Смотрите 27 онлайн по теме фрактал в природе. Посмотрите больше идей на темы «фракталы, природа, закономерности в природе».
Фракталы в Природе
- Математика в природе: самые красивые закономерности в окружающем мире
- Фракталы — потрясающая красота математики в природе
- Фракталы. Чудеса природы. Поиски новых размерностей: solar_activity — LiveJournal
- Физики нашли фракталы в лазерах
- Фракталы в природе исследование
Что такое фрактал?
И более того, по ним можно предсказать прочностные характеристики металла — существует прямая зависимость между фрактальной размерностью и энергией, необходимой для разрушения металла. Аналогичные результаты были в исследованиях полимеров. Оказалось, что полимерные цепочки образуют сложные и запутанные структуры, которые определяют ключевые показатели полимеров. И эти запутанные цепочки — тоже фракталы!
Отдельное развитие получили алгоритмы для генерации фракталов. Часть из них придумали еще в XIX веке, другие появились, когда возникла теория фракталов. Вместе они стали основой раздела в искусстве, посвященного фрактальным узорам.
Вскоре выяснилось, что можно генерировать компьютерную графику при помощи фракталов. Особенно актуально это оказалось для биологических структур: деревьев и растений. У капусты Романеско, например, невооруженным глазом видна фрактальная структура.
Капуста романеско, www. В свою очередь, математическая теория перколяции широко используется в статистической физике и химии. Более того, теория фракталов вместе с теорией перколяции широко применимы при добыче нефти и газа.
Это объясняется тем, что порода, в которой находится нефть, имеет фрактальные пустоты и представляет собой что-то наподобие губки Менгера. В совокупности этих пустот как раз и наблюдается явление перколяции. Правильный же способ расположения скважин и объем добычи нефти на месторождении в значительной степени определяется структурой этих пустот, то есть фрактальной размерностью.
У применения фракталов есть и весьма неоднозначные истории. В начале 90-х годов появились алгоритмы фрактального сжатия изображений, обещавшие огромную степень сжатия, но требующие большого количества времени. Такие алгоритмы ищут на картинке самоподобные участки, кодируют их специальным образом и значительно уменьшают размер изображения.
К сожалению, их развитие замедлилось в самом начале из-за того, что несколько основных и перспективных алгоритмов были запатентованы группой открывших их ученых. Патенты описывали метод сжатия достаточно общими чертами, и многие новые алгоритмы попадали под их ограничения. В 2012 году срок действия части патентов закончился, и фрактальное сжатие изображений продолжает развиваться вновь после долгого перерыва.
С его помощью экономисты предсказывают цены на бирже и строят финансовые модели. Сам же Мандельброт после выхода его книг про фракталы наконец получил заслуженное признание в академической среде. Однако он так и не остановился ни на математике, ни на физике, ни на какой-либо еще области науки, продолжая переходить от одной задачи к другой.
Фракталы возникают в естественных ситуациях, когда некое природное явление усиливает собственное развитие. Классический пример картинки вы сможете найти, например, в книге Фракталы Е. Федер - осаждение кристаллов, например, коллоидного золота. Суть процесса в том, что в стакане осаждаются частички коллоидного золота, причем они могут "приклеиваться" как ко дну, так и к уже осадившимся частичкам.
Первые частички на дно стакана падают практически произвольно - любая пылинка или неровность стакана может стать точкой, где начнется осаждение. Однако как только первая частичка подклеилась в какое-то место, площадь поверхности в этой области сразу увеличивается - а значит, шанс, что следующая частичка приклеиться к этой поверхности, значительно выше.
Этимология[ править править код ] Термин «фрактал» был введён математиком Бенуа Мандельбротом в 1975 году [1]. Мандельброт описал введение термина следующим образом: "Я создал термин фрактал от латинского прилагательного fractus. Соответствующий латинский глагол frangere означает «разрывать, прерывать»: создавать нерегулярные фрагменты. Это, следовательно, имеет подходящее для нас! Сочетание «фрактальное множество» fractal set будет определена строго, но сочетание «природный фрактал» nature fractal будет подано свободно — для определения природных примеров, которые полезно репрезентировать с помощью фрактальных множеств.
Наиболее чаще они встречаются в западной и отечественной архитектурах: исторический музей в Москве, древние индийские и ацтекские ступенчатые храмы, многофункциональный комплекс Federation Square в Мельбурне, мексиканский бутик Liverpool Insurgentes и другие. Фракталы прячутся в простых вещах: цветной капусте, суккулентах, кактусах Их изучение развивает множество сфер: от астрономической, социальной до IT и точных наук Фракталы в IT-сфере и литературе — что общего? Фракталы и их геометрия незаметно перебралась в технологический мир. Из природы он в передовые 3D иллюстрации, компьютерную графику, децентрализованные сети. К примеру, компания Netsukuku использует принцип фрактального сжатия информации для IP-адресов. Каждый новый узел состыковывается с общей сети без использования центрального сервера. Удобно же! Ты удивишься, но молния, ионосфера, северное сияние и пламя — тоже фракталы Легче всего такие фигуры описать художникам Фракталы используются также в цифровой области. Теперь не нужно отдельно рисовать детали графических объектов. Фракталы и их алгоритмы задают первоначальные параметры, а остальную работу делает компьютерная система. Айтишники безустанно креативят с двух- и трехмерными геометрическими фигурами для создания объемных текстур. Есть что-то магическое в любой фрактальной форме Одни их замечают, другие проходят мимо В настоящее время математические фракталы активно используются в нанотехнологиях, у трейдеров, экономистов. Они помогают анализировать курс фондовых бирж, торгового рынка. Область нефтехимии применяет фигуры фракталы для создания пористых материалов, а биологии — для развития популяций, генной инженерии. Люди зашли еще дальше, «скрестив» фрактальную геометрию с текстуальной, структурной и семантической природой. Смотри, как каждый фрагмент точно дублируется в уменьшающемся масштабе! Фракталы в природе: ботаника что-то скрывает Фракталы и их геометрию всегда оберегала природа со своей богатой флорой и фауной. Удивительные и совершенные формы, фигуры создает природа до сих пор. Растения со свойствами подобия можно заметить в кронах деревьев, листьях папоротника, цветной капусте. А еще листья располагаются по спирали, создавая совершенный фрактал у алоэ Polyphylla, устремленных ввысь стебельков крассулы или «Храм будды». Подобные флоральные мотивы просто не могла обойти стороной восточная мода, стиль бохо и этно в коллекциях одежды на 2022 год. Природа богата на фрактальные «сокровища» Завораживающе на человека действуют усыпанный рубиновыми капельками росолист Lusitanicum, подсолнечник, георгин, листья амазонской кувшинки. Простые фракталы в природе замечай в краснокочанной капусте, когда готовишь вегетарианские салаты, ищешь суккуленты для свадебного букета.
Фракталы в природе
Таких процессов в природе огромное количество, важно просто понимать, что даже довольно простой по своей сути феномен (как описанный выше) зачастую приводит к фрактальным структурам. Фракталы существуют не только в макро мире, но и на поверхности Земли. Фракталы в природе Подготовила Андреева Алина Р-12/9. Фрактальные модели в природе и технике Текст научной статьи по специальности «Математика».
Случайность как художник: учёные обнаружили первую фрактальную молекулу
Еще одна кроссплатформенная в том числе с мобильной версией программа, основанная на Java с открытым исходным кодом, для обработки изображений. Она известна в основном своим сложным генератором пламенных фракталов. Mandelbulber Mandelbulb3D. Превосходные бесплатные инструменты для создания трехмерных фракталов, таких как устрашающая Оболочка Мандельброта , загадочная «коробка» Мандельбокс и др. Mandelbulber несколько более функционален и быстр, но Mandelbulb3D чуть проще в использовании. По ссылке вы найдете множество других программ. Заключение Исследование фракталов началось в 1975 году.
Например, британский математик Майкл Барнсли в своем труде «Фракталы повсюду» описал «фрактал-папоротник», который при приближении даёт воспроизведение начальной формы. Лист папоротника — типичный фрактал в природе mirzhvetov. А ведь этот «мягкий настил» — тоже фрактал!
Особенно хорошо это видно на длинном мхе: его структура самоподобна. Попробуйте заняться макро-съёмкой: вы увидите, что фракталы не только рядом, но и у нас под ногами. Посмотрите, как мох разветвляется: этот природный фрактал, пожалуй, один из самых красивых krasivoe-foto.
Однако на листьях фрактальность теряется — хотя, если не брать в счёт «мякоть» листа и оставить только прожилки, это можно считать продолжением «древесного» фрактала. Кстати, а корневая система — это уже другое самоподобное множество. Но у всех них в основе строения лежит фрактальное подобие lensscaper.
Его не сразу можно обнаружить. Существует такое явление, как парадокс береговой линии. Измерить её!
Так ли это просто? Вовсе нет, ведь береговая линия длинна, и измерить её простой рулеткой не получится. Поэтому берётся мера измерения — например, в 100 км.
Получили сумму всех сторон — 2800 км. Но если мы возьмём меру поменьше, например, 50 км, то измерения будут учитывать больше нервностей и мелких особенностей береговой линии — и соответственно, длина увеличится до 3200 км. Разница измерения в 400 километров!
А это нельзя посчитать за погрешность. И чем меньше мы будем брать меру, тем больше получится длина береговой линии. Фракталы беспокоят не только математиков и художников, но и географов vjcx.
Сосуды, сохраняя свою форму, утончаются и разветвляются. Они гонят кровь по всему нашему телу, «доставляя» кислород и другие необходимые для биологического процесса элементы до клеток. Фракталы даже у нас внутри: кровеносная система — тоже самоподобное множество gb5kirov.
Фракталы в тейдинге. Тема фракталов сложна и интересна, но как же она соотносится с торговлей на бирже? Думаю, что идея также проста: попытка описать и упорядочить казалось бы хаотичное и нелинейное движение цены, и найти в нем определенные закономерности. Тема фракталов достаточно молода, но одно знаем точно, что ее глубина и охват — это «черная дыра» с огромным количеством идей и возможный векторов применения. Первое, что мы можем выделить — это подобие графиков движения цены, вне зависимости от инструмента, таймфрема временного масштаба. Разумеется, что найти абсолютно похожие участки крайне сложно, но ключевое свойство фрактала — это самоподобие, а не идентичность. А найти регулярные и подобные структуры в колебаниях цены — это уже более реальная задача.
Получается, что рынок, как минимум, имеет фрактальные свойства. Само наличие закономерностей в движении говорит об этом. Волны Элиота — также определенная фрактальная закономерность в движении цены Каждая часть графика делится по определенной закономерность на самоподобные части.
Сегодня несколько фактов о фракталах. Фрактал — термин, означающий геометрическую фигуру, обладающую свойством самоподобия, то есть составленную из нескольких частей, каждая из которых подобна всей фигуре целиком.
Многие объекты в природе обладают фрактальными свойствами, например, побережья, облака, кроны деревьев, кровеносная система и система альвеол человека или животных. Первые примеры самоподобных множеств с необычными свойствами появились в XIX веке.
Фракталы в природе (53 фото)
Эволюция знает, как порадовать любителей фракталов и симметрии – 88 фотографий Образец, Флора, Композиция, Закономерности В Природе, Настенные Росписи, Макросъемки, Листья. Одна из вещей, которые привлекли меня к фракталам, это их повсеместное распространение в природе. Природный фрактал Минералы, Родохрозит, Кристаллы, Природа, Фракталы, Из сети, Фотошоп мастер, Фейк.
Прекрасные фракталы в природе
Ананасы растут по фрактальным законам, а кристаллы льда формируются фрактальными формами, такими же, как в дельтах рек и венах вашего тела. Часто говорят, что Мать-Природа - чертовски хороший дизайнер, и фракталы можно рассматривать как принципы дизайна, которым она следует, собирая вещи. Фракталы сверхэффективны и позволяют растениям максимально эффективно использовать солнечный свет и сердечно-сосудистую систему. Фракталы прекрасны везде, где они появляются, поэтому есть множество примеров, которыми можно поделиться.
Фрактал — это некая фигура со свойством самоподобия, то есть, сколько бы мы не приближались к такому предмету, мы будем видеть ту же картину, что была изначально. Классические примеры фракталов — это папоротник, капуста брокколи, капуста романеско, горные пейзажи. В природе таких явлений достаточно много. Пока математики всерьез не взялись за такие объекты, не было ясно, как можно с ними взаимодействовать. Например, стоит задача: нарисовать кровеносные сосуды в легких.
Это практически невозможно сделать без применения фрактальной геометрии. Мы попросили Давида Каца, аспиранта Института математики и механики К П ФУ, выступить для нас проводником в этот странный мир бесконечного повторения. Брокколи — конечно, полезный, замечательный продукт, но математики обычно с капустой дело не имеют. Самый классический объект: «Множество Кантора» или «Канторова пыль». Мы берем отрезок, делим его на три части и среднюю часть выкидываем. Потом повторяем и повторяем эту процедуру с каждым из оставшихся отрезков. В чем странность этого объекта? Несмотря на то, что мы постоянно что-то выкидываем, у нас остается множество точек, весьма сложно устроенных.
Есть еще один более замысловатый пример: «Салфетка Серпинского». Берем равносторонний треугольник, в серединах его сторон отмечаем точки, соединяем. Получаем равносторонний треугольник, который вырезаем. У нас остается три равносторонних треугольника. Дальше, как можно уже понять, мы то же самое делаем с каждым из треугольников до бесконечности. В чем здесь странные свойства?
При этом фрактал не обязательно должен быть кривой, как в предыдущих примерах, — это может быть как плоская, так и объемная фигура. Например, фракталами являются ковер Серпинского или губка Менгера. Само слово фрактал Мандельброт придумал на основе латинского fractus, означающего «сломанный» и созвучного английскому fraction — «дробь». Это слово одновременно отображает как необычность, извилистость фракталов, так и их свойства, связанные с их дробной размерностью.
Одинокий ученый Развитие теории фракталов тесно связано с ее основателем, Бенуа Мандельбротом — в одиночку он долгое время отстаивал и доказывал свою идею всему научному сообществу. Поэтому история открытия фракталов — в значительной степени биография Бенуа Мандельброта, хотя частные случаи фракталов множества Жюлиа, снежинка Коха и функция Вейерштрасса были известны и раньше. Но только Мандельброт увидел что-то общее в этих примерах и дал им описание. Бенуа Мандельброт. Фото: Yale University, www. В начале 60-х годов Мандельброт занимался экономикой, изучал динамику цен на хлопок. В то время почти все экономисты считали, что в долгосрочной перспективе цены зависят от внешних факторов, а в краткосрочной колеблются случайным образом. Однако Мандельброт сумел разглядеть в динамике цен закономерность — она практически не зависела от масштаба! Говоря другими словами, изменения цен за год и за месяц на графиках выглядели как две практически одинаковые кривые, несмотря на прошедшие за рассматриваемый период две мировые войны. Множество Жюлиа, www.
В то же время научным сообществом его исследования воспринимались как нечто недостойное внимания. Отчасти это происходило из-за недостаточной на тот момент формальности теории, отчасти — из-за ее разрозненности. Большинство ученых просто не понимали, как и для чего можно применять эту теорию. Однако это не помешало ее дальнейшему развитию. Функция Вейерштрасса. Иллюстрация: Eeyore22, www. Сама же теория проделала долгий путь от рисования занимательных и необычных фигур и поиска их аналогов в реальном мире до практического использования при решении серьезных научных задач. Например, одно из свойств фракталов основано на их способности иметь дробную размерность. Рассмотрим в качестве примера необычную кривую Гильберта с размерностью, очень близкой к 2, и нарисуем ее на плоскости. Она будет настолько извилистой, что полностью займет всю предоставленную ей плоскость, при этом оставаясь кривой с бесконечной длиной.
Аналогично можно представить объемную структуру с небольшим объемом и бесконечной площадью — это человеческие легкие.
Бесконечное самоподобие. И если понять принцип фрактальности — открывается огромнейший горизонт для нового взгляда на мир и на место человека в нём. Мозг — одно из самых удивительных и уникальных творений природы. Оказывается, что внешне он имеет те же фрактальные признаки, что и атмосферная облачность или корневая система крапивы. Выраженной фрактальной структурой обладают дендриты — отростки от нейронов. При увеличении видно, что каждый из них имеет свои отростки, от которых, в свою очередь, отходят еще более мелкие… Космические фотографии земных ландшафтов часто дают отличные примеры фракталов.
Горные и водные системы, русла рек, побережья — практически всё, что особенно хорошо видно на космических снимках, обладает фрактальной структурой.
Что такое фрактал, как он проявляется в природе и что еще о нем нужно знать
Природа создаёт удивительные и прекрасные фракталы, с безупречной геометрией и идеальной гармонией. дробленый) - термин, означающий геометрическую фигуру, обладающую свойством самоподобия, то есть составленную из нескольких частей, каждая из которых подобна всей фигуре целиком. Природа зачастую. Международная группа ученых обнаружила впервые нашла в природе молекулу, обладающую свойствами регулярного фрактала. Геометрия природы» пользователя Мария Иванова в Pinterest. Посмотрите больше идей на темы «фракталы, фрактальное искусство, природа». Самым известным примером фракталов в природе является снежинка. Деревья, как и многие другие объекты в природе, имеют фрактальное строение.
9 Удивительных фракталов, найденных в природе
Мы приведем еще несколько примеров. В тканях пищеварительного тракта одна волокнистая поверхность встроена в другую. Фрактальные ответвления или складки значительно увеличивают площадь поверхности, необходимой для всасывания в тонком кишечнике. Желчные протоки в печени и мочеполовая система, иммунная система и вестибулярный аппарат, сетчатка глаза, а также почки — всё это является фрактальными структурами, которые прекрасно организованы и хорошо подготовлены к различного рода повреждениям. На сегодняшний день накоплено немало научных данных, свидетельствующих о фрактальности структур и функций головного мозга и нервной системы.
Интересный факт: при визуальном поиске глаз человека вычерчивает фрактальную траекторию! Возьмём физическое тело человека целиком. Наблюдая за ростом и развитием его от рождения до смерти, мы сможем увидеть различные масштабные копии одного объекта. Тело человека претерпевает изменения подобно нелинейному динамическому фракталу.
Развитие человеческого тела. Процесс динамического фрактала Комплексный подход В прошлом веке появилась и закрепилась тенденция на разделение целостной когда-то науки на узкие направления. Научный язык усложнился, учёные всё меньше слышат друг друга, углубляясь в свои специализации. Однако сейчас уже мы понимаем, что весь мир живой и неживой природы подчиняется одним закономерностям: от развития колоний бактерий до распределения небесных тел в космическом пространстве.
Это понимание позволяет нам увидеть более целостную картину мира, открыть взаимосвязь разрозненных, казалось бы объектов, понять причинно-следственные связи. Несомненно комплексным должен быть подход и к здоровью человека. Узкая специализация врачей зачастую не позволяет лечить человека как единый организм. Но человек имеет более сложное строение: то, что видимо глазу — тело и энергетическую конструкцию, которая не видна обычным зрением.
Зная об энергетической конструкции , о её взаимосвязи с телом, мы сможем найти целостный подход к профилактике и лечению, раскрыть неиспользуемый потенциал. Простой пример: известный всем эффект «плацебо» основан на силе веры самого человека. Другими словами, просто переключив внимание с негатива на мысли о выздоровлении, человек изменяет настройки своего организма. Состояние духа больного, его доверие или недоверие врачу, глубина его веры и надежды на исцеление или, наоборот, психическая депрессия, вызванная неосторожными разговорами врачей в присутствии больного о серьезности его болезни, глубоко определяют исход болезни.
Представьте, насколько упрощается построение графических моделей, зная, что они самоподобны и вычисляются по одной простой формуле. Насколько становиться проще кодирование и передача информации, когда есть понимание, что их можно «сжать» по определённой фрактальный закономерности. И насколько понятней становится эволюция живых существ, когда мы можем найти фракталную модель их развития.
Фракталы в тейдинге. Тема фракталов сложна и интересна, но как же она соотносится с торговлей на бирже? Думаю, что идея также проста: попытка описать и упорядочить казалось бы хаотичное и нелинейное движение цены, и найти в нем определенные закономерности.
Тема фракталов достаточно молода, но одно знаем точно, что ее глубина и охват — это «черная дыра» с огромным количеством идей и возможный векторов применения. Первое, что мы можем выделить — это подобие графиков движения цены, вне зависимости от инструмента, таймфрема временного масштаба. Разумеется, что найти абсолютно похожие участки крайне сложно, но ключевое свойство фрактала — это самоподобие, а не идентичность.
А найти регулярные и подобные структуры в колебаниях цены — это уже более реальная задача.
В воде повторяются узоры волн, водоворотов, течений. Большинство природных фракталов отличаются неполным и неточным повторением. В малом масштабе они исчезают, потому что ограничены размерами живой клетки или молекул. О влиянии природных фракталов пишут авторы сайта Mindfule Ecotourism , посвященного экотуризму. Они утверждают, что самоподобные ветвящиеся шаблоны, на которые мы смотрим, повторяют строение нашего мозга, легких, сосудистой системы, позвоночника, нервной системы. В этом подобии и созвучии кроется секрет такого сильного влияния природы на человека.
Разум человека привлекает симметрия, которая позволяет мозгу перестать анализировать все вокруг и просто наслаждаться окружающими закономерностями, проявляющимися в строении деревьев, растений, цветов, гор. Созерцание природных фракталов приносит огромную пользу психическому здоровью людей. Повторяющиеся узоры расслабляют нервную систему, значительно снижают уровень стресса. Этот процесс в организме запускается физиологическим резонансом, потому что зрительная система совпадает со структурой фрактальных изображений.
А учёные продолжают находить закономерности, связанные с ними, в самых разных явлениях нашей Вселенной. Виды фракталов Фракталы принято делить на геометрические, алгебраические и стохастические. Геометрические — строятся на основе исходной фигуры, которая определённым образом делится и преобразуется на каждой итерации. Алгебраические — строятся на основе алгебраических формул. Стохастические — образуются в том случае, если в итерационной системе случайным образом изменяется один или несколько параметров.
Далее мы подробно разберём каждый класс. Геометрические фракталы Эти фигуры основаны на прямых линиях, квадратах, кругах, многоугольниках и многогранниках. Рассмотрим несколько примеров от самого простого к сложному. Множество Кантора В 1883 году Георг Кантор — немецкий математик, автор теории множеств — придумал множество, которое повторяло само себя снова и снова. Кантор взял произвольный отрезок и разделил его на две части, потом каждую — ещё на две и так далее: Изображение: Лев Сергеев для Skillbox Media Каждый этап деления прямых на две части называется итерацией. Итерация — это повторение одного и того же действия, или, по аналогии с программированием, одно прохождение тела цикла. На первой итерации у нас был один отрезок, на второй мы получили два, на третьей — четыре и так далее. Если повторять это несложное действие бесконечное количество раз и увеличить масштаб изображения, то мы увидим ту же самую картину, что и в самом начале. Это и есть визуальное воплощение самоподобия: Изображение: Лев Сергеев для Skillbox Media Снежинка Коха aka кривая Коха Изображение: Лев Сергеев для Skillbox Media Шведский математик Хельге Фон Кох в 1904 году описал кривую, воспользовавшись треугольником и методом самоподобия, в результате чего получилась фрактальная снежинка.
Ниже показаны четыре итерации построения такой фигуры. Слева изображены исходные кривые, а справа — получившаяся из этих кривых снежинка. Нетрудно заметить, что в снежинки идеально вписывается как равносторонний треугольник, так и сама кривая: Изображение: Лев Сергеев для Skillbox Media На какой бы итерации мы ни увеличили масштаб изображения, мы всегда сможем увидеть знакомый паттерн, как и с множеством Кантора. Посчитать периметр такой снежинки невозможно, потому что она может разрастаться всё дальше и дальше… Это ещё одно свойство фракталов — бесконечность. Ковёр, треугольник и кривая Серпинского Изображение: Лев Сергеев для Skillbox Media Польский математик Вацлав Серпинский брал за основу фрактала не только кривую, но и квадрат с треугольником. Для начала рассмотрим, как «размножается» кривая Серпинского. При каждой итерации количество её копий увеличивается в четыре раза, а рисунок становится сложнее: Изображение: Лев Сергеев для Skillbox Media Треугольник же на каждом шаге дробится на три равные части: Изображение: Лев Сергеев для Skillbox Media Квадрат, или ковёр, Серпинского получается так же, как и треугольник, но исходная фигура делится на восемь квадратов.
Что такое фрактал? Фракталы в природе
Природный фрактал Минералы, Родохрозит, Кристаллы, Природа, Фракталы, Из сети, Фотошоп мастер, Фейк. В природе мы встречаем фракталы в изломах береговой линии, ветвях деревьев, прожилках листьев. Фракталы — это математические модели, которые появляются снова и снова, повторяясь в разных размерах. Фрактальные модели в природе и технике Текст научной статьи по специальности «Математика». Самым известным примером фракталов в природе является снежинка.
Войти на сайт
Красота фракталов состоит в том, что их "бесконечная" сложность сформирована относительно простыми линиями. Смотрите 65 фотографии онлайн по теме фракталы в природе животные. Термин «фрактал» был введён Бенуа Мандельбротом в 1975 году и получил широкую популярность с выходом в 1977 году его книги «Фрактальная геометрия природы». Если изучить фрактальную геометрию природы, то наблюдая природные явления человек перестанет видеть хаос. Он увидит, насколько просты принципы развития и распределения в природе.
Исследовательская работа: «Фракталы в нашей жизни».
Существует одно свойство структуры, присущее всем перечисленным предметам: они самоподобны. От ветки, как и от ствола дерева, отходят отростки поменьше, от них — еще меньшие, и т. Похожим образом устроена и кровеносная система: от артерий отходят артериолы, а от них — мельчайшие капилляры, по которым кислород поступает в органы и ткани. Посмотрим на космические снимки морского побережья: мы увидим заливы и полуострова; взглянем на него же, но с высоты птичьего полета: нам будут видны бухты и мысы; теперь представим себе, что мы стоим на пляже и смотрим себе под ноги: всегда найдутся камешки, которые дальше выдаются в воду, чем остальные. То есть береговая линия при увеличении масштаба остается похожей на саму себя. Это свойство объектов американский правда, выросший во Франции математик Бенуа Мандельброт назвал фрактальностью, а сами такие объекты — фракталами от латинского fractus — изломанный. С береговой линией, а точнее, с попыткой измерить ее длину, связана одна интересная история, которая легла в основу научной статьи Мандельброта, а также описана в его книге «Фрактальная геометрия природы».
Дерево Пифагора рис. Нас заинтересовала такая геометрическая фигура, как дерево Пифагора, поскольку, она показалась наиболее удобной для реализации и наглядно показывающей свойство самоподобия. Второй этап - практический. В его основу был положен анализ способов построения фрактальных деревьев. Метод «Систем Итерируемых Функций» появился в середине 80-х гг. Он представляет собой систему функций из некоторого фиксированного класса функций, отображающих одно многомерное множество на другое. Сначала мы выполнили построение одного отрезка в плоскости Оху, а затем проводили аффинные преобразования с изменением координат его концов, поворотом вокруг осей и изменением размера с определенным коэффициентом рис.
Поэтому при разных значениях C, фрактал Жюлиа можно визуализировать по разному, например так: Изображение: Лев Сергеев для Skillbox Media Стохастические фракталы Если в геометрических и алгебраических фракталах формула постоянна, то в стохастических она меняется — и не один раз. Изменение может проходить как по конкретному закону, так и произвольно, но в обоих случаях это приводит к фантастическому визуальному эффекту! Следующее изображение основано на нескольких фрактальных формулах: Изображение: Лев Сергеев для Skillbox Media С помощью сложных стохастических законов учёные могут воспроизводить структуры объектов живой природы. Добавляя отклонения на различных итерациях к таким фракталам, как дерево Пифагора, или снежинка Коха, мы можем получить изображение наклонившейся листвы или сгенерировать сколько угодно неповторимых снежинок. Фрактальная графика На принципе самоподобия основано целое направление в компьютерной графике. При таком подходе компьютер хранит не готовый объект, а лишь формулу его отрисовки, что значительно экономит память. Таким образом, появляется возможность рисовать конкретные объекты и абстрактные 3D-модели, описывая лишь часть итогового изображения. Например, можно сгенерировать известный папоротник Барнсли, указав формулу для построения одной ветви, количество итераций и добавив хаотичные изменения на последующих итерациях: Закон, описывающий папоротник Барнсли Изображение: Лев Сергеев для Skillbox Media Изображение, сгенерированное по формуле Барнсли Изображение: Лев Сергеев для Skillbox Media Фракталы в физике Принципы построения фракталов используются в физике, в таких разделах, как гидродинамика, физика плазмы, электродинамика и радиоэлектроника. Одно из самых заметных изобретений в этой области — фрактальная антенна, которая была разработана американским инженером Натаном Коэном в 1995 году. Главное преимущество такой антенны заключается в её широком диапазоне рабочих частот. А ещё она занимает намного меньший размер, чем аналоги классической формы, и может выступать в качестве основы для подводных антенн. А чуть позже инженеры научились строить антенны на основе фракталов Серпинского, кривых Пеано и того же фрактала Коха. Фракталы в природе Как уже было сказано ранее, стохастические фракталы подарили науке новый подход к описанию природных объектов и явлений. А всё потому, что горы, облака, молнии, реки, растения, клетки живых организмов и даже галактики обладают общим свойством самоподобия. Скажем, дерево Пифагора неслучайно получило своё название, ведь ветви деревьев ярче всего демонстрируют принцип самоподобия: Фото: Лев Сергеев для Skillbox Media Вот ещё несколько примеров стохастических фракталов в листьях и растениях: Фото: Лев Сергеев для Skillbox Media Вместо вывода: применение фракталов в жизни Сегодня фракталы широко используются в самых разных областях — от математики до искусства: С их помощью описывают различные явления классической механики, гидродинамики, электродинамики и геофизики. В телекоммуникациях они позволяют моделировать электромагнитные поля в сотовой и спутниковой связи. В биологии — точно описывать структуру природных объектов, моделировать и предсказывать их поведение. Медицина использует фракталы для исследования внутренних процессов в организме человека, изучения сердечного ритма, работы кровеносных сосудов и нервной системы. В экономике на основе фракталов проводят анализ рынков и выявляют закономерности в поведении цен. В трёхмерной графике их используют для создания сложных текстур и моделей, таких как деревья, облака и морские волны. В искусстве и дизайне — когда нужно создать нестандартную «психоделическую» композицию, погрузить зрителя в новые измерения.
На рисунке эти формы застыли. На самом деле они изменяются — облака движутся, пламя мерцает, лист увядает. Your browser does not support the video tag.