Эффективность термопасты для процессора. MassChester87.
Почему КПТ-8 отличная термопаста.
Кремнийорганическая термопаста КПТ-8 Эта термопаста – живая легенда. Из опубликованной информации в СМИ об термопасте КПТ-19 известно лишь то, что там больше металлических частиц по сравнению с предшественником. термопаста КПТ-8, 8гр-1шт. В нетбуке уже была нанесена термопаста, поэтому я его вскрыл, тщательно всё очистил от остатков старой и нанёс свежую КПТ-8.
Для чего термопаста нужна на самом деле, как и когда её нужно менять
Тестирование термопаст с высоким показателем теплопроводности. 280 Вт, Core i9 и куча паст | Смотрите онлайн видео «ТЕСТ ТЕРМОПАСТ (КПТ 8 vs MX4 vs GD900)» на канале «MAXPOWER TV» в хорошем качестве, опубликованное 17 ноября 2018 г. 7:35 длительностью 00:12:11 на видеохостинге RUTUBE. |
Какую термопасту выбрать для процессора - Hi-Tech | Термопаста 250г КПТ-8 теплопроводность 0,65 Вт/мК фото. |
Тестирование термопаст с высоким показателем теплопроводности. 280 Вт, Core i9 и куча паст
Термопаста КПТ-8 – это хорошо известный, проверенный способ избавить ваш процессор от перегрева. Рассмотрены виды термопаст, составлен рейтинг термопаст по теплопроводности, указана их вязкость, цвет и производитель. Смотрите онлайн видео «ТЕСТ ТЕРМОПАСТ (КПТ 8 vs MX4 vs GD900)» на канале «MAXPOWER TV» в хорошем качестве, опубликованное 17 ноября 2018 г. 7:35 длительностью 00:12:11 на видеохостинге RUTUBE.
Какая термопаста лучше КПТ-8 или КПТ-19: сравнение и выбор
Электрическая прочность показывает минимальную напряжённость электрического поля , при которой наступает электрический пробой. Плотность Термопаста должна соответствовать плотности, которая не позволит ей просачиваться в окружающую среду и равномерно распределится по поверхности, обеспечивая полное покрытие. Лучшая термопаста. Чтобы выбрать лучшую термопасту , необходимо учитывать три основных фактора: теплопроводность, электропроводность и плотность. Термопасты на основе кремния универсальны.
Методика и результаты тестирования Даже энтузиасты, самостоятельно собирающие компьютеры, редко обращают внимание на марку термопасты и зачастую используют ту, что идет в комплекте с кулером или есть под рукой. Но все ли термопасты одинаково эффективны? Мы постараемся ответить на этот вопрос и по результатам тестирования выберем лучшую термопасту из тех, что можно купить в магазине. Теоретические основы Прежде чем рассматривать результаты тестирования, давайте разберемся с теорией и выясним, зачем вообще нужна термопаста. Сначала напомним читателям общие сведения из курса теплофизики. В данном выражении знак «минус» указывает на то, что теплота передается от более горячих тел к менее горячим, то есть градиент температуры отрицателен.
Количество теплоты, прошедшее в единицу времени через единицу изотермической поверхности, называется плотностью теплового потока: Таким образом, плотность теплового потока прямо пропорциональна градиенту температуры. А теперь попытаемся применить приведенные ранее уравнения к системе «процессор — радиатор кулера». Однако поверхности крышки процессора и подошва радиатора не идеально гладкие. При соприкосновении этих поверхностей между ними образуются микроскопические пустоты, заполненные воздухом. А воздух, как известно, очень плохо проводит тепло, и эффективность отвода тепла через границу раздела двух таких сред с неидеальными поверхностями оказывается не слишком высокой. Для того чтобы нивелировать шероховатость поверхностей радиатора и крышки процессора, используют термопасту, которая заполняет все микропустоты и вытесняет оттуда воздух.
При применении термопасты процесс переноса тепла от процессора к радиатору выглядит следующим образом: передача тепла между поверхностью крышки процессора и нижней границей слоя термопасты, передача тепла в самом слое термопасты и передача тепла между верхней границей слоя термопасты и нижней поверхностью радиатора. Коэффициент k называют коэффициентом теплопередачи. Чем он выше, тем эффективнее осуществляется отвод тепла от процессора. Для эффективного теплоотвода высокий коэффициент теплопередачи термопаста должна иметь высокий коэффициент теплоотдачи между крышкой процессора и термопастой и между термопастой и радиатором, а также большой коэффициент теплопроводности и как можно меньшую толщину слоя. Отсюда первый вывод: не нужно наносить термопасту на поверхность процессора толстым слоем. Чем тоньше слой термопасты, тем эффективнее будет отвод тепла.
Что касается коэффициента теплопроводности термопасты, то нужно понимать, что он в десятки и даже сотни раз ниже коэффициентов теплопроводности металлов. Для того чтобы повысить коэффициент теплопроводности термопасты, в нее добавляют разного рода металлическую пыль или пыль оксидов некоторых металлов. Но, скорее всего, именно графен будет использоваться в качестве наполнителя для термопаст в будущем, когда его производство станет дешевым.
Термопасты на керамической основе Такие термопасты содержат окислы металлов и применяются в системах охлаждения компьютерных процессоров, которые не требуют интенсивного охлаждения. Теплопроводность такого вида термопаст относительно невысока, и они имеют небольшую стоимость. Теплопроводность термопаст сравнение термопаст по алфавиту В таблицах представлены значения теплопроводности и динамической вязкости для распространенных наименований термопаст, а также указан их цвет. Выполнено сравнение термопаст более ста наименований по значению коэффициента теплопроводности, указаны сайты производителей термопаст. Следует отметить, что производители практически никогда не указывают температуру, при которой измерялась теплопроводность термопасты. В первой таблице термопасты расположены в алфавитном порядке.
Ее размеры — 25 x 25 мм, толщина - 2 мм. При выделяемой мощности, близкой к 100 ваттам, нагреватель становится похож на мощный разогнанный процессор, охлаждать который в реальных условиях было бы очень трудно. Внедренный в сердцевину нагревателя микропроцессорный термодатчик способен регистрировать изменения температуры в десятые доли градуса. Мощность нагревателя была установлена на значении 100 Вт. Эта величина подходила как нельзя лучше. Приятно, что значения итоговых температур получались примерно такими же, какие имеют место быть на современных процессорах со среднестатистическими СО. Соответственно для нашего мощного источника тепла потребуется и не мене мощный охладитель, и не исключено, что жидкостный. Но на системе водяного охлаждения проводить тестирование термопаст сложно. Можно ввести ошибку в тест из-за наличия промежуточного теплоносителя воды , действующего в перерывах между испытаниями как конденсатор. Это значит, что система будет иметь определенную инерцию.
Подобные моменты всегда являются неудобным "узким местом" длительных и трудоемких исследований. При тестировании воздушных кулеров результаты проверки оказываются более стабильными, что подтверждается испытаниями контрольных образцов через большие промежутки времени. Основой нашей системы охлаждения является радиатор производства компании Noctua, модель NH-U12. Данный образец собран на четырех U-образных тепловых трубках, которые контактируют с медным основанием, и солидных алюминиевых пластинах. Мы решили его немного «разогнать», и оснастили радиатор двумя 120-миллиметровыми промышленными вентиляторами Sunon KD1212-PMS1 производительностью 181 куб. Данная конфигурация позволила добиться рекордной продуктивности системы воздушного охлаждения, значительно превосходящей по мощности бюджетные комплекты СВО. Прижим кулера осуществлялся парой винтов через стандартные отверстия для крепежа socket 939. В процессе испытаний амортизирующие пружины отсутствовали, усилие прижима не регламентировалось. В каждом тесте винты затягивались до предела, что гарантировало образование более тонкого промежуточного слоя термопасты и, как следствие, наиболее правильный итоговый результат. Каждая паста по возможности проверялась не мене двух раз.
При этом контактный слой наносился заново, а полученный результат уточнятся. Просим обратить внимание на диаграммы - они заведомо построены "неправильно" для более четкой демонстрации разницы между протестированными интерфейсами. Считаем, что на каждом из них необходимо остановиться более детально. Наименьшее тепловое сопротивление нанесенного слоя в итоге определит предельную теплопроводность пасты для данной площади контакта. Если значения рабочих температур находятся в разумных рамках и вещество не теряет и не меняет свойств в течение всего времени эксплуатации, то параметр теплопроводности будет единственным и определяющим. Рабочий диапазон температур Все качественные термопасты отлично работают в домашнем компьютере при стандартных температурах. В рамках этого «положительного» диапазона и будет проведено сравнение. Как поведут себя различные пасты в таком случае, мы не знаем, и опыты в данном направлении сегодня ставить не будем. Удобство нанесения является очень важным фактором, и если паста с большим трудом наносится тонким слоем на контактные поверхности, или очень плохо смывается, загрязняя все вокруг, то это доставляет определенные проблемы пользователю и однозначно снижает общий балл, даже не смотря на другие высокие параметры. Стабильность свойств в широком временном диапазоне определяет «живучесть» пасты.
Например, мы знаем очень много случаев высыхания или частичного подсыхания некачественных образцов КПТ-8 при ее эксплуатации даже в течение одного месяца! Естественно, термоинтерфейс, который демонстрирует подобные показатели по заданному параметру, в лучшем случае можно использовать лишь для непродолжительных тестов. Такие характеристики, как электрическая прочность и диэлектрическая проницаемость, удельное объемное электрическое сопротивление и прочие особые показатели для любого пользователя ПК являются по большей части неактуальными. В процессе знакомства с термопастами мы не станем останавливаться на описании физико-химических свойств, как делают это остальные, а акцентируем внимание только на главных для нас критериях. Знакомство с термоинтерфейсами: общие впечатления КПТ-8 Первой мы намажем нашу эталонную пасту, которую с успехом используем во всех тестах. Вы наверняка уже догадались, что речь идет об отечественной КПТ-8. Один из образцов «восьмерки» приобретался на киевском радиорынке. Начинки 10-кубового шприца обычно хватает на длительное время, но мы всегда берем пасту с запасом. Истинный производитель пасты неизвестен, какие-либо опознавательные знаки отсутствуют. В обычные шприцы паста фасуется из большой емкости, и явно неподалеку от места последующей их продажи.
Данный образец КПТ-8 выдавливается с определенными усилиями, но при частом использовании к этому можно быстро привыкнуть. На вид паста белая, не содержит никаких вкраплений, довольно густая. После нанесения для корректного тестирования пасту необходимо размазать по поверхности тонким слоем. Именно она во всех сравнительных тестах на диаграммах будет присутствовать под обозначением "Эталон". В тестах также присутствует КПТ-8, но уже из меньшего шприца, на котором красуется красная наклейка с изображением Менделеева и названием содержимого в народе прозвана «Менделеевской». Подобно первому образцу, очень распространена, но приобретается в другом месте радиорынка. Наносится и размазывается несколько лучше, чем предыдущая, и не такая густая. От нашего эталона ничем на вид не отличается. Следующий образец - тоже «восьмерка», с той же «халтурной» наклейкой. Но вот называется уже как кТп-8, - это что-то новенькое!
Интересно, может они чем-то отличаются? Очевидно, с названием у продавцов-фасовщиков неувязочка вышла. О боже, следующий участник тестирования - тоже КПТ-8! Но на этот раз паста действительно особенная. Оригинальность заключается в применении при ее изготовлении оксида бериллия, ВеО. Данный образец в последнее время активно рекламируется в некоторых местах продажи. Правда, ее цена и "упаковка" ничем не отличаются от «Менделеевской». Забавно, но по поводу использования в качестве теплопроводника оксида бериллия ВеО в Сети ходят легенды. Бытуют слухи о том, что это - редкая паста военно-космического целевого назначения с потрясающими характеристиками. В нашем случае перед глазами возникают смутные картины из фантастического фильма «Тень», бериллиевая сфера, древнее зло, и все такое.
Как бы там ни было, но в указанном ГОСТе 19-783-74 по поводу оксида бериллия вообще ничего не сказано, собственно как и не сказано о точном составе пасты. А бериллий? Поднятая информация аналитической химии данного металла говорит о том, что действительно, оксид бериллия сочетает высокие показатели теплопроводности и низкую электропроводность. Он применяется в специальной керамике и во многих отраслях науки и техники. Вполне возможно, что на основе ВеО можно изготовлять и термопасты. Кстати, соединения бериллия определенно ядовиты, но степень данного показателя зависит от конкретного соединения. Про токсичность оксида достоверной информации не выявлено, как и собственно самого факта наличия ВеО в рассматриваемой пасте. Для установления истины необходимо проводить химический анализ пасты, а это уже является определенной проблемой для любой тестовой лаборатории даже больших интернет-ресурсов. Поэтому мы ограничимся только тестом. АлСил-3 Очень популярная среди отечественных пользователей термопаста.
Производится московской фирмой «Джи Эм Информ». В Интернете о рассматриваемом веществе ходит очень много слухов. На форумах некоторые пользователи рапортуют об отличных результатах с применением АлСил-3, в отличии от иной отечественной соперницы, а другие же не чувствуют никакой разницы, или же наоборот, больше одобряют "восьмерку". Вещество в каждом случае имеет характерный серый оттенок. Эта особенность АлСил-3 продиктована наличием в ней нитрида алюминия, который выступает в роли теплопроводника. В составе никаких вкраплений нет. Паста выдавливается просто и размазывается легко. Из двух наших образцов АлСил-3 в большем шприце был выпущен довольно давно, ориентировочно в 2002 году. Тем не менее, в процессе тестирования разницы между пастами не обнаружено. AKT-842 Данный термоинтерфейс поставляется с кулерами компании akasa.
Паста находится в небольшом шприце, имеет белый цвет, по сравнению с нашим эталоном она боле жидкая и легче поддается размазыванию. Теоретически это примерно в 7 раз больше, чем у КПТ-8! А что же будет на практике? К нам на тестирование попала силиконовая паста, 54013, упакованная в фирменный шприц. Имеет белый цвет, наносится легко. Смывается без особых проблем. По консистенции - весьма жидкая. Паста обладает небольшим сероватым оттенком и напоминает АлСил-3. Консистенция - довольно жидкая. Arctic Cooling MX-1 Данная паста — один из нетрадиционных продуктов швейцарской компании Arctic Cooling , специализирующейся на производстве тихих и качественных систем охлаждения.
Мы уже писали о данном продукте, поэтому не будем останавливаться на деталях. Субстанция находится в фирменном шприце, который, кстати, несколько месяцев назад изменил свой внешний вид. Паста пепельного цвета. Выдавливается небольшими комками. Для правильного нанесения ее нужно втирать в основание системы охлаждения и крышку процессора. Заметим, что на обе поверхности нужно нанести очень немного пасты, излишки убрать. Это - "старый" вариант фасовки: А вот паста в новой упаковке в более тонком и длинном шприце: Arctic Alumina Данная паста — детище, наверно, самого известного и разрекламированного зарубежного производителя термоинтерфейсов — компании Arctic Silver. Arctic Alumina изготавливается на основе оксида алюминия. Паста белая, наносится на поверхность легко, так же легко размазывается. Заявленная теплопроводность составляет более 4.
Arctic Ceramique Теплопроводником в пасте является смесь оксида алюминия, оксида цинка и нитрида бора; пропорцию веществ производитель не указывает. Arctic Ceramique, как и вся тестируемая нами продукция компании Arctic Silver, изготовлена на базе фирменной высокостабильной полисинтетической основы. С нанесением и смыванием продукта проблем не возникло. Arctic Silver 3 Одна из самых известных паст на основе серебра. Состав представляет собой темно-серое вещество с зеленоватым оттенком. Субстанция выдавливается и наносится без проблем, убирается быстро и просто. Antec Reference Взглянув на шприц, несложно догадаться, где и кем произведена паста.
Тестирование термопаст с высоким показателем теплопроводности. 280 Вт, Core i9 и куча паст
Жидкие металлы примерно в 3 раза дороже термопаст. Например, один грамм пасты Thermal Grizzly Aeronaut стоит 500 рублей, а этот же объем жидкого металла обойдется в 1500 рублей. Если хотя бы одна капля жидкого металла попадет на токоведущую дорожку материнки, произойдет короткое замыкание. Оно уничтожит всю плату без возможности ремонта или восстановления до исходного состояния. Сложность удаления.
Жидкие металлы очень сложно убирать с поверхностей радиаторов. Иногда не помогают даже специальные чистящие средства, и тогда инженерам приходится удалять остатки агрессивными кислотами. Сложность нанесения. Металлы нужно выдавливать на центральные части процессоров и с помощью ватных аппликаторов равномерно распределять их по всей доступной площади.
Это длится дольше, чем нанесение термопасты. Невозможность применения с медными и алюминиевыми радиаторами. Жидкие металлы вступает в химические реакции с медными и алюминиевыми сплавами. Их можно использовать только с никелированными радиаторами.
Перечисленные недостатки делают жидкие металлы непопулярными. Инженеры по-прежнему используют термопасты, которые намного лучше зарекомендовали себя за долгие годы использования в компьютерной индустрии. Термопрокладки Термопрокладки используются в тех местах, где не нужно максимально эффективное охлаждение. Например, в областях VRM на материнских платах и видеокартах.
Они устанавливаются между элементами питания и металлическими радиаторами. У термопрокладок есть 2 преимущества: Диэлектричность. Они не проводят ток, а потому не страшно, если они попадут на токоведущие элементы, такие как дорожки материнских плат и видеокарт. Прокладки легко поддаются деформации и заполняют любые пустоты с неровностями.
Температура в течение трех минут стабилизировалась и далее была постоянной. Итоговое потребление было в районе 280 Вт. Результаты Все полученные данные сведены в графиках, которые понятны из названий и в принципе не требуют разъяснений, но вкратце расскажу. График температуры самого горячего ядра это самый пик, но проблема в том, что такое значение может быть всего на одном ядре, поэтому следует это помнить. График средней температуры всех ядер. Как раз этот график больше всего принесет пользы, так как сгладит всплески и ямы в результатах. Не зря ведь есть фраза "В среднем по больнице".
С ценой все понятно, чем дешевле, тем лучше, для кошелька, насколько лучше для процессора, тут больше по ситуации. Цены взяты здесь и сейчас. Усугубляет ситуацию тот факт, что в разных магазинах они разные. Этот график создан скорее из любопытства. Суть в том, что в таких графиках всегда победит вариант "Без использования пасты", так как затраты на это равны нулю. Однако показатель температуры вас вряд ли обрадует.
Стоит признать, что сегодня полупроводниковая технология столкнулась с проблемой теплоотвода от кристаллов самых мощных чипов. Так, центральные процессоры и ядра топовых видеокарт являются теми представителями сегмента потребительской микроэлектронной техники, где тепловыделение на один квадратный сантиметр приближается к отметке в 100 Ватт. Для особо мощных чипов данный показатель дополнительно увеличивается. Как оказалось, отводить тепло с такой маленькой площади очень непросто... И пока невозможно кардинально уменьшить тепловыделение упомянутых компонентов, не прибегая к очень дорогостоящим исследованиям в области технологий полупроводников и наноструктур. Конечно, производители принимают адекватные меры — улучшали и продолжают улучшать охлаждение тех или иных узлов компьютера, продвигают в массы водяное охлаждение , разрабатывают новые конструкции воздушных СО. Яркий пример выражения этого движения на практике — нынешняя «эпоха суперкулеров», которая буквально захлестнула прилавки магазинов и умы большинства пользователей шедеврами технического искусства из меди, алюминия и тепловых трубок. Качественная система охлаждения — залог низких температур компонентов ПК, тишины в работе, возможности разгона системы. Однако в данном случае необходимо помнить о том, что «бочку меда» можно легко испортить «ложкой дегтя». Схематично отвод тепла от греющегося компонента например, центрального процессора можно отобразить так: «процессор — термоинтерфейс — система охлаждения» кстати, теплорассеивающая крышка современного CPU контактирует с ядром через еще один тонкий слой все того же термоинтерфейса, но этот момент мы в данном материале упустим, так как на характеристики данного фактора пользователь повлиять не может. О связывающем компоненте, в качестве которого может выступать пропитанная различными веществами тканевая наклейка, небольшой лист фольги, паста, мазь, жидкость, большинство пользователей забывают, или же используют «то, что было в коробке» - бесплатную субстанцию, поставляемую вместе с приобретенной системой охлаждения. А многие новички ведь вообще не подозревают о существовании термоинтерфейсов и об их применении в современных компьютерах! Оправдан ли такой подход к, казалось бы, мелочам? Далеко не всегда, поэтому сегодняшний материал призван продемонстрировать важность рассматриваемой темы и обратить внимание читателей на один из немаловажных аспектов охлаждения компонентов ПК — влияние используемых термоинтерфейсов на качество теплоотвода. Наша цель — исследование различных веществ, которые энтузиасты применяют для того, чтобы добиться максимально эффективной теплопередачи от кристалла процессора, графического ядра, чипсета материнской платы к основанию кулера или водоблока. Тем самым обеспечивается дополнительный «запас прочности» при разгоне, или же попросту снижаются общие температурные показатели компонентов и облегчается режим работы того или иного узла ПК. Теплопередача: немного теории Для тех, кто забыл или не знает, что такое термоинтерфейс , приведем максимально понятное большинству определение: это та самая прослойка, состоящая из какого-либо специального вещества, которая существует между процессором и основанием воздушного кулера или водоблока. Как Вы понимаете, поверхности самого чипа и его охладителя не идеальны в плане абсолютной ровности. В условиях массового промышленного производства часто невозможно обеспечить очень высокую чистоту поверхности, и ее геомметрическую плоскость. Даже на визуально очень ровных основаниях остаются целые участки микрогеометрии с неидеальным контактом, которые без применения термоинтерфейсов оказываются заполненными молекулами воздуха. Это могут быть миниатюрные выемки, выпуклости или микроцарапины, которые не видны невооруженным глазом. Передача тепла меду контактирующими поверхностями осуществляется посредством кондукции. Данный термин обозначает процесс обмена кинетической энергией между молекулами веществ совместно с диффузией электронов в металлах. Передача тепла кондукцией будет иметь место при условии контакта тел с разностью температур. Во всех случаях поток тепла будет направлен в сторону падения градиента абсолютных значений. Следовательно, основная часть тепловой энергии идет по направлению от чипа к его охладителю. Конвекция и лучеиспускание по отдельности не способны отвести огромные тепловые потоки на малой площади микрочипа, и лишь частично принимают участие в общем теплообмене. Если немного затронуть теоретическую физику, то следует вспомнить, что теплопроводность металлов определяется колебаниями кристаллической решетки и движением свободных электронов так называемый «электронный газ». С повышением температур у всех металлов электропроводность, и, как следствие, теплопроводность убывают эти два явления взаимосвязаны и одно без другого не происходит. С понижением температур, наоборот, теплопроводность растет. Наличие свободных электронов определяет высокую электропроводность металлов. Зная это, становится ясно, почему при изготовлении деталей охлаждающих устройств широко применяются алюминий, медь, серебро и их сплавы. Эти распространенные металлы обладают самой высокой электро- и теплопроводностью из всех, известных массовой промышленности. К тому же им сравнительно легко придать необходимую форму путем соответствующей обработки. Приводим краткие характеристики теплопроводности наиболее доступных металлов и некоторых интересных материалов, которые применяются в тех или иных отраслях промышленности: Но вернемся к нашим «баранам»: у нас есть две поверхности, - кристалла чипа и основания системы охлаждения, которой поручено его охлаждать. Термоинтерфейс вытесняет воздух, и образует между ними пленку, состоящую из вещества с низким тепловым сопротивлением. Различные пасты также позволяют механически разъединить источник тепла и его охладитель, что необходимо в случае замены какого-либо компонента ПК. Если крепежные элементы для радиаторов не предусмотрены, или же необходима более жесткая фиксация устройств теплоотвода, то применяют термоклеи и специальные наклейки. В данной статье эти виды интерфейсов не рассматриваются, однако, исходя из данных, приведенных в одном из наших более ранних , можно приблизительно оценить эффективность и другие характеристики некоторых продуктов подобного плана. Надеемся, по теоретической части вопросов у читателей не осталось, поэтому будем двигаться дальше. Методика проведения теста При выборе пасты-эталона мы исходили из следующих соображений: массовой доступности тестового образца; удобства нанесения и смывания; невысокой стоимости. Думаем, Вы уже догадались, что речь идет о довольно старом шедевре отечественной химической промышленности - пасте КПТ-8. Но не всех удовлетворяют параметры указанной пасты. Среди тех, кто интенсивно использует ПК, есть так называемые «гонщики», энтузиасты. Они жаждут славы и рекордов, форсируют режимы работы железа всеми доступными способами, выжимая тем самым мегагерцы, попугай-силы, и, как следствие, создавая более сложные условия работы различных компонентов ПК, неизменно приводящие к повышенному тепловыделению. Понятно, что в состоянии рекордной производительности система будет работать очень нестабильно. В этом случае решающее значение будет иметь каждый градус и каждый лишний ватт отведенного тепла. В таких условиях к любому компоненту и звену системы охлаждения предъявляются повышенные требования, а к термоинтерфейсу — порой даже исключительные, ведь ничто так не ухудшит теплоотвод, как некачественная термопаста. Как мы уже говорили, мощные микропроцессоры современных ПК, пожалуй, являются тем единственным сегментом потребительской микроэлектронной техники, где тепловыделение кристалла зачастую достигает более 100 Ватт на один квадратный сантиметр. Как оказалось, отводить тепло с такой маленькой площади очень непросто, поэтому многие фирмы занимаются исследованием и разработкой устройств и веществ, предназначенных для эффективного отвода тепла именно с центральных процессоров и ядер видеокарт. В рамках одного неплохого теста на ПК все кажется предельно ясным и понятным. Однако, просматривая и сравнивая значительное количество обзоров и статей, опубликованных в сети, мы порой находили противоречивые данные исследований и неоднозначные выводы, сделанные их авторами. Практически во всех случаях прямо или косвенно делался упор на процессор, на котором производилось тестирование, и применяемую систему охлаждения. Это побудило Тестовую лабораторию сайт собрать все доступные нам термопасты и провести собственное независимое расследование с применением специального тестового стенда. Ознакомившись с результатами исследования характеристик термопаст, проведенных на CPU, можно заметить, что в подавляющем большинстве случаев ощутить разницу между образцами со схожими характеристиками сложно. Многое зависит от архитектуры и TDP процессора. C ростом тепловыделения нагревателя разница между исследуемыми термопастами становится все более очевидной. Мы заметили еще один интересный момент. Так, производители на упаковках своих продуктов указывают теплопроводность паст, однако ее недостаточно для того, чтобы по этому показателю определить победителя. Причина проста - разные методы измерения теплопроводности дают различные ее значения. Даже проведение исследований по единому методу в нескольких лабораториях не исключает получения неточностей в конечных результатах. Например, паста может иметь иной контактный слой во время теста, и это прямо повлияет на цифровое выражение субъективных итогов исследования. В качестве стабильного источника тепла мы выбрали доказавший свое право на жизнь экспериментальный тестовый стенд MARK Sea Launch. На данной модификации ядро нагревателя имеет переходник с малой площадью менее 12х12 мм , что затрудняет теплопередачу от источника тепла к крышке. Верхняя, шлифованная часть нагревателя «эмулирует» теплораспределитель процессора. Ее размеры — 25 x 25 мм, толщина - 2 мм. При выделяемой мощности, близкой к 100 ваттам, нагреватель становится похож на мощный разогнанный процессор, охлаждать который в реальных условиях было бы очень трудно. Внедренный в сердцевину нагревателя микропроцессорный термодатчик способен регистрировать изменения температуры в десятые доли градуса. Мощность нагревателя была установлена на значении 100 Вт. Эта величина подходила как нельзя лучше. Приятно, что значения итоговых температур получались примерно такими же, какие имеют место быть на современных процессорах со среднестатистическими СО. Соответственно для нашего мощного источника тепла потребуется и не мене мощный охладитель, и не исключено, что жидкостный. Но на системе водяного охлаждения проводить тестирование термопаст сложно. Можно ввести ошибку в тест из-за наличия промежуточного теплоносителя воды , действующего в перерывах между испытаниями как конденсатор. Это значит, что система будет иметь определенную инерцию. Подобные моменты всегда являются неудобным "узким местом" длительных и трудоемких исследований. При тестировании воздушных кулеров результаты проверки оказываются более стабильными, что подтверждается испытаниями контрольных образцов через большие промежутки времени. Основой нашей системы охлаждения является радиатор производства компании Noctua, модель NH-U12. Данный образец собран на четырех U-образных тепловых трубках, которые контактируют с медным основанием, и солидных алюминиевых пластинах. Мы решили его немного «разогнать», и оснастили радиатор двумя 120-миллиметровыми промышленными вентиляторами Sunon KD1212-PMS1 производительностью 181 куб. Данная конфигурация позволила добиться рекордной продуктивности системы воздушного охлаждения, значительно превосходящей по мощности бюджетные комплекты СВО. Прижим кулера осуществлялся парой винтов через стандартные отверстия для крепежа socket 939. В процессе испытаний амортизирующие пружины отсутствовали, усилие прижима не регламентировалось. В каждом тесте винты затягивались до предела, что гарантировало образование более тонкого промежуточного слоя термопасты и, как следствие, наиболее правильный итоговый результат. Каждая паста по возможности проверялась не мене двух раз. При этом контактный слой наносился заново, а полученный результат уточнятся. Просим обратить внимание на диаграммы - они заведомо построены "неправильно" для более четкой демонстрации разницы между протестированными интерфейсами. Считаем, что на каждом из них необходимо остановиться более детально. Наименьшее тепловое сопротивление нанесенного слоя в итоге определит предельную теплопроводность пасты для данной площади контакта. Если значения рабочих температур находятся в разумных рамках и вещество не теряет и не меняет свойств в течение всего времени эксплуатации, то параметр теплопроводности будет единственным и определяющим. Рабочий диапазон температур Все качественные термопасты отлично работают в домашнем компьютере при стандартных температурах. В рамках этого «положительного» диапазона и будет проведено сравнение. Как поведут себя различные пасты в таком случае, мы не знаем, и опыты в данном направлении сегодня ставить не будем. Удобство нанесения является очень важным фактором, и если паста с большим трудом наносится тонким слоем на контактные поверхности, или очень плохо смывается, загрязняя все вокруг, то это доставляет определенные проблемы пользователю и однозначно снижает общий балл, даже не смотря на другие высокие параметры. Стабильность свойств в широком временном диапазоне определяет «живучесть» пасты. Например, мы знаем очень много случаев высыхания или частичного подсыхания некачественных образцов КПТ-8 при ее эксплуатации даже в течение одного месяца! Естественно, термоинтерфейс, который демонстрирует подобные показатели по заданному параметру, в лучшем случае можно использовать лишь для непродолжительных тестов. Такие характеристики, как электрическая прочность и диэлектрическая проницаемость, удельное объемное электрическое сопротивление и прочие особые показатели для любого пользователя ПК являются по большей части неактуальными. В процессе знакомства с термопастами мы не станем останавливаться на описании физико-химических свойств, как делают это остальные, а акцентируем внимание только на главных для нас критериях. Знакомство с термоинтерфейсами: общие впечатления КПТ-8 Первой мы намажем нашу эталонную пасту, которую с успехом используем во всех тестах. Вы наверняка уже догадались, что речь идет об отечественной КПТ-8. Один из образцов «восьмерки» приобретался на киевском радиорынке. Начинки 10-кубового шприца обычно хватает на длительное время, но мы всегда берем пасту с запасом. Истинный производитель пасты неизвестен, какие-либо опознавательные знаки отсутствуют. В обычные шприцы паста фасуется из большой емкости, и явно неподалеку от места последующей их продажи. Данный образец КПТ-8 выдавливается с определенными усилиями, но при частом использовании к этому можно быстро привыкнуть. На вид паста белая, не содержит никаких вкраплений, довольно густая. После нанесения для корректного тестирования пасту необходимо размазать по поверхности тонким слоем. Именно она во всех сравнительных тестах на диаграммах будет присутствовать под обозначением "Эталон". В тестах также присутствует КПТ-8, но уже из меньшего шприца, на котором красуется красная наклейка с изображением Менделеева и названием содержимого в народе прозвана «Менделеевской». Подобно первому образцу, очень распространена, но приобретается в другом месте радиорынка:. Наносится и размазывается несколько лучше, чем предыдущая, и не такая густая. От нашего эталона ничем на вид не отличается. Следующий образец - тоже «восьмерка», с той же «халтурной» наклейкой. Но вот называется уже как кТп-8, - это что-то новенькое! Интересно, может они чем-то отличаются? Очевидно, с названием у продавцов-фасовщиков неувязочка вышла:. О боже, следующий участник тестирования - тоже КПТ-8! Но на этот раз паста действительно особенная. Оригинальность заключается в применении при ее изготовлении оксида бериллия, ВеО. Данный образец в последнее время активно рекламируется в некоторых местах продажи. Правда, ее цена и "упаковка" ничем не отличаются от «Менделеевской». Забавно, но по поводу использования в качестве теплопроводника оксида бериллия ВеО в Сети ходят легенды. Бытуют слухи о том, что это - редкая паста военно-космического целевого назначения с потрясающими характеристиками. В нашем случае перед глазами возникают смутные картины из фантастического фильма «Тень», бериллиевая сфера, древнее зло, и все такое;. Как бы там ни было, но в указанном ГОСТе 19-783-74 по поводу оксида бериллия вообще ничего не сказано, собственно как и не сказано о точном составе пасты. А бериллий? Поднятая информация аналитической химии данного металла говорит о том, что действительно, оксид бериллия сочетает высокие показатели теплопроводности и низкую электропроводность. Он применяется в специальной керамике и во многих отраслях науки и техники. Вполне возможно, что на основе ВеО можно изготовлять и термопасты. Кстати, соединения бериллия определенно ядовиты, но степень данного показателя зависит от конкретного соединения. Про токсичность оксида достоверной информации не выявлено, как и собственно самого факта наличия ВеО в рассматриваемой пасте. Для установления истины необходимо проводить химический анализ пасты, а это уже является определенной проблемой для любой тестовой лаборатории даже больши х интернет-ресурсов. Поэтому мы ограничимся только тестом. АлСил-3 Очень популярная среди отечественных пользователей термопаста. Производится московской фирмой «Джи Эм Информ». В Интернете о рассматриваемом веществе ходит очень много слухов. На форумах некоторые пользователи рапортуют об отличных результатах с применением АлСил-3, в отличии от иной отечественной соперницы, а другие же не чувствуют никакой разницы, или же наоборот, больше одобряют "восьмерку". Вещество в каждом случае имеет характерный серый оттенок. Эта особенность АлСил-3 продиктована наличием в ней нитрида алюминия, который выступает в роли теплопроводника. В составе никаких вкраплений нет. Паста выдавливается просто и размазывается легко. Из двух наших образцов АлСил-3 в большем шприце был выпущен довольно давно, ориентировочно в 2002 году. Тем не менее, в процессе тестирования разницы между пастами не обнаружено. Данный термоинтерфейс поставляется с кулерами компании akasa. Паста находится в небольшом шприце, имеет белый цвет, по сравнению с нашим эталоном она боле жидкая и легче поддается размазыванию. Теоретически это примерно в 7 раз больше, чем у КПТ-8! А что же будет на практике? AOS - очень известный за рубежом производитель термоинтерфейсов.
Arctic MX-2 и MX-4 — 8 лет. GD900-BX30 — 2 года. Из перечисленных серий самой качественной и долговечной считается паста MX-4 от китайского производителя Arctic. Некоторые виды вовсе не имеют указанного срока годности. К примеру, производители паст Titan Silver Grease и Silicone Compound вовсе не указывают срок годности на упаковке. Как отмечают пользователи, эти изделия пригодны для применения на протяжении 4-5 лет. Обратите внимание, все указанные сроки актуальны только для герметично закрытой упаковки. Где и как хранить Содержать вещество следует в заводской упаковке. Обычно это шприц небольшого объёма. Шприц имеет колпачок для герметизации после использования. Чтобы состав не испортился, необходимо исключить контакт с окружающей средой. Термопаста больше всего боится воздуха и ультрафиолета. Ёмкость всегда должна быть герметично закрыта. Желательно, чтобы шприц был непрозрачным. Если он прозрачный, оставлять изделие нужно в тёмном месте, к примеру, в закрывающемся шкафу или ящике. После каждого применения тюбик необходимо плотно закупоривать. По возможности перед закрытием следует удалить воздух из тюбика. Термоинтерфейс можно содержать при комнатной температуре. Для продления срока хранения можно поместить в более прохладное место. Но, нельзя допускать замерзания, это приведёт к утрате теплопроводности. Составы, содержащие серебро, хранятся без потери свойств дольше, иногда даже 10 лет и более. Заключительный этап После того как слой термопасты равномерно распределится по поверхности, а лишнее будет снято, можно смело фиксировать радиатор над процессором и прижимать его крепежными замками. Все, на этом весь ремонт окончен.
Чем удалить старую пасту
- Из чего делают термопасту для компьютерной техники и электроники?
- 16 лучших термопаст для ноутбука - рейтинг 2024 года
- Тестирование термопаст для CPU - Стоматология
- Термопаста КПТ-8 - идеальное решение для любого процессора
Зачем нужна термопаста "КПТ-8"
- Алтернативы термопасте
- Десять мифов о термопасте, которые пора забыть
- Большое тестирование термопаст
- Лучшая термопаста для ноутбука. КПТ-8 vs Arctic Cooling MX4
- Железный эксперимент: как правильно наносить термопасту
- Кпт 19 тестирование
16 лучших термопаст для ноутбука
8 очень хорошая паста, качество в принципе осталось со времён СССР. Использую всю жизнь термопасту КПТ8 и проблем замечено не было. КПТ-8 легко наносится и убирается с поверхностей, не проводит ток, не течёт и не провоцирует коррозию.
КПТ-8 Лучшая термопаста в Мире!? Эффективность термопасты для процессора
Некоторые характеристики популярных термопаст для ноутбуков КПТ-8 и Arctic Cooling MX4 в нашей статье. если говорить о самой распространенной пасте КПТ-8. Кремнийорганическая термопаста КПТ-8 Эта термопаста – живая легенда.
Выбор термопасты для системы охлаждения видеокарты
Электрическая проводимость Термопаста не должна быть электропроводной. Электрическая прочность показывает минимальную напряжённость электрического поля , при которой наступает электрический пробой. Плотность Термопаста должна соответствовать плотности, которая не позволит ей просачиваться в окружающую среду и равномерно распределится по поверхности, обеспечивая полное покрытие. Лучшая термопаста.
Чтобы выбрать лучшую термопасту , необходимо учитывать три основных фактора: теплопроводность, электропроводность и плотность.
Основным его преимуществом стало свойство невысыхающего вещества. Но для ускорения рабочих процессов на компьютере — это важный и значимый показатель. Кто и когда использует термопасту У ПК радиатор и процессор не плотно соприкасаются между собой, там есть микрозазоры куда свободно поступает воздух, а он не лучший проводник, замедляет работу. Для устройства нужна хорошая теплоотдача, эту задачу и выполняют термопасты. Применяют их при ремонте компьютеров, во время первоначальной сборки, когда создают систему для охлаждения процессора.
Процедуру нанесения выполняют на видеокарты, где чипы соприкасаются с радиатором и на компьютерных материнских платах, если там установлен дополнительный съемный радиатор.
Компоновка комплектующих способствует худшему отводу тепла, чем у десктопных ПК. И у КПТ-8 несмотря на то, что она намного дешевле других — у неё одна из худших теплопроводностей. Поэтому лучше выбрать что-то получше для ноутбуков и видеокарт.
КПТ-8 хороша для тех охлаждающих систем, в которых комплектующие не находятся близко друг к другу. Чем удалить старую пасту Засохшие остатки КПТ-8 быстро и легко удаляются ватой смоченной бензином Калоша или изопропанолом. Как правильно наносить КПТ-8 Сначала удалите старую термопасту и обезжирьте поверхность радиатора кулера и детали. Далее нанесите термопасту КПТ-8 небольшой каплей по центру охлаждаемой поверхности.
И размазывайте ее тонким слоем равномерно по всей поверхности процессора или радиодетали транзистора или диода.
Как происходит охлаждение процессора? Для охлаждения этих частей во время работы используются радиаторы и кулеры — первые играют роль теплообменника, охлаждая процессор за счёт собственной теплоёмкости, вторые обеспечивают форсированный приток прохладного воздуха из внешней среды. Однако эти средства порой могут оказаться недостаточно эффективными.
В чём причина? Внешняя поверхность процессора плотно прилегает к радиатору, однако стоит учесть, что для ухудшения теплопроводности достаточно расстояния в несколько микрон. Это могут быть различного рода неровности и микротрещины, которые обеспечивают формирование воздушной подушки между процессором и радиатором. Для того, чтобы устранить эти микроскопические разрывы, используется термопаста.
Это жидкая пластичная субстанция, которая заполняет собой все пробелы и обеспечивает наиболее плотное прилегание поверхностей. КПТ-8 — эффективная и доступная термопаста Термопаста КПТ-8 — это хорошо известный, проверенный способ избавить ваш процессор от перегрева. Сегодня эта термопаста продаётся в различных видах упаковки, которые мы рассмотрим ниже.