В Институте физики полупроводников им. А.В. Ржанова СО РАН прошла международная конференция, посвященная 60-летию учреждения. Изобретен квантовый радар для работы в условиях плохой видимости НОВОСТИ Наука и Технологии. Новости науки» Tag» Квантовая механика. Последние новости на сайте. Квантовая физика — раздел теоретической физики, в котором изучаются квантово-механические и квантово-полевые системы и законы их движения. Новости.
Новости физики в Интернете
Вероятно, в какой-то момент, когда критическая масса развитых квантовых технологий, нашего понимания физики и экспертизы перевалит некую черту, начнется эра полностью квантовых машин. Изобретен квантовый радар для работы в условиях плохой видимости НОВОСТИ Наука и Технологии. Лауреатами Нобелевской премии по физике 2022 года стали Ален Аспе, Джон Клаузер и Антон Цайлингер — за работы в области квантовой информации и квантовой запутанности. Отличная новость! Физики нашли элементарную частицу, "размазанную" на 735 километров. Ученые из MIT выяснили, что нейтрино могут находиться в состоянии квантовой суперпозиции, находясь одновременно в двух разных.
Нобелевская премия по физике — 2022
Последние новости на сегодня. Физик признал некорректным сравнение квантовой запутанности с парой носков. Квантовая физика – это раздел физики, который изучает поведение элементарных частиц на микроуровне, используя квантовую механику. Знай наших квантовая физика. В НИТУ МИСиС создали алгоритм для моделирования работы полупроводниковых лазеров НОВОСТИ Знай наших. Физики из МФТИ совместно с коллегами из Франции экспериментально показали, что атомы примесей в полупроводниках могут формировать долгоживущие устойчивые квантовые состояния. Физики впервые ввели в состояние запутанности макрообъекты. Результат будет иметь практическое применение в квантовых коммуникациях и поможет создать новые ультрачувствительные датчики. Ученые впервые обнаружили эффекты, предсказанные квантовой гравитацией — одной из физических теорий, призванной объединить квантовую механику с общей теорией относительности Эйнштейна.
С приставкой «супер-»: обзор новостей квантовой физики
Парадоксы квантовой физики: чем удивительна квантовая реальность | Фактически квантовые явления в виде группового взаимодействия электронов можно использовать как макрообъекты, что упростит эксперименты в области квантовой физики и позволит использовать эти явления в обычной электронике и не только. |
Квантовая физика о Боге, душе и Вселенной | И расширяет наше понимание квантовой физики и странных феноменов, которые возникают на атомном уровне. В прошлом году физики из Института Макса Планка сообщили о разработке эффективного метода создания квантовой запутанности между фотонами. |
Новости квантовой физики | Физики создали «червоточину» внутри квантового компьютера. IBM представила самый мощный в мире квантовый компьютер. |
#квантовая физика | Армия России захватила опорный пункт ВСУ: новости СВО на вечер 16 декабря. |
Последние новости:
- Новости квантовой физики
- Квантовые точки: что это такое и почему за них дали нобелевскую премию?
- Что такое кубиты?
- Планетарная теория. Волна или частица
- Квантовая физика о Боге, душе и Вселенной. Интервью с ученым Дмитрием Сидориным
Будущее квантовых компьютеров: перспективы и риски
Фактически квантовые явления в виде группового взаимодействия электронов можно использовать как макрообъекты, что упростит эксперименты в области квантовой физики и позволит использовать эти явления в обычной электронике и не только. Хроники жизни. Новости дня от, интервью, репортажи, фото и видео, новости Москвы и регионов России, новости экономики, погода. У России большой научный потенциал в области математики, программирования, физики и квантовой механики», – считает Семенников. квантовая физика. 24.10.2019. Физики показали, что операции над квантовыми системами, в которых не генерируется дополнительная квантовая запутанность вдобавок к уже имеющейся в системе, в общем случае являются необратимыми.
Квантовые точки: что это такое и почему за них дали нобелевскую премию?
Означает ли это, что химики просто останутся без работы, потому что они нам больше не будут нужны? Означает ли это, что всю работу будут выполнять квантовые компьютеры? Вовсе нет. Химики будущего будут применять квантовую теорию для понимания химических реакций. Биологи будущего будут пользоваться квантовой теорией для более глубокого понимания ДНК. Но врачи и ученые, которые занимались только химией и только биологией, останутся без работы. Поскольку будущее будет квантово-механическим, и создавать лекарства мы будем именно на основе квантовой механики. Би-би-си: Означает ли это, что мы станем бессмертными? Что тогда и рака не будет?
Мы сможем спрогнозировать будущую раковую опухоль задолго до ее появления. Допустим, что ваш ДНК-код можно будет легко считывать каждый раз, когда, вы, например, принимаете душ или идете в туалет. И по нынешнему состоянию ДНК можно будет спрогнозировать, что вас ждет в будущем. Раковую опухоль можно будет предсказать за десять лет до того, как она разовьется. В США уже сейчас можно сдать кровь для диагностики рака. Уже сейчас такой анализ гарантированно даст ответ, есть ли у вас раковое заболевание или нет. В будущем слово "опухоль" просто исчезнет из нашего языка, так же как и слово "рак" в применении к заболеванию. Строение тела человека и молекула ДНК.
Цифровые технологии слишком медленны и слишком грубы. Интернет будущего будет квантовым и сольется с мозгом. Он будет называться "брейнет" англ. Человек будет просто думать, а его мысли будут переноситься по всему миру, взаимодействуя с другими мыслями или вещами. Поэтому провода нам больше не понадобятся. Достаточно будет просто подумать, а брейнет сделает все остальное. Человек будет просто думать, а его мысли станут расходиться по всему миру. Би-би-си: В последнее время многие ученые говорят об опасностях, связанных с распространением искусственного интеллекта.
Каким вам представляется будущее в этой области? На сегодняшний день человечеству угрожают три опасности: возможность ядерной войны, биологическое оружие и глобальное потепление. Однако к этому списку придется добавить и четвертую опасность: угроза существованию человечества, исходящая от искусственного интеллекта. Но его развитие чревато двумя потенциальными угрозами, и они совершенно разные. Первая из них совершенно конкретна и непосредственно угрожает жизни отдельных людей: дроны, способные распознавать черты лица и намеренно или случайно убивать кого угодно и когда угодно.
Однако не все учёные были готовы смириться с неопределённостью. К примеру, с этим постулатом спорил Альберт Эйнштейн, который считал, что науке пока просто неизвестны скрытые параметры, заставляющие частицы вести себя определённым образом. Неравенство, в которое требуется подставить результаты экспериментальных измерений, составлено так, что будет нарушаться, только если скрытые параметры не существуют.
Джон Клаузер развил идеи Белла и провёл практические эксперименты. Это значит, что квантовая механика не может быть заменена теорией, использующей скрытые параметры», — говорится в релизе Нобелевского комитета. Также по теме «Эпоха бурного развития»: доктор наук — о квантовых компьютерах и второй технологической революции Как устроен квантовый компьютер, а также чем квантовый телефон отличается от обычного и насколько защищённым будет квантовый... Однако после опыта Джона Клаузера оставались ещё некоторые сомнения: нужно было устранить возможное влияние настроек измерения параметров частиц в момент покидания ими источника излучения.
Сфера научных интересов — ядерная физика. Сейчас занимается «большими данными» - создал компанию, которая анализирует, как нами управляют через Интернет и социальные сети. Высшая математика и суперкомпьютеры точно скажут, кто и зачем придумывает мемы, кто стоит за безобидными флешмобами, и почему толпы народа как по команде начинают во что-то верить или не верить. Вопросы задает Е.
Арсюхин: - В социальных сетях люди со всего мира описывают странные случаи, которые с ними произошли. Я изучил с тысячу таких историй. Выделяются два сюжета: вот лежала вещь, секунда — и нет ее. Второй сюжет — двойники: прошел мимо тебя человек, потом снова, и уверяет, «тот, первый, был не я». Конечно, в соцсетях много фантазий, есть и нездоровые люди, но эти события, кажется, правдивы. Или я не прав? По-настоящему большая наука видит мир во всей его странности, и мир становится все более странным по мере появления все более мощных приборов. Вот стол.
Глазу он кажется твердым. Берем электронный микроскоп, и видим атомы, а между ними — пустота. То есть стол на самом деле состоит из пустоты. Ладно, но хотя бы сами атомы твердые! Берем ускоритель элементарных частиц, и видим, что и атом состоит в основном из пустоты. Вокруг ядра — электроны, то ли частицы, то ли волны, ядро — протоны и нейтроны. Хорошо, но хотя бы протоны с нейтронами твердые. Но при ближайшем рассмотрении те и другие распадаются на кварки.
А Большой адронный коллайдер демонстрирует, что и кварк — это не «частица», а некая одномерная колеблющаяся струна. Получается, все вокруг - это энергия, колебания, а «твердое вещество» - своего рода иллюзия. Фантасты гадают, может, мы живем в Матрице, и мир — лишь компьютерная симуляция? На самом деле и гадать не надо, по сути так и есть. Мир «твердых предметов» удобен и комфортен. Взял стакан, поставил на стол, никуда он не денется. Но есть проблема: он иллюзорен, и мы его сами создали под нас, под возможности наших органов чувств. Да, мы в Матрице, которую сотворили природа и наш мозг.
В прошлом году международная группа ученых доказала: мир иллюзорен, и у каждого наблюдателя своя «голограмма». Им удалось воплотить «в железе» мысленный эксперимент, предложенный физиком Юджином Винером. Винер утверждал: если один видит, что знаменитый кот Шредингера мертв, друг этого наблюдателя увидит, что кот жив. Это назвали «парадокс друга Винера». Ученые с огромным трудом синтезировали шесть пар специальных фотонов, и оказалось: ничто во Вселенной не является «состоявшимся», «твердо установленным», пока информация об этом не обошла всю Вселенную. А, поскольку Вселенная велика, все вокруг по сути существует в неком подвешенном состоянии. Моя книга упала со стола. Но, пока информация об этом не дошла до самой далекой галактики, моя книга находится в квантовой суперпозиции где-то между столом и полом.
Когда случился Большой взрыв, мир был очень прост, состоял из чистой энергии, и описывался одной формулой. Но Вселенная расширялась, остывала, и из первоначально единой энергии выделились гравитация, электромагнетизм, сильные и слабые взаимодействия два последних «держат» вместе элементарные частицы в атомном ядре. Все запуталось, и теперь физики пытаются распутать запутанное, найти формулу Единого, того, с чего все началось. Термин «запутанность» остро актуален в современной физике. Вы наверняка слышали о квантовой запутанности. Скажем, два кванта «дружат», взаимодействуют, а потом разлетаются по разным уголкам Вселенной. Но связь сохраняется навсегда. Если что-то случится с одним, другой в точности повторит состояние первого.
Причем он «узнает» об этом мгновенно, быстрее скорости света. Это уже не теория: инженеры вот-вот представят новое поколение связи, которая заменит Интернет и сотовую телефонию, а опыты по квантовой запутанности в хороших школах учитель показывает просто на столе. Чтобы «пощупать» то, Единое, надо вернуться в состояние Большого взрыва, когда господствовали колоссальные энергии.
В классическом компьютере единицей хранения информации является бит, который в зависимости от наличия или отсутствия напряжения принимает значение 0 или 1.
В КК роль основной единицы в квантовых вычислениях играют квантовые биты, или кубиты. Они отличаются от обычных битов тем, что могут равняться 0, 1 или находиться в суперпозиции. Что такое квантовая суперпозиция, чаще всего объясняют на примере подброшенной в воздух монетки. Пока она летит, для бросавшего монета находится в суперпозиции: ее значение и орел, и решка.
Суперпозиция сохраняется, пока монетку не поймали и не определили, что выпало. Еще один пример — кот Шредингера. Суперпозиция — это состояние кота, пока не открыли крышку ящика, то есть кот жив и мертв одновременно. В КК суперпозиция сохраняется, пока не производится вычисление кубита, или измерение его состояния: 0 или 1.
Именно благодаря этому свойству расчеты на КК производятся быстрее, чем на классических компьютерах. Однако для выполнения сложных алгоритмов на КК важно, чтобы значения одних кубитов были связаны со значениями других. В этом помогает такое явление, как квантовая запутанность. В нем состояния двух или большего числа частиц оказываются взаимосвязанными и их значения всегда противоположные.
Если у одной частицы значение 0, то у другой, «запутанной» с ним, гарантированно будет 1. Нередко для объяснения запутанности приводится пример с новой парой носков, когда один, надетый на левую ногу и ставший левым, автоматически превращает свою пару в правый, как бы далеко тот ни находился, причем происходит это моментально. Как сравнивать Многие мировые корпорации громко заявляют о прорывах в создании КК. Одни говорят о рекордном числе кубитов, другие — о рекорде связанных кубитов, третьи — о рекордной когерентности.
Что скрывается за этими рекордами и почему оценивать мощность КК стоит по квантовому объему? Под числом кубитов понимается объем информации, который может храниться и обрабатываться на квантовом компьютере за время когерентности. Чем больше число кубитов, тем больше возможностей для решения сложных задач. Если в обычной системе вычислительная мощность растет квадратично, то есть n2, то в квантовой — экспоненциально 2n n — в данном случае число битов, или кубитов.
Квантовые точки: что это такое и почему за них дали нобелевскую премию?
Главным научным прорывом 2023 года в области квантовой физики стала разработка и проверка работы сразу нескольких квантовых компьютеров, способных автоматически корректировать случайные ошибки, возникающие в процессе их работы. Последние новости на сайте. Квантовая физика (рассказывает физик Дмитрий Бочаров и др.) Новости дня от, интервью, репортажи, фото и видео, новости Москвы и регионов России, новости экономики, погода.
В Китае создан 504-кубитный чип для квантового суперкомпьютера. На подходе 1000-кубитный
Новости по теме: квантовая физика | Физики из МФТИ совместно с коллегами из Франции экспериментально показали, что атомы примесей в полупроводниках могут формировать долгоживущие устойчивые квантовые состояния. |
О связи Канта с современной квантовой физикой рассказали в БФУ | Принципы квантовой физики, ставящие в тупик ученых: парадоксальная физика и ее главные загадки. |
Ключевую теорию квантовой физики наконец-то доказали. Главное | Или построить новые методы долгосрочной защиты информации на основе квантовой и постквантовой криптографии, которые будут устойчивы к широкому классу атак, поскольку их надёжность сводится к фундаментальным законам физики. |
Новости по теме: квантовая физика | Квантовая физика — раздел теоретической физики, в котором изучаются квантово-механические и квантово-полевые системы и законы их движения. Новости. |
Физика: 10 научных прорывов 2023 года со всего мира | Вокруг Света | В Институте физики полупроводников им. А.В. Ржанова СО РАН прошла международная конференция, посвященная 60-летию учреждения. |
Новости квантовой физики
новости России и мира сегодня. Квантовый – последние новости. В 1964 году физик Джон Белл придумал, как различить в эксперименте две версии квантовой механики — ортодоксальную и со скрытыми параметрами. Квантовая физика — раздел теоретической физики, в котором изучаются квантово-механические и квантово-полевые системы и законы их движения. Новости. Квантовая физика называется разделом теоретической физики, в котором изучаются квантово-механические и квантово-силовые системы, взаимодействия и законы их движения. новости России и мира сегодня.
Квантовая запутанность
- Новости физики в Интернете за декабрь 2023. УФН
- Популярное
- Рекорд Китая
- квантовая физика — последние новости сегодня | Аргументы и Факты
- Все материалы
Форма успешно отправлена!
- О квантовой коррекции ошибок
- Наука РФ - официальный сайт
- INQUANT — ИНСТИТУТ КВАНТОВОЙ ФИЗИКИ
- Нобелевка по физике за изучение квантовой запутанности — что это значит | РБК Тренды
- ЭПР-парадокс
Квантовые точки: что это такое и почему за них дали нобелевскую премию?
Ее путь занял никак не меньше 50 тыс. Если все это верно, то открытая звездная система несколько противоречит закону всемирного тяготения, согласно которому массы в пространстве взаимодействуют друг с другом напрямую. Впрочем, подобное несоответствие с классическим законом, сформулированным в конце ХVII века, не потрясает основ физики и космологии. Ученых волнует несводимость взглядов Альберта Эйнштейна на природу тяготения и постулатов квантовой физики. В частности, в квантовой физике постулируется, что квантовые законы реализуются на сверхмалых расстояниях и в мире сверхмалых частиц. Они могут пребывать в разных локациях и быть в то же время связанными, перепутанными entangled своими квантовыми свойствами-состояниями. Долгие десятилетия споров о природе света привели также к постулированию существования так называемых волновых пакетов распространяющееся волновое поле, занимающее в каждый момент времени ограниченную область пространства. Так символически можно представить с возможным получением колебаний его массы. Иллюстрации Physorg Доказательство квантовой природы света добыл за век до рождения квантовой физики глазной врач Томас Юнг, практиковавший в Лондоне. Однажды он направил свет на пластинку с двумя узкими прорезями. На стене он увидел, к своему удивлению, чередование светлых и темных полос, которое было похоже на картину волн, возникающих на поверхности воды, в которую одновременно бросили два камня.
Юнг догадался, что свет есть волны, которые после разделения начинают усиливать и гасить друг друга, «вмешиваться» в распространение. Подобное вмешательство он назвал по латыни «интерференция». Гениальность Альберта Эйнштейна, создателя общей теории относительности ОТО , постулировавшего неразрывность пространства-времени, подтвердилась через век, когда были зафиксированы гравитационные волны, распространяющиеся подобно «ряби» ripples.
Тема должна быть: 2. Текстовая часть может быть небольшая из двух, трех предложений. В конце темы должна стоять ссылка на Оригинальный источник. Свободная тема обо всем Поговорим о квантовой физике и просто о жизни на природе. Попьем чай. Вслушаемся в тишину, звуки природы и гитары. Добро пожаловать к нашему костру. Мы рады что Вы пришли именно сейчас!
Однако недавно физики из Брукхейвенской национальной лаборатории BNL совершили прорыв — они обнаружили, что квантовая запутанность действует и на разные частицы. Это открытие было сделано с помощью релятивистского коллайдера тяжелых ионов RHIC. Когда ионы сталкиваются или пролетают мимо друг друга, их взаимодействие обнаруживает внутреннюю работу атомов, которой управляют законы квантовой механики. Команда BNL изучала ионы золота, движущиеся почти со скоростью света. Их окружали облака фотонов, и когда они пролетали мимо рядом, фотоны взаимодействовали с глюонами, другим типом частиц, которые скрепляют атомные ядра. В результате такого взаимодействия образовались две новых частицы — пионы — с противоположными зарядами. Детектор RHIC смог измерить некоторые из их свойств: скорость и угол встречи, из которых позже ученые с беспрецедентной точностью вывели размер, форму и расположение глюонов в ядре атомов.
В теории эта разница может достигать четырёхкратного превосходства квантовых радаров, но для эксперимента даже такого преимущества достаточно, чтобы дальше работать в этом направлении. Схема экспериментальной установки Следует сказать, что до этого никто не заявлял о создании схемы квантового радара для микроволнового диапазона. Предыдущие эксперименты были основаны на запутывании пар фотонов видимого или близкого к нему диапазонов, что наука освоила довольно хорошо. Но фотоны видимого или инфракрасного света, как нетрудно догадаться, будут бесполезны в дождь, снег и в густой облачности. Поэтому работающая схема квантового радара с фотонами микроволнового излучения в гигагерцовом диапазоне, где работают классические радары, это определённый прорыв, которым можно гордиться. Но также не следует забывать о разработках китайцев , которые тоже заняты серьёзными исследованиями в области квантовых радаров. Они также преуспели в экспериментах с запутыванием фотонов в оптическом диапазоне и представили альтернативу микроволновым фотонам в виде излучения запутанных электронов, разогнанных до скорости, близкой к световой. Во всех случаях серьёзным недостатком таких решений было и остаётся необходимость сильнейшего охлаждения запутанных частиц, что было также в случае схемы французских учёных. Но на уровне квантовых явлений всё настолько необычно, что «ни в сказке сказать, ни пером описать». В квантовом мире скрыто так много всего непознанного, что каждое открытие предоставляет горизонты возможностей. Так, недавно обнаруженное новое квантовое состояние вещества обещает помочь в создании квантовой памяти и не только. Источник изображения: Pixabay Исследователи из Массачусетского университета в Амхерсте и их коллеги из Китая воспроизвели условия, при котором вещество приобрело хиральное бозе-жидкостное состояние. Хиральность указывает на отсутствие левой и правой симметрии в структуре вещества, а отношение к бозе-жидкости говорит о чрезвычайной текучести или сверхпроводимости при температурах, близких к абсолютному нулю. Новое состояние вещества было получено в образце из двух наложенных один на другой слоёв полупроводника. В верхнем слое был избыток электронов, а в нижнем — определённый дефицит дырок. Тонкость эксперимента была в том, что на всех электронов дырок не хватало. Приложив к образцу сверхсильное магнитное поле, учёные начали следить за движением электронов. По мере увеличения силы поля образец переходил в состояние хиральной бозе-жидкости с демонстрацией ряда уникальных свойств. Например, при охлаждении до температуры близкой к абсолютному нулю электроны в веществе «зависали в предсказуемом порядке и с фиксированным направлением спина» и не реагировали на другие частицы или на магнитные поля. Подобная стабильность может найти применение в цифровых системах хранения данных на квантовом уровне. Другой интересный момент заключался в том, что воздействие внешней частицы на один из электронов в системе проявлялось реакцией на всех электронах в системе, что объяснили эффектом квантовой запутанности частиц в бозе-жидкости. Это открытие тоже обещает быть полезным в будущих квантовых системах. Необходимо будет передавать квантовые состояния, в частности — запутывать кубиты одного компьютера с кубитами другого. На небольших расстояниях это ещё можно сделать, но обеспечить такую передачу на десятки, сотни и тысячи километров — это задача, требующая особых ретрансляторов. Работу такого показали в Австрии. Такая физика сильно затрудняет квантовое распределение ключей и квантовую криптографию на этой основе. Дополнительно проблему усугубляет тот факт, что передачу квантовых состояний необходимо втиснуть в существующую кабельно-волоконную инфраструктуру — обеспечить работу как на пассивном, так и на активном оборудовании. Если проще — переносящий квантовое состояние фотон требуется сначала перевести в фотон со стандартной для современной телекоммуникации частотой для его передачи по оптике, где свои требования к длинам волн, а затем сделать обратное преобразование. Осуществить подобный трюк удалось учёным из австрийского Университета Инсбрука. Исследователи собрали ретранслятор запутанности фотонов и показали её «телепортацию» на 50 км. Уточним, речь идёт не о передаче информации, которую можно расшифровать тем или иным способом, а о передаче квантового состояния обычно речь идёт об измерении спина — ориентации магнитного вектора элементарной частицы. Один из фотонов мог быть 0, 1 или бесконечным множеством промежуточных значений, но при измерении характеристик одного из них, второй мгновенно показывал противоположное значение по измеряемому параметру. На самом деле, учёные не выносили оптоволокно из лаборатории и использовали бобины с двумя отдельными 25-км отрезками оптического кабеля. Ретранслятор с квантовой памятью соединял эти отрезки посредине. Квантовая память в виде ионов кальция в оптической ловушке в оптическом резонаторе играла роль запоминающего устройства на случай потери фотонов в процессе передачи, но главное — она была ключевым элементом в обмене запутанными состояниями между фотонами в одном и другом отрезке оптоволокна. Каждый из ионов кальция испускал по фотону. Эти фотоны разлетались по своим кабелям сегментам сети и при этом оставались спутанными каждый со своим ионом. Перед отправкой фотона в другой конец оптоволокна его преобразовывали в фотон с длиной волны 1550 нм, чтобы он соответствовал действующему стандарту в телекоммуникации. Затем ионы кальция запутывали между собой. Эксперимент показал, что запутывание ионов в ретрансляторе вело к синхронному запутыванию фотонов или, проще говоря, к мгновенной передачи запутанности по оптическому кабелю длиной 50 км. Согласно проделанным экспериментам, учёные сделали вывод о необходимости ретрансляции квантовых состояний каждые 25 км. Это будет наилучшим образом соответствовать требованиям для сохранения высокой пропускной способности и наименьшей вероятности появления ошибок. Для её решения необходима сложнейшая математика и невообразимые эксперименты. И если на бумаге ничего невозможного нет, то с опытами всё плохо — либо кванты, либо классика. Но надежда есть. Группа европейских и сингапурских учёных предложила квантовый симулятор, который воспроизводит эффект квантовой гравитации и не только. Учёные из Венского технологического университета, Университета Крита, Наньянского технологического университета Сингапур и Берлинского университета опубликовали в научном журнале Proceedings of the National Academy of Sciences of the USA PNAS статью, в которой рассказали об успешной симуляции гравитационного линзирования на квантовом симуляторе. Фактически они утверждают о симуляции квантовой гравитации , обоснованием которой занимаются все физики-теоретики и никак не могут это сделать. В качестве основы для квантового симулятора исследователи взяли облака сверхохлаждённых атомов — это определённо квантовые структуры с соответствующим математическим аппаратом и массой решений по управлению ими вспомним многочисленные квантовые вычислители-симуляторы. Вместо света учёные взяли за основу звук и представили его как релятивистский объект из общей теории относительности. Получился квантовый симулятор распространения света в пространстве, который работал в точном соответствии как с ОТО, так и с квантовой теорией. В частности, эксперимент показал осуществимость эффекта гравитационного линзирования на симуляторе. Эксперименты показывают, что форма световых конусов , эффекты линзирования, отражения и другие явления могут быть продемонстрированы в атомных облаках именно так, как это ожидается в релятивистских космических системах. Постановка экспериментов и полученные результаты могут помочь открыть неизвестные доселе явления и эффекты и, в конечном итоге, могут привести к созданию общей теории функционирования нашей Вселенной. Этот вопрос крайне смущал многих физиков прошлого века, включая Альберта Эйнштейна, и был предметом постоянных споров. Для нового эксперимента построили 30 метров вакуумной трубы с криогенным охлаждением, чтобы фотон как можно дольше летел от одной запутанной частицы к другой и не успел вмешаться в измерения. Устройство 30-м трубы из эксперимента с волноводом посередине. В таком случае они должны «передавать информацию» быстрее скорости света. По его мнению, мы просто не всё знаем о квантовой физике, и могут быть какие-то скрытые параметры, которые уже содержатся в характеристиках частицы и выдаются в ответ на измерение свойств одной из запутанных частиц. Например, если мы измерили направление спина одного из пары запутанных фотонов, то информация о спине второго оно будет противоположным по направлению становится известна мгновенно, где бы этот второй фотон из пары не находился. Это также называют эффектом квантовой телепортации. Для определения системы на наличие скрытых параметров в 60-х годах прошлого века физик Джон Белл предложил мысленный эксперимент, который уже в семидесятые годы поставил Джон Клаузер за что ему, в частности, была присуждена Нобелевская премия по физике за 2022 год. В классической системе нашем с вами мире неравенства Белла соблюдаются всегда, тогда как в квантовом мире они нарушаются.