиенты, из которых состоит Вселенная. Зачем нужны другие частицы - пока непонятно : Весь этот набор назвают "Стандартной моделью". Надо отметить, что в ней все частицы являются точками, не имеющими размеров, их рисуют шариками скорее для красоты.
И удобства. Взаимодействия между частицами описываются "Квантовой теорией поля" и это самая точная, самая фундаментальная, глобальная теория из всех, что есть и она может рассчитать многое. Но уже далеко не всё. Почему всё настроено именно так? С помощью Стандартной модели нельзя объяснить, почему массы, заряды, и другие параметры частиц именно такие.
Почему электроны в 1800 раз тяжелее протона? Почему у нейтрино есть масса - а у глюона нет? Выглядит всё так, как будто кто-то настроил всё на огромном пульте для Вселенной! Да ещё и так точно, что до сих пор всё ничего не развалилось. Что такое чёрные дыры с точки зрения современной науки и какое значение имеет их исследование для понимания Вселенной.
Гравитацию отлично описывает Общая Теория Относительности, ка следствие искривления пространства и времени. Почему бы их, теории, не связать? Оказывается, не получится. Теория относительности и Квантовая теория вообще не совместимы, и во многом даже противоречат друг другу! Так чтогравитация для стандартной модели - та ещё боль.
Стандартная модель не даёт ответа, что такое тёмная материя? Ну и что такое "тёмная энергия"?
Теоретически это происходит потому, что гравитация просачивается в более высокие измерения. Гравитация состоит из нитей с замкнутым контуром, что позволяет ей покидать наше измерение, в отличие от разомкнутых нитей, которые лучше заземлены.
Почему мы не видим всех этих измерений? Потому что они существуют на таком малом уровне, что невидимы для нас, не поддаются обнаружению. Они компактные, укомплектованные таким образом, что воспроизводят физику нашего мира, складываясь в интересные формы Калаби-Яу. Различные формы Калаби-Яу позволяют существовать различным вибрациям струн и совершенно разным вселенным.
Мы даже можем протестировать предполагаемые множественные вселенные. Поскольку мы предполагаем, что гравитация просачивается в более высокие измерения, после столкновения двух частиц должно быть меньше времени, чем до столкновения. Но даже в самых благоприятных условиях тестирование чего-то подобного было бы невероятно трудным, неуловимым. Расчеты теории струн производятся в моделируемых вселенных с 10 или 11 измерениями, где математика работает.
Затем ученые пытаются стереть дополнительные измерения, но пока никто не преуспел в описании нашей вселенной или разработке какого-то эксперимента для доказательства теории. Однако это не значит, что у нас нет никаких применений для теории струн. Математический инструмент, разрабатываемый в рамках исследований теории струн, помогает нам понимать части нашей вселенной.
В 1974 г. Шварц и Джоэль Шерк из французской Высшей технической школы сделали смелое предположение, которое превратило этот кажущийся недостаток в достоинство. Изучив странные моды колебаний струн, напоминающие частицы-переносчики, они поняли, что эти свойства удивительно точно совпадают с предполагаемыми свойствами гипотетической частицы-переносчика гравитационного взаимодействия — гравитона.
Хотя эти «мельчайшие частицы» гравитационного взаимодействия до сих пор так и не удалось обнаружить, теоретики могут уверенно предсказать некоторые фундаментальные свойства, которыми должны обладать эти частицы. Шерк и Шварц обнаружили, что эти характеристики в точности реализуются для некоторых мод колебаний. Основываясь на этом, они предположили, что первое пришествие теории струн закончилось неудачей из-за того, что физики чрезмерно сузили область её применения. Шерк и Шварц объявили, что теория струн — это не просто теория сильного взаимодействия, это квантовая теория, которая, помимо всего прочего, включает гравитацию. В действительности, по воспоминаниям Шварца, «наша работа была проигнорирована всеми». Теория струн потерпела неудачу в своей первоначальной попытке описать сильное взаимодействие, и многим казалось бессмысленным пытаться использовать её для достижения ещё более великих целей.
Последующие, более детальные исследования конца 1970-х и начала 1980-х гг. Создавалось впечатление, что гравитационная сила вновь смогла устоять перед попыткой встроить её в описание мироздания на микроскопическом уровне. Так было до 1984 г. В своей статье, сыгравшей поворотную роль и подытожившей более чем десятилетние интенсивные исследования, которые по большей части были проигнорированы или отвергнуты большинством физиков, Грин и Шварц установили, что незначительное противоречие с квантовой теорией, которым страдала теория струн, может быть разрешено. Более того, они показали, что полученная в результате теория обладает достаточной широтой, чтобы охватить все четыре вида взаимодействий и все виды материи. Весть об этом результате распространилась по всему физическому сообществу: сотни специалистов по физике элементарных частиц прекращали работу над своими проектами, чтобы принять участие в штурме, который казался последней теоретической битвой в многовековом наступлении на глубочайшие основы мироздания.
Я начал работу в аспирантуре Оксфордского университета в октябре 1984 г. Хотя я был восхищён раскрывавшимися передо мной достижениями квантовой теории поля, калибровочной теории и общей теории относительности, среди моих старших коллег-аспирантов было распространено скептическое убеждение, что бо?
Струны Вселенной
- Теория струн. Теория всего / Интересное / Статьи / Еще / Обо всем
- Что такое теория струн простыми словами: объясняем на пальцах
- Что такое теория струн простыми словами: объясняем на пальцах
- Вы точно человек?
Теория струн для чайников
Антропный принцип в теории струн. Важнейшее значение теории струн для физиков, если излагать кратко: она претендует на роль «теории всего», то есть может объединить в одно целое все физические аспекты существования Вселенной. Теория струн расширила симметрию до суперсимметрии, из которой следовало, что моды колебаний струны реализуются парами суперпартнёров, спин которых отличается на.
Мы заколебались: объясняем простым языком теорию струн
С другой стороны, на квантовом уровне ничего абсолютно «пустого» быть не может — в вакууме постоянно возникают и тут же исчезают субатомные частицы. Такое «мелькание» частиц, как полагают, и ответственно за существование «антигравитационной» темной энергии, которая наполняет пустое пространство. В свое время именно Альберт Эйнштейн, до конца жизни так и не принявший парадоксальные принципы квантовой механики которую он сам и предсказал , предположил существование этой формы энергии. Следуя традициям классической греческой философии Аристотеля с ее верой в вечность мира, Эйнштейн отказывался поверить в то, что предсказывала его собственная теория, а именно то, что Вселенная имеет начало. Чтобы «увековечить» мироздание, Эйнштейн даже ввел в свою теорию некую космологическую постоянную, и таким образом описал энергию пустого пространства. К счастью, через несколько лет выяснилось, что Вселенная — вовсе не застывшая форма, что она расширяется. Тогда Эйнштейн отказался от космологической постоянной, назвав ее «величайшим просчетом в своей жизни». Сегодня науке известно — темная энергия все-таки существует, хотя плотность ее намного меньше той, что предполагал Эйнштейн проблема плотности темной энергии, кстати, — одна из величайших загадок современной физики. Но как бы ни была мала величина космологической постоянной, ее вполне достаточно для того, чтобы убедиться в том, что квантовые эффекты в гравитации существуют. Шварц и Грин принялись за их устранение.
И усилия их не прошли даром: ученые сумели устранить некоторые противоречия теории. Меньше чем за год число струнных теоретиков подпрыгнуло до сотен человек. Именно тогда теорию струн наградили титулом Теории Всего. Новая теория, казалось, способна описать все составляющие мироздания. И вот эти составляющие. Каждый атом, как известно, состоит из еще меньших частиц — электронов, которые кружатся вокруг ядра, состоящего из протонов и нейтронов. Протоны и нейтроны, в свою очередь, состоят из еще меньших частиц — кварков. Но теория струн утверждает, что на кварках дело не заканчивается. Кварки состоят из крошечных извивающихся нитей энергии, которые напоминают струны.
Каждая из таких струн невообразимо мала. Мала настолько, что если бы атом был увеличен до размеров Солнечной системы, струна была бы размером с дерево. Так же, как различные колебания струны виолончели создают то, что мы слышим, как разные музыкальные ноты, различные способы моды вибрации струны придают частицам их уникальные свойства — массу, заряд и прочее. Знаете, чем, условно говоря, отличаются протоны в кончике вашего ногтя от пока не открытого гравитона? Только набором крошечных струн, которые их составляют, и тем, как эти струны колеблются. Конечно, все это более чем удивительно. Еще со времен Древней Греции физики привыкли к тому, что все в этом мире состоит из чего-то вроде шаров, крошечных частиц. И вот, не успев привыкнуть к алогичному поведению этих шаров, вытекающему из квантовой механики, им предлагается вовсе оставить парадигму и оперировать какими-то обрезками спагетти… Пятое измерение Хотя многие ученые называют теорию струн триумфом математики, некоторые проблемы у нее все же остаются — прежде всего, отсутствие какой-либо возможности в ближайшее время проверить ее экспериментально. Ни один инструмент в мире, ни существующий, ни способный появиться в перспективе, «увидеть» струны неспособен.
Поэтому некоторые ученые, кстати, даже задаются вопросом: теория струн — это теория физики или философии?.. Правда, видеть струны «воочию» вовсе не обязательно. Для доказательства теории струн требуется, скорее, другое — то, что звучит как научная фантастика — подтверждение существования дополнительных измерений пространства. О чем идет речь? Все мы привыкли к трем измерениям пространства и одному — времени. Но теория струн предсказывает наличие и других — дополнительных — измерений. Но начнем по порядку. На самом деле, идея о существовании других измерений возникла почти сто лет назад. Пришла она в голову никому не известному тогда немецкому математику Теодору Калуца в 1919 году.
Он предположил возможность наличия в нашей Вселенной еще одного измерения, которое мы не видим. Об этой идее узнал Альберт Эйнштейн, и сначала она ему очень понравилась. Позже, однако, он засомневался в ее правильности, и задержал публикацию Калуцы на целых два года. В конечном счете, правда, статья все-таки была опубликована, а дополнительное измерение стало своеобразным увлечением гения физики. Как известно, Эйнштейн показал, что гравитация есть не что иное, как деформация измерений пространства-времени. Калуца предположил, что электромагнетизм тоже может быть рябью. Почему же мы ее не наблюдаем? Калуца нашел ответ на этот вопрос — рябь электромагнетизма может существовать в дополнительном, скрытом измерении. Но где оно?
Фальсифицируемость и проблема ландшафта В 2003 году выяснилось [57] , что существует множество способов свести 10-мерные суперструнные теории к 4-мерной эффективной теории поля. Сама теория струн не давала критерия, с помощью которого можно было бы определить, какой из возможных путей редукции предпочтителен. Каждый из вариантов редукции 10-мерной теории порождает свой 4-мерный мир, который может напоминать, а может и отличаться от наблюдаемого мира. Всю совокупность возможных реализаций низкоэнергетического мира из исходной суперструнной теории называют ландшафтом теории. Оказывается, количество таких вариантов поистине огромно. Считается, что их число составляет как минимум 10100 , вероятнее — около 10500; не исключено, что их вообще бесконечное число [58]. В течение 2005 года неоднократно высказывались предположения [59] , что прогресс в этом направлении может быть связан с включением в эту картину антропного принципа [60] : человек существует именно в такой Вселенной, в которой его существование возможно. Вычислительные проблемы С математической точки зрения ещё одна проблема состоит в том, что, как и квантовая теория поля , большая часть теории струн всё ещё формулируется пертурбативно в терминах теории возмущений [61]. Несмотря на то, что непертурбативные методы достигли за последнее время значительного прогресса, полной непертурбативной формулировки теории до сих пор нет.
Данный результат, по всей видимости, заставит пересмотреть внешние параметры струнных теорий [63] [64] [65]. Текущие исследования Изучение свойств чёрных дыр В 1996 г. В этой работе Строминджеру и Вафе удалось использовать теорию струн для нахождения микроскопических компонентов определённого класса чёрных дыр [66] , а также для точного вычисления вкладов этих компонентов в энтропию. Работа была основана на применении нового метода, частично выходящего за рамки теории возмущений , которую использовали в 1980-х и в начале 1990-х гг. Результат работы в точности совпадал с предсказаниями Бекенштейна и Хокинга, сделанными более чем за двадцать лет до этого. Реальным процессам образования чёрных дыр Строминджер и Вафа противопоставили конструктивный подход [2]. Суть в том, что они изменили точку зрения на образование чёрных дыр, показав, что их можно конструировать путём кропотливой сборки в один механизм точного набора бран , открытых во время второй суперструнной революции. Строминджер и Вафа смогли вычислить число перестановок микроскопических компонентов чёрной дыры, при которых общие наблюдаемые характеристики, например масса и заряд , остаются неизменными. Тогда энтропия этого состояния по определению равна логарифму полученного числа — числа возможных микросостояний термодинамической системы.
Затем они сравнили результат с площадью горизонта событий чёрной дыры — эта площадь пропорциональна энтропии чёрной дыры, как предсказано Бекенштейном и Хокингом на основе классического понимания [2] , — и получили идеальное согласие [67]. По крайней мере, для класса экстремальных чёрных дыр Строминджеру и Вафе удалось найти приложение теории струн для анализа микроскопических компонентов и точного вычисления соответствующей энтропии. Это открытие оказалось важным и убедительным аргументом в поддержку теории струн. Разработка теории струн до сих пор остаётся слишком грубой для прямого и точного сравнения с экспериментальными результатами, например, с результатами измерений масс кварков или электрона. Теория струн, тем не менее, даёт первое фундаментальное обоснование давно открытого свойства чёрных дыр, невозможность объяснения которого многие годы тормозила исследования физиков, работавших с традиционными теориями. Даже Шелдон Глэшоу , Нобелевский лауреат по физике и убеждённый противник теории струн в 1980-е гг. Данный подход впервые использован в работах Габриэле Венециано [68] , который показал, каким образом инфляционная модель Вселенной может быть получена из теории суперструн. Инфляционная космология предполагает существование некоторого скалярного поля , индуцирующего инфляционное расширение.
Ладно, пусть регистрируют. А может это и зарегистрировал LIGO? А мы все это свалили на гравитацию. Есть еще 5 примеров возможных предсказаний. Брайан полагает, что если бы эксперимент показал, что масса нейтрино отлична от нуля, то теория струн могла бы это объяснить, чего не может сделать другая теория, в частности стандартная модель. Группа квантов объединяется в фотон. И таких фотонов с различным количеством квантов, то есть с различной энергией, множество, в том числе это и световые фотоны. А Столетов экспериментально доказал, что свет давит. Значит, фотоны света передают измерительному органу свой импульс, а это значит, что фотоны света обладают массой и эта масса создается неимоверным количеством квантов, составляющих эти фотоны. Это не замысловатое рассуждение косвенно и подтверждает то, что масса нейтрино отлична от нулевой величины. Протон , также, как и позитрон , это тоже свернутый длиннющий положительный электрический фотон, и он тоже может, как и всякая частица, излучать и поглощать часть своего тела. В результате излучения, если хотите, назовите это распадом, может получиться протон с меньшей массой и зарядом и фотон соответствующей энергии. Или может получиться протон с меньшими параметрами и позитрон. Или какие-нибудь комбинации данного количества энергии. Фотон, излученный протоном, аннигилирует или скроется с соответствующим отрицательным электрическим фотоном той или иной поляризации. Благо их полно в нашем окружении. Все дело в том, что период спонтанного распада протона очень большой, где-то 1031 лет, поэтому никак не удается это обнаружить. А чтобы получить вынужденный индуцированный распад протона у нас нет соответствующего положительного поля. У нас все отрицательное, в любом атоме сверху торчат электроны. По этой же причине время распада антипротона в нашем мире значительно меньше.
Ускорители частиц 1950-х и 60-х годов в изобилии производили адроны. Физики изобрели множество различных моделей для описания структуры спинов и масс этих сильно взаимодействующих частиц состоящих из кварков. Итальянский физик-теоретик Габриэле Венециано сыграл главную роль в разработке этих ранних моделей. Он сформулировал основы теории струн в 1968 году, когда обнаружил, что крошечные струны могут описывать взаимодействия адронов. Он также опубликовал статью в 1991 году, в которой описывается, как инфляционная космологическая модель может быть получена из теории струн. Сегодня, благодаря совместным усилиям многих исследователей, теория струн превратилась в широкую и разнообразную тему, связанную с чистой математикой, космологией, физикой конденсированного состояния и квантовой гравитацией. Является ли теория струн теорией всего? Ну, быстрый ответ - нет. Теория Всего - это гипотетическая основа физики, которая полностью описывает и связывает воедино все физические аспекты вселенной. Для достижения этой цели теория струн стала многообещающим кандидатом в Теорию Всего. До сих пор он успешно объяснил многие сложные явления, в том числе черные дыры , которые требуют как квантовой механики, так и общей теории относительности для их изучения. Согласно теории струн, все четыре фундаментальные силы когда-то были единой фундаментальной силой в начале вселенной - через 10—43 секунды после Большого взрыва. Это также дало новые идеи в отношении кварк-глюонной плазмы и дал много результатов, некоторые из которых могут показаться непонятными или абсурдными. Например, теория струн допускает около 10500 вселенных или обширную мультивселенную. Это одна из причин, она столкнулась с многочисленными неудачами в прошлом. Почему теория струн важна? Хотя теория струн до сих пор не дала каких-либо проверяемых экспериментальных предсказаний, математика в теории струн сработала. И именно поэтому это чрезвычайно полезно. За последние несколько десятилетий теория струн предложила несколько убедительных и достоверных решений. В нем есть вдохновил всю область исследований суперсимметрии, помог нам понять энтропию черной дыры, вдохновили новые подходы к традиционным вычислениям в квантовой теории поля. Так что, может быть, история теории струн - это не теория всего, но, конечно, это не отдельная совокупность исследований, проводимых в каком-то неясном уголке науки.
Теория струн кратко и понятно
Вместе теория относительности и квантовая механика могут объяснить очень большое и очень маленькое. Однако, несмотря на то, что обе поддерживают все, что мы знаем о вселенной, теория относительности и квантовая механика плохо работают вместе. На самом деле ученые не смогли объединить две теории в единую теорию всего. Объединение двух столпов физики в одно целое может показаться не слишком важным. Ведь по отдельности теория относительности и квантовая механика могут объяснить большую часть Вселенной. Однако наличие двух отдельных законов, управляющих вселенной, имеет свои проблемы. Например, представьте, что есть два типа улиц, и тип определяет правила движения.
Некоторые улицы имеют тот или иной тип, поэтому правила довольно просты.
Они свободно отделяются от бранов и плавно перетекают в другие измерения; На бранах локализованных также электромагнитные, ядерные и слабые взаимодействия; Наиболее важной разновидностью являются D-браны. На их поверхности крепятся конечные точки открытой струны в тот момент, когда она проходит сквозь пространство. Критические замечания Как и всякая научная революция, эта пробивается сквозь тернии непонимания и критики со стороны адептов традиционных взглядов. Среди наиболее часто высказываемых замечаний: Введение дополнительных измерений пространства-времени создает гипотетическую возможность существования огромного количества вселенных. По словам математика Питера Вольта, это приводит к невозможности предсказания любых процессов или явлений. Всякий эксперимент запускает большое количество различных сценариев, которые могут быть интерпретированы различными способами; Отсутствует возможность подтверждения. Современный уровень развития техники не позволяет экспериментально подтвердить или опровергнуть кабинетные исследования; Последние наблюдения за астрономическими объектами не волне укладываются в положения теории, что заставляет ученых пересматривать некоторые свои выводы; Ряд физиков высказывают мнение, что концепция является спекулятивной и тормозит развитие других фундаментальных представлений. Пожалуй, легче доказать теорему Ферма, чем простыми словами разъяснить положения теории струн. Математический аппарат ее столь обширен, что понять ее под силу лишь маститым ученым из крупнейших НИИ.
До сих пор не ясно, найдут ли реальное применение сделанные за последние десятки лет на кончике пера открытия.
Не ломайте голову, все равно у вас ничего не получится. Вы будете видеть его таким же двумерным, но с очень и очень странными свойствами. Потому что вместе с его перемещением в пространстве и времени вы не только обнаружите его объем, но и другие свойства, которые, плюс ко всему, будут постоянно меняться. Сейчас вернемся к теории струн и попробуем вообразить себе объект, имеющий 10 измерений. Шучу, не будем мы это делать. Потому что, думаю, уже и так всем понятно, что это бессмысленно и бесполезно.
Этот объект по сути должен существовать везде и нигде, всегда и никогда. Наш мозг попросту не способен этого представить. Нечто подобное было описано в одном псевдонаучном фантастическом фильме под названием «Господин Никто». Там также затрагивается теория струн, и в очень киношной форме представляется то, каково это, жить сразу во всех десяти измерениях. В общем и целом, кино нудное, местами непонятное и не для всех. Но для базового, немного упрощенного и приукрашенного ознакомления с теорией струн сойдет. Все же знакомы со схематическими изображениями, на которых массивные небесные тела искривляют пространство вокруг себя под действием гравитации?
Так вот искривляется не только пространство, но и время. Это сильно влияет на то, как идет время в космосе , можете почитать. Но сейчас не об этом. Сейчас вопрос стоит в том, куда именно гравитация искривляет пространство-время? Ответа на этот вопрос мы дать не можем, так как ни одним из существующих измерений описать этот процесс невозможно. Время С трехмерным пространством более ли менее разобрались, но не будем забывать и про время — четвертое измерение. Ведь нам же мало знать, «где».
Для жизни в нашем мире обязательно нужно еще и «когда». Так как время — это тоже координата, то всю временную линию можно описать как луч. Вспоминайте школьный курс математики, что такое луч? Это линия, имеющая начало, но не имеющая конца. Время движется только вперед, и никак иначе. Реально лишь настоящее, и ни будущего, ни прошлого по сути вообще не существует. Однако теория относительности может с этим поспорить.
Она говорит о том, что время — такое же измерение, как и остальные три. А значит, все, что было, есть и будет, одинаково реально. Все относительно и зависит лишь от нашего восприятия. С точки зрения времени, человечество выглядит как-то так: Однако мы видим лишь определенную проекцию времени, небольшой его отрезок. И в каждый отдельный момент он будет различным. Чувствуете, где-то мы уже видели один и тот же объект по-разному в зависимости от его положения? То самое брокколи в МРТ.
Даже теория струн придерживается того, что временное измерение только одно. Все остальные пространственные. Но почему пространство такое гибкое, а время лишь одно? Ответа на этот вопрос сейчас нет. Вы уже и сами поняли, как трудно представить несколько лишних пространственных измерений, поэтому даже подумать сложно, как могут ощущаться несколько временных. Некоторые ученые, как, например, Ицхак Барс, американский астрофизик, считают, что главной проблемой несостыковок в теории суперструн является как раз-таки игнорирование нескольких временных измерений. Давайте устроим себе разминку для ума и попробуем представить хотя бы два времени.
После нескольких страниц мозговыносящего текста устраивать разминку для ума будет сложно, понимаю, но это интересно. Оба временных измерения должны существовать отдельно друг от друга. Таким образом, если поменять положение объекта в одной из размерностей, его координаты в другой вполне могут остаться неизменными. То есть, если одно временное измерение пересечется с другим в определенной точке, то время в ней остановится вовсе. Наглядную картину этого показывает нам Нео из матрицы: По сути наш избранный просто поставил временную ось своей ладони перпендикулярно такой же оси летящих пуль.
Более того, даже идеи, возникающие при создании нового формализма при его разработке, могут в итоге оказаться ошибочными и отброшенными как ложные. В лучшем случае их приходится модифицировать, а в худшем заменять на нечто, вообще ранее не предвиденное. Наличие такого рода критериев и определяет ценность этой теории в плане постановки новых физических и математических задач, указывая возможные пути их решения [1, 3]. Возникновение и использование теории струн, в широком смысле этих терминов, связано с необходимостью решения широкого круга задач, возникающих с завидным постоянством в самых различных областях современной физики и пониманием того, что от решения этих задач вряд ли возможно уйти. Попробуем выделить классы этих задач, избегая при этом излишней детализации и понимая, что такое разделение проблем на самом деле является довольно поверхностным и условным и никоим образом не претендует на какую бы то ни было общность.
Теория сильной связи и вообще теория нелинейных явлений В настоящее время для обозначения всего, что связано с нелинейными процессами используется термин синергетика. По своим целям синергетика и теория струн весьма близки, но последняя отличается от первой более конкретными методами анализа, за что приходится платить меньшей универсальностью. Но при этом потеря универсальности приводит к более точным предсказанием развития процессов в изучаемом явлении. Методы теории струн позволяют довольно эффективно выделять различного рода симметрии процесса, очень часто являющиеся внутренними для изучаемой физической системы и далеко не очевидными на первый взгляд. Выделение подобных симметрий и их использование в дальнейшем, позволяет довольно эффективно описывать нелинейные системы. Струнный подход к описанию нелинейных систем исходит из кардинальной переформулировки исходной задачи в терминах, характерных для струнной теории. В этом смысле, от теории струн следует ожидать создание теории классов универсальности, фрагментами которой являются такие теории, как теория катастроф и теория фазовых переходов. Последняя из этих теорий, а точнее, задача о классификации фазовых переходов в 2- и 3-мерных системах, привела к созданию двух важнейших разделов струнной теории: двумерные конформные модели, например, известная специалистам сигма-модель в магнетизме, и исчисление случайных поверхностей. Теория систем со многими фазами и межфазовыми флуктуациями Этот круг проблем напрямую связан с предыдущими проблемами. В самом деле, системы со многими фазами и множественными случайными переходами из одной фазы в другую являются характерным примером систем с сильными по интенсивности взаимодействиями.
Эти системы могут быть удовлетворительно описаны, если мы знаем или хотя бы догадываемся, как найти такую точку зрения, с которой она выглядит как слабовзаимодействующая. Однако и тут изменение параметров системы снова может снова превратить слабо нелинейную систему в сильно нелинейную. Тогда необходимо искать новый подход в описании системы, возвращающий ее в исходное состояние. Такая смена подходов в описании и является основным содержанием учения о фазовых состояниях и фазовых переходах. Традиционные разделы физики, посвященные этому предмету, ограничиваются простейшими случаями, когда имеется мало различных фазовых состояний и переходы между ними представляются довольно отчетливыми. Однако, в последнее время все больший интерес представляют собой системы, в которых это далеко не так. Открыты физические системы, в которых число различных фаз неограничено и, более того, существенны процессы перехода одной фазы в другую. Понятно, что описание таких систем должно строиться из каких-то иных, нетрадиционных соображений. Наиболее известные из таких систем — спиновые стекла системы хаотически ориентированных спинов и нейронные сети. Струнный подход к описанию таких систем основан на упомянутой выше переформулировке возникающей задачи в новых терминах, сглаживающих такие существенные различия между различными фазами и уравнениями, как число переменных, порядок и число уравнений и даже размерность пространства, в котором они записаны.
Но тут сразу следует указать, что практического применения открывающихся в этом направлении возможностей пока дело не дошло. Изучение этих возможностей находится на начальной стадии развития. Объединение фундаментальных взаимодействий Эта проблема заслуживает отдельного рассмотрения, вследствие своей особой роли в естествознании. И тем более, ее нельзя обойти, поскольку создание единой теории всех фундаментальных взаимодействий — самый амбициозный проект, связанный со струнами, у истоков которого стоял Альберт Эйнштейн. Фактически имеется целых два проекта, а не один, которые не исключают, а скорее дополняют друг друга.
Теория струн, Мультивселенная
Есиро Намбу развил эту идею и описал ядерные силы как вибрационные одномерные струны; 1974—1994 гг. Открытие суперструн, во многом благодаря работам российского ученого Александра Полякова; 1994—2003 гг. Появление М-теории, допустила большее, чем 11, количество измерений; 2003 — н. Майкл Дуглас разработал ландшафтную теорию струн с понятием ложного вакуума. Теория квантовых струн Ключевыми объектами в новой научной парадигме являются тончайшие объекты, которые своими колебательными движениями сообщают массу и заряд всякой элементарной частице. Основные свойства струн согласно современным представлениям: Длина их чрезвычайно мала — около 10-35 метров.
В подобном масштабе становятся различимы квантовые взаимодействия; Однако в обыкновенных лабораторных условиях, которые не имеют дела с такими мелкими объектами, струна абсолютно неотличима от безразмерного точечного объекта; Важной характеристикой струнного объекта является ориентация. Струны, обладающие ей, имеют пару с противоположным направлением. Существуют также неориентированные экземпляры. Струны могут существовать как в виде отрезка, ограниченного с обоих концов, так и в виде замкнутой петли.
Это делает ее трудно доступной для понимания и применения в практических расчетах. Кроме того, квантовая теория струн страдает от проблемы отсутствия экспериментального подтверждения. В настоящее время нет прямых экспериментальных данных, которые могли бы подтвердить или опровергнуть предсказания теории струн. Это ограничивает ее статус как научной теории и вызывает сомнения в ее достоверности. Альтернативные модели и гипотезы Существуют альтернативные модели и гипотезы, которые предлагают альтернативные подходы к объединению гравитации и квантовой механики. Некоторые из них включают: Петлевая квантовая гравитация: Это альтернативная теория, которая основана на квантовании гравитационного поля в терминах петель. Она предлагает другой математический формализм и подход к описанию гравитации, который может быть более фундаментальным и ближе к экспериментальным данным. Теория супергравитации: Это теория, которая объединяет гравитацию и суперсимметрию. Она предлагает другой подход к объединению фундаментальных взаимодействий и может быть более простой и понятной, чем квантовая теория струн. Нелокальные теории: Это класс теорий, которые предлагают изменить принцип локальности, который является основой квантовой теории струн. В нелокальных теориях взаимодействия могут распространяться на большие расстояния и быть связаны с неклассическими эффектами. Эти альтернативные модели и гипотезы предлагают другие подходы к объединению гравитации и квантовой механики и могут быть объектом дальнейших исследований и экспериментов. Дискуссии и перспективы развития будущих теорий Дискуссии и дебаты вокруг квантовой теории струн и ее альтернативных подходов продолжаются в научном сообществе. Ученые исследуют различные аспекты и проблемы теории струн, а также альтернативные модели и гипотезы. Будущие теории могут включать в себя комбинацию различных подходов и идей, а также новые математические и физические концепции. Они могут предложить новые предсказания, которые могут быть проверены экспериментально и привести к новым открытиям и пониманию фундаментальных взаимодействий и структуры Вселенной. Заключение Квантовая теория струн представляет собой уникальный и амбициозный подход к объединению гравитации и квантовой механики. Она предлагает новый математический формализм и концепции, которые могут пролить свет на фундаментальные взаимодействия и структуру Вселенной. Несмотря на свою сложность и ограничения, квантовая теория струн имеет большой потенциал для дальнейших исследований и развития. Она может помочь нам лучше понять природу гравитации, создать единое поле физики элементарных частиц и раскрыть новые аспекты Вселенной. Однако, критика и альтернативные подходы также играют важную роль в развитии науки. Альтернативные модели и гипотезы предлагают другие пути и идеи для объединения гравитации и квантовой механики, и могут привести к новым открытиям и пониманию фундаментальных взаимодействий. В целом, квантовая теория струн и ее альтернативные подходы представляют собой захватывающую область исследований, которая продолжает привлекать внимание ученых и исследователей. Будущие исследования и эксперименты могут привести к новым откры Квантовая теория струн обновлено: 28 августа, 2023 автором: Научные Статьи. Ру Нашли ошибку? Сертифицированный копирайтер , автор текстов для публичных выступлений и презентаций. Количество оценок: 0 Поставьте вашу оценку Сожалеем, что вы поставили низкую оценку!
Майкл Дуглас разработал ландшафтную теорию струн с понятием ложного вакуума. Теория квантовых струн Ключевыми объектами в новой научной парадигме являются тончайшие объекты, которые своими колебательными движениями сообщают массу и заряд всякой элементарной частице. Основные свойства струн согласно современным представлениям: Длина их чрезвычайно мала — около 10-35 метров. В подобном масштабе становятся различимы квантовые взаимодействия; Однако в обыкновенных лабораторных условиях, которые не имеют дела с такими мелкими объектами, струна абсолютно неотличима от безразмерного точечного объекта; Важной характеристикой струнного объекта является ориентация. Струны, обладающие ей, имеют пару с противоположным направлением. Существуют также неориентированные экземпляры. Струны могут существовать как в виде отрезка, ограниченного с обоих концов, так и в виде замкнутой петли. Причем возможны такие превращения: Отрезок или петля могут «размножиться», дав начало паре соответствующих объектов; Отрезок дает начало петле, если часть его «закольцуется»; Петля разрывается и становится открытой струной; Два отрезка обмениваются сегментами. Прочие фундаментальные объекты В 1995 году оказалось, что не одни только одномерные объекты являются кирпичиками нашего мироздания. Было предсказано существование необычных формаций — бранов — в виде цилиндра или объемного кольца, которые имеют такие особенности: Они в несколько миллиардов раз меньше атомов; Могут распространяться через пространство и время, имеют массу и заряд; В нашей Вселенной они представляют собой трехмерные объекты.
Макроскопический — вещество. Атомный — протоны, нейтроны и электроны. Субатомный — электрон. Субатомный — кварки. Струнный От пяти теорий к одной Теория струн оказалась крепким орешком даже для самых высоколобых ученых. В 1970-е и 1980-е теория струн была очень популярна. За нее брались разные ученые, и в результате родилось несколько разновидностей. Одни авторы придумали гипотетическую частицу — тахион, которая якобы двигается в вакууме быстрее скорости света. Другие изобрели суперсимметрию, предположив, что у всех известных элементарных частиц есть суперпартнеры, что фермионы и бозоны в природе связаны. Третьи попытались гипотетически подсчитать, сколько измерений может быть у Вселенной и как они могут быть свернуты. Дело в том, что теория струн сама по себе требует, чтобы Вселенная, кроме трех привычных пространственных измерений и одного временного, имела еще как минимум шесть. Поэтому во многих вариантах фигурировало десять измерений, а потом пришлось ввести еще одно, чтобы объединить все пять теорий струн в единую М-теорию, где заглавная М означает «мистическая, материнская, мембранная, матричная». Сделал это обобщение американский физик-теоретик Эдвард Виттен. Он, к слову, до сих пор жив и здоров, как и начавший собирать этот научный пазл Габриеле Венециано.
Обнаружено новое доказательство теории струн
одна из наиболее восхитительных и глубоких теорий в современной теоретической физике. И тут теория струн очень сильно пригодилась, связала все между собой, а через десятки лет ее постигла участь предшественников. Comments Off on Теория струн кратко и понятно. Теория струн кратко и струн — это одна из революционных и самых противоречивых теорий в физике, целью которой является объединение всех частиц и фундаментальных сил природы в единую тео. Теория струн, имеет все шансы разрешить главный спор в физике XX века – включить гравитационное взаимодействие в Стандартную модель. Теория струн позволила устранить эту проблему, хотя они и не опирается на теорию поля.
Историческая справка
- Где почитать о теории струн?
- Теория струн
- Теория струн кратко и понятно
- Предсказания теории струн.
- Теория струн (теория всего). Кратко и понятно.
Читайте также
- Мы заколебались: объясняем простым языком теорию струн
- Обнаружено новое доказательство теории струн
- Суть теории струн
- Теория струн: кратко и понятно, доступно с фото и видео. Основные концепции и понятия теории.
Теория струн, или Теория всего
Все известные нам частицы и переносчики взаимодействий — колебательные моды с наименьшей энергией. Хотя число различных колебательных мод бесконечно, лишь немногим из них соответствуют малые массы и заряды. Остальные должны иметь гигантские массы порядка 10-5 грамм — это огромная величина в масштабах микромира! На наших ускорителях родить таких гигантов мы еще долго не сможем. Но они рождались на ранних стадиях Вселенной , когда энергия была в избытке. Теория струн естественно включает в себя и гравитацию с ее гипотетическим переносчиком — гравитоном. Вместо четырех фундаментальных взаимодействий она предлагает единое взаимодействие струн. Простейшее струнное взаимодействие — это разрыв и слияние струн.
Объединение двух столпов физики в одно целое может показаться не слишком важным. Ведь по отдельности теория относительности и квантовая механика могут объяснить большую часть Вселенной. Однако наличие двух отдельных законов, управляющих вселенной, имеет свои проблемы. Например, представьте, что есть два типа улиц, и тип определяет правила движения.
Некоторые улицы имеют тот или иной тип, поэтому правила довольно просты. Однако другие улицы подходят под определение обоих типов, так какие правила применяются к ним? Как и наличие двух совершенно разных правил дорожного движения, невозможность объединить квантовую механику и теорию относительности создает хаос при попытке понять нашу вселенную. Интересно, что существует несколько потенциальных теорий, объединяющих два столпа физики, самой известной из которых является теория струн.
Динамических принципов, позволяющих выбрать из этих фаз одну, отвечающую нашему миру, пока не найдено, поэтому модель часто соединяют с Мультиленной и апеллируют к антропному принципу. Потребности развития методов теории струн вызвали прогресс в традиционных разделах математики от алгебраической геометрии до теории чисел , от теории узлов до теории групп и породили новые парадигмы от квантовой геометрии до голографического принципа. Теория струн позволила чётко поставить задачу и обеспечила понимание чёрных дыр , ведущее к созданию квантовой теории информации. Опубликовано 10 октября 2023 г. Последнее обновление 10 октября 2023 г.
Связаться с редакцией.
Теория струн описывает их как протяженные объекты — некие струны, подобные тончайшим волокнам или лентам. Их размеры — масштаба планковской длины, то есть порядка 10-35 м. Все струны одинаковы, а все наблюдаемые частицы и кванты полей суть различные типы колебаний этих струн. Струна принципиально не может иметь размер меньше планковской длины. В теории точечных частиц физики привыкли, что чем больше энергия частицы, тем в меньшей области пространства частица может быть локализована. Совсем иное дело со струнами: дополнительная энергия приводит не к уменьшению, а к увеличению размера струны. Поэтому расстояние, которое меньше планковской длины, принципиально недостижимо.
Струны бывают открытыми и замкнутыми.