Новости профессии связанные с нейросетями

Создатель сайта Кремля предрек исчезновение ряда профессий из-за нейросетей. Использовать нейросети под силу каждому, независимо от опыта и профессии. Команда VK Cloud перевела статью, в которой дата-сайентист рассказывает о новых специальностях, появление которых в грядущие годы связано с развитием искусственного интеллекта.

Профессии будущего. Как нейросети открывают новые направления в edtech

От лучшего к худшему: что такое ранжирование ответов. В конце каждого параграфа есть несколько проверочных вопросов, которые помогут закрепить знания. Другой способ — подать заявку на участие в школе AI-тренеров. Для поступления нужно успешно выполнить тестовое задание. Обучение в школе бесплатное, состоит из двух частей. Курс включает лекции, практические занятия и их разбор.

Очный этап.

Применение искусственного интеллекта в работе электротехнологов зависит от конкретного сегмента деятельности: так, в энергосистемах ИИ прогнозирует потребление, диагностирует неисправности, оптимизирует производство и распределение энергии. Требования к образовательному уровню в этой области высокие: специалист должен закончить бакалавриат или магистратуру по специальности 13. Средняя месячная зарплата — 130—150 тыс. Внедрением и эксплуатацией актуальных информационных технологий занимаются специалисты по цифровой трансформации — профессионалы, использующие возможности цифровизации для повышения эффективности бизнеса. Их цель не просто ввести в повседневную практику новые методики и инструменты, но и изменить корпоративную культуру. Одно из самых перспективных направлений цифровой трансформации — переход функциональных обязанностей персонала к ИИ: сегодня чат-бот общается с клиентами ничуть не хуже человека-консультанта, а завтра область принятия решений в бизнесе, вполне возможно, будет отдана нейросетям. Поскольку цифровая трансформация охватывает все сферы экономики, специалисты по ней весьма востребованы: зарплаты начинаются со 120 тыс. В упоминавшемся в начале отчете Всемирного экономического форума названы и профессии, которым грозит стремительное сокращение рабочих мест. К ним относятся банковские клерки, кассиры, секретари, сотрудники почты, бухгалтера и страховые служащие.

Собственно, в сфере медиа уже начались такие тревожные процессы. Например, немецкий таблоид Bild объявил о программе сокращения расходов на 100 млн евро, что приведет к увольнению почти 200 сотрудников. На какие технологии будущего бизнесу необходимо обратить внимание По крайней мере один случай свидетельствует , что этот риск реален. Автора из технологического стартапа уволили без объяснения причин. Позже она получила сообщение от руководителей, что ChatGPT дешевле, чем использование ее услуг. Матиас Депфнер, гендиректор Axel Springer, куда входят Bild, Insider, Politico и Welt, прогнозирует , что ИИ вскоре сможет работать с информацией значительно лучше, чем люди. Однако по его словам, журналисты все равно будут нужны, чтобы понять «истинные мотивы» людей.

Он призвал редакции уделять больше внимания эксклюзивным новостям, расследованиям, комментариям экспертов, которые пока не способны делать машины. Успех издателей будет зависеть от способности создавать такой оригинальный контент. Журналисты уже сейчас могут писать авторские колонки, репортажи и исследования, используя инструменты искусственного интеллекта для сбора и анализа данных. А также могут выбрать узкую специализацию и сосредоточиться на развернутой, глубокой журналистике, требующей критического мышления и человеческой мысли. Писатель На сайте Amazon появились книги, подписанные именем американского автора Джейн Фридман. Однако писательница заявила, что они написаны искусственным интеллектом. Много моего контента является общедоступным для обучения моделей ИИ», — написала автор на собственном сайте.

Ранее писательница создала несколько книг об издательской индустрии, и фальшивые книги довольно удачно имитировали ее произведения. Союз писателей и сценаристов Америки уже объявил забастовку. Авторы требуют правового регулирования искусственного интеллекта в дополнение к повышению зарплат. Если они заберут работу писателей, они заберут и работу всех остальных. Как вы знаете по фильмам, в конце работы обычно убивают всех», — говорит Миранда Берман. Дошло уже и до суда: 17 знаменитых писателей, среди которых и Джордж Р. Мартин, подали групповой иск в суд Нью-Йорка.

Авторы заявили, что OpenAI без разрешения копировала работы истцов и использовала защищенные авторским правом материалы для обучения языковых моделей. А это, по мнению писателей, ставит под угрозу прибыль и нарушает право на контроль над собственными произведениями. Графический дизайнер Генеративный искусственный интеллект может значительно повлиять на профессию графического дизайнера. Все мы видели, как инструменты генеративного ИИ — например, Dall-E и Midjourney — создают художественные или фотореалистичные изображения из текстовой подсказки. И здесь возникает множество вызовов и споров. Начиная от потери заказов, которые в будущем будет выполнять ИИ, и заканчивая защитой прав интеллектуальной собственности на настоящие произведения.

Но за первоклассными специалистами ведется настоящая охота крупнейшими компаниями. Потолка дохода для них нет. Аналитик данных Такие специалисты области ИИ работают с большими объемами данных для выявления тенденций и закономерностей, создания моделей и прогнозов на основе этих данных. Для работы в этой сфере необходимо иметь знания в статистике и программировании, уметь взаимодействовать с базами данных и специальными инструментами. У опытных сотрудников доход может достигать 200 000-300 000 руб. Нейро-иллюстратор Эта специальность ИИ занимается созданием изображений, используя технологии искусственного интеллекта и нейросетей. Работа художника заключается в разработке алгоритмов и моделей AI, которые смогут создавать художественные произведения, отталкиваясь от определенных правил и параметров. Одна из задач нейро-художника — создание алгоритмов, которые могут анализировать и интерпретировать художественные произведения. Делать выводы о том, какие картинки и объекты наиболее привлекательны для зрителей, использовать эту информацию для создания новых изображений. Еще одна задача специалистов в области искусственного интеллекта — создание компьютерных моделей, которые могут воссоздавать изображения в стиле классических художников с использованием технологий нейронных сетей. Они могут быть использованы в различных целях.

Какие профессии заменит искусственный интеллект

Не было сложностей в обучении. Read More До обучения: работает охранником, брал кредиты на дорогостоящие курсы, но они не имели эффекта. С женой развелся, оставил ей квартиру. Во время обучения: обучению уделяет свободное от работы время, в среднем 4-5 ч в день. Первые заказы получил во время обучения и смог заработать 15 000 руб, которые потратил на лечение любимой кошки. Сейчас: на данный момент есть 2 постоянных заказчика. За активность Андрея я подарил ему один из курсов и он будет помогать в учебном чате 2-го потока. Read More До обучения: прошла разные курсы в нашей школе и на каждом из них заработала, потом попала в первый поток учеников по ChatGPT Во время обучения: cтарается 3-4 часа в неделю посвящать обучению, благодаря курсу привела 3 новых клиента, от них доход составляет 75 000 р. Сейчас: цель - создание своего онлайн-курса, сейчас доход составляет от 300 000 - 500 000 в мес.

Дело в том, что нейросеть — это хоть и умная, но всё-таки программа, которой нужны чёткие команды. Промпт-инженер от англ. Суть новой профессии заключается в том, чтобы выяснять задачи и требования заказчика, переделывать их в промпты и получать результат с помощью нейросетей. Задачи промпт-инженера не ограничиваются составлением запросов. Он тренирует нейросети, настраивает параметры и логику их самообучения, а также участвует в разработке и тестировании продуктов на основе ИИ. Поэтому знание языков программирования, структур данных и инструментов big data будет весомым преимуществом для кандидата и поможет быстрее расти в профессии. Зарплаты у промпт-инженеров более чем достойные. Правда, на момент выхода публикации удалось найти только одну актуальную вакансию. В одном из них, например, искали специалиста с опытом 3—6 лет — притом что сама профессия появилась в этом году. Сегодня же на популярных карьерных площадках, таких как HeadHunter и Superjob, вакансий нет.

То есть у нас помимо дизайнеров появились еще люди, которые обслуживают мозги Николая Иронова. Ну как обслуживают? Развивают и разрабатывают новые технологии, и в том числе дизайнеры, которые режиссируют эти технологии.

То есть здесь главная дизайн-задача раньше была в том, чтобы создать непосредственно конечный объект дизайна, а сейчас она плавно трансформировалась в то, чтобы создать ту систему, способную масштабировано производить большое количество экземпляров арт-дизайна. Но дизайн-задачи остались теми же, просто они немного трансформировались, и плечо получается больше. То есть объем дизайнеров тот же, но эффективность их несопоставимо больше, потому что это масштабируется.

Коротнева: Я правильно понимаю, что дизайнер, человек, выполняет творческую функцию, придумывает общий концепт, а уже Николай Иронов, ваш проект, он это все масштабирует и просто пропечатывает в огромном количестве? Или это не совсем так работает? То есть дизайнер — это мозги и творчество, а нейросеть — это условно руки, руки и механизмы?

Кулинкович: Все сложно. Давайте обрисую, в целом, систему. Николай Иронов для начала — это не одна нейросеть, это большое количество разных алгоритмов, наборов алгоритмов, которые работают в ансамбле между собой.

Собственно, рождение Николая Иронова — это не рождение какой-то одной технологии генеративного дизайна. Это рождение правильно срежиссированной комбинации технологий. И с момента рождения Николая, когда мы всем рассказали о том, что он существует, о том, что он выполняет дизайн задачи, его мозги пересобрались уже очень-очень много раз.

И вот они сейчас снова в одном шаге от того, чтобы пересобраться с использование новых технологий, которые появились на рынке. Соответственно, дизайнеры, которые занимаются этим проектом, их задача заключается в том, чтобы правильные технологии объединить в правильный пайплайн — последовательность действий, когда результат одного алгоритма правильно передается правильный результат другому алгоритму, и вот так вот по этому конвейеру получается какой-то новый результат. Соответственно, дизайнеры Иронова проектируют примерный диапазон, изобразительный диапазон, учат его новым стилям, подключают к нему новые шрифты и так далее.

И вот здесь мы упираемся в то, что задача дизайнера, она на самом деле и раньше была такой — применить какое-то изобразительное решение в правильный контекст. Потому что поставщиками потребностей всегда были и будут люди. Соответственно, принять правильное решение, какой из десятков и даже сотен вариантов подходит лучше всего, - это была, есть и будет истинная работа дизайнера, потому что дизайн делается людьми, для людей.

А сейчас, с появлением роботов, просто у нас появляется некоторая компонента, которая называется искусственным интеллектом, которая позволяет: а делать это масштабировано, то есть в больших масштабах, вместо трех вариантов логотипа выбирать из тысячи, б позволяет это делать непредсказуемо. Собственно, в этот все отличие от того, что сейчас называется искусственным интеллектом от алгоритмических каких-то результатов, в том, что мы часто получаем не вполне предсказуемый результат, и это очень похоже на то, как работает человек. Собственно, вот и вся разница.

Но корневая суть работы дизайнера — она не поменялась. Это было и есть подбор правильного варианта в правильные контексты. Гребенников: То есть определяет.

Что красиво, сегодня дизайнер все еще, а не искусственный интеллект? Кулинкович: Да, но… У нас, например, есть отдельные технологии внутри Иронова, которые позволяют отбросить совсем плохие варианты. То есть такой примитивный арт-директор, скажем так.

И он помогает не выгружать на конечного пользователя весь массив данных, которые слишком шероховатые, слишком смелые, а как бы делать такой скоринг дизайн-решений, чтобы финальное решение было в каком-то более-менее приличном диапазоне. Поэтому мы все равно используем эти технологии, даже чтобы отсортировать какой-то большой массив выдачи, но финальное решение, конечно, принимает человек. Гребенников: А как вообще происходит постановка технического задания искусственному интеллекту?

Предположим, я — маленькая пекарня во Владимирской области. Я приходу в вашу студию и говорю: «Хочу себе классный логотип, чтобы ко мне приходило не 2 000 человек в месяц, а 15 000 человек. Я считаю, что вся проблема моя в логотипе».

Я говорю: «Хочу такой логотип, чтобы там был колосочек, хлебушек и круассанчик обязательно». Вы же куда-то это загружаете. Как происходит процесс формирования технического задания?

И потом как искусственный интеллект осознает, что мне нужно как конечному клиенту? Кулинкович: Начнем с того, что если вы предъявите задание живым людям, живым дизайнерам, то, скорее всего, если они будут достаточно с вами честны, то они скажут, что изменение логотипа не увеличит вашу выручку в 10 раз. Это первый момент.

То есть если у вас была пекарня с плохим логотипом, а потом появляется некоторый бренд с хорошим логотипом, то едва ли это напрямую окажет влияние на ваши продажи. Косвенно, возможно, при правильном стечении обстоятельств, правильно посеве, да. Но, скорее всего, это не является критерием хорошего логотипа.

Второй момент заключается в том, что, если мы посмотрим на логотип пекарен и других каких-то бизнесов, связанных с хлебобулочными изделиями, там не всегда фигурируют колоски, не всегда фигурируют круассаны. А иногда это некий образ, визуальна интерпретация образа бизнеса, которая этим дизайнером и сделана. Соответственно, когда вы приходите в брендинговое агентство, где сидят живые люди, и они получают этот бриф, что еще происходит?

Они его творчески интерпретируют. Они смотрят, как выглядят булочные в этом городе, в округе, пытаются придумать что-то контрастное, что-то отличное от тех ребят, которые на той же улице торгуют круассанами. И, соответственно, они приходят с некоторыми дизайн-гипотезами, что кто-то решил, что это будет какой-то крестик красивый, в котором угадывается что-то такое.

Кто-то решил пойти через концепцию семейности, семейного кафе, и вообще нарисовал сердечко, потому что вот «Приходите к нам. Мы вас любим». И все такое.

А кто-то прошел напролом и начал рисовать конкретно круассан, фотореалистично и так далее. И эти все подходы имеют право на жизнь, и в равнозначной степени вы можете получить такие варианты от живых людей. В случае с Ироновым человек, без участия людей, он заполняет бриф, описывает свою компанию.

Дальше у нас отдельная система, нейросеть, она интерпретирует бриф, то есть она из текста брифа достает некоторые образы, которые могут подходить под визуальное представление этой компании, как она может быть представлена в виде какого-то емкого символа либо знака. И дальше это по такой цепочке передается, появляются эти визуализации этих образов, они обогащаются разными шрифтовыми комбинациями, дальше подключаются отдельные алгоритмы, которые подбирают цветовые сочетания комплиментарные. В общем, там сложная-сложная штука.

Но по факту это точно то же самое, что происходит при работе с живым человеком. То есть интерпретируется некоторый текстовый ввод, так же как к вам приходит человек и что-то говорит, и вы как-то это трансформируете. Мы все эти шаги условно творческих мытарств алгоритмизировали, перевели в какие-то отдельные процессы?

И клиент на выходе получает опыт, очень сопоставимый с опытом общения с живым дизайнером. Только наш дизайнер не капризничает, не болеет. Коротнева: Не уходит в отпуск.

Кулинкович Да, да, да. Гребенников: Скажите, а стоимость разработки логотипа… Логотип, предположим, я пришел за логотипом, искусственным интеллектом и обычным дизайнером в студии Артемия Лебедева отличается? Есть какой-то прайс на искусственный интеллект и обычного дизайнера?

Кулинкович: Да, конечно, отличается. Когда вы приходите лично в брендинговое агентство или дизайн-студию, помимо непосредственного конечного дизайнера, который сидит и визуализирует ваш логотип, в это вовлечено очень много людей на самом деле. Это юристы, которые помогают составлять договор; менеджеры, которые позволяют клиенту и дизайнеру услышать друг друга, перевести с одного языка на другой, и много-много всего.

Соответственно, когда вы работаете с живыми людьми, чаще всего дизайн — это операционный процесс, где клиент хочет, чтобы его услышали и некоторое врем поиграли с ним вот в эту игру «Согласование видения», да? Это все умножается на стоимость часов специалиста. И разные компании, конечно, по-разному, диапазон очень большой, но он может доходить до очень больших сумм.

То есть если вы просто придете в большую дизайн-компанию, то разработка логотипа с нуля, где вас будут слышать, слушать долго и до победного, она может быть супердорогой, неподъемно дорогой для малого и среднего бизнеса. Поэтому Иронов и другие генеративные технологии — это не просто про скорость, это про такую демократизацию дизайна, что если у вас не слишком много денег для того, чтобы играть во все эти чаепития и подписания договоров дорогостоящее, то вы можете пойти и получить из коробки сопоставимый по качеству результат. Просто процесс будет происходить несколько иначе.

Вам нужно будет принять, что ваши какие-то правки и пожелания интерпретируются не прямым методом, а косвенным, в результате работы некоторых алгоритмов. Там могут быть шероховатости, а могут быть, наоборот, источники классных открытий в результате этого. Гребенников: Вот вы говорите про открытия.

А бывало так, что пришли две разные компании, диапазон полгода-год, и искусственный интеллект выдал одинаковый логотип на совершенно разные задачи, которые перед вами ставили? Такое происходит и с живыми людьми, то есть можно увидеть очень много примеров того, как дизайнеры думают похоже, скажем так. Гребенников: Назовем это так, хорошо.

Кулинкович: Ну да. Просто на самом деле очень часто, когда у вас большой объем работы, вы сделали 1 000 логотипов, наивно полагать, что в мире все ваши логотипы абсолютно аутентичны, потому что каждый день в мире сотни и тысячи дизайнеров генерят новые логотипы, а набор примитивов, из которых логотипная графика состоит, он довольно ограничен, потому что есть базовые формы: треугольник, прямоугольник, квадрат и так далее, которые так или иначе комбинируются. Если мы говорим условно, что даже у стран, которых ограниченное количество, есть очень похожие флаги, которые можно часто путать друг с другом, что уж говорить про логотипы, которых сотни тысяч генерируется каждый год.

Соответственно, мы видим, что действительно могут появляться одинаковые работы, как у живых людей, так и нейросеть может генерировать одинаковые работы, и мы в этом не видим проблемы, потому что это было долгое время ранее. Если где-то в Сингапуре еще существует похожая птицефабрика с таким же крестиком, таким же цветом и с таким же соотношением сторон исполнен, то едва ли эти бизнесы будут друг друга локтями толкать. Поэтому мы на это смотрим совершенно нормально компенсируем это объемом, то есть проблема плагиата существенна, когда у вас стоимость каждой итерации очень большая, а дизайнер уходит на следующую итерацию, неделю молчит, пыхтит и так далее.

Но когда вы можете еще одним щелчком сгенерировать еще 100 альтернатив, то, в целом, это перестает быть проблемой. Но я предлагаю переходить от проекта Николай Иронов к другим генеративным технологиям, потому что летом прошлого года буквально весь интернет взорвала сеть Midjourney, которая создавала крутые классные визуальные картинки, и все были в полном восторге. Но вместе с этим восторгом действительно возник вопрос о том, что «Зачем мне условно в штате держать дизайнера, если я могу загрузить свой достаточно вариант брифа, и нейросеть выдаст мне несколько классных вариантов: совершенно удивительных и визуально привлекательных.

Сергей, давайте поговорим немножко про это. Во-первых, как вы думаете, какие перспективы развития у этих нейросетей? Насколько действительно хорошо они генерируют визуальные изображения, и какие риски это несет для творческих профессий?

Кулинкович: Спасибо за вопрос.

Он поможет освоиться в теме за 5 уроков. Достоверность ответов: из чего состоит и как проверять. Важное о структуре ответов нейросети и видах текстов. От лучшего к худшему: что такое ранжирование ответов. В конце каждого параграфа есть несколько проверочных вопросов, которые помогут закрепить знания. Другой способ — подать заявку на участие в школе AI-тренеров. Для поступления нужно успешно выполнить тестовое задание.

Популярные посты

Тенденция к большей заинтересованности рынка в гуманитариях со знанием ИИ, нежели в аналогичных навыках у программистов, может быть связана с относительной "молодостью" нейросети, считает генеральный директор EvApps Альфред Столяров. Недавно телеканал RTVI захотел рассказать о профессиях будущего и обратился за помощью к нейросети MidJourney. Использовать нейросети под силу каждому, независимо от опыта и профессии. Многие задачи, связанные с обработкой и анализом больших объемов данных, могут быть автоматизированы.

5 перспективных профессий в области искусственного интеллекта

Специальность оператора нейросетей представляет собой перспективное направление развития, особенно в контексте быстро меняющегося мира IT. Профессия «Специалист по нейросетям» предполагает глубокие знания и специализацию в различных областях, связанных с нейросетями. В профессиях, связанных с правом и безопасностью, нейросети могут быть использованы для анализа больших объемов данных, чтобы выявлять законопреступления и определять наиболее эффективные стратегии противодействия. Промт-инженер знает, как получить доступ к нейросетям и взаимодействовать с ними через различные платформы и инструменты. Но Universal потребовал от музыкальных агрегаторов запретить нейросетям учиться на их плейлистах. — Какие профессии заменят нейросети? 19 реальных примеров! — Заменит ли ИИ специалистов этих профессий на 100%?

Для каких задач применяют ML и нейросети

  • Треть российских соискателей полагает, что их профессию могут заменить нейросети
  • ИИ ищет работу: топ-10 профессий, которые исчезнут или изменятся из-за нейросетей
  • Неожиданные профессии, где используют нейросети
  • ИИ вам в помощь: почему самозанятым нужно учиться работать с нейросетями

Профессии, связанные с нейросетями: какой бывает работа будущего и как на нее устроиться

Чтобы не поддаваться популистским уверениям, что роботы и нейросети отберут хлеб у трудящихся, и адаптироваться к новым технологиям, полезно в рамках своей профессии определить. Почти половина руководителей российских компаний и начальников отделов фирм считают, что нейросети сумеют заменить специалистов нескольких профессий. Нейронные сети стремительно внедряются почти во все области жизни, и работа человека становится будто бы «ненужной». Разработчик нейронных сетей — специалист, который занимается созданием, оптимизацией и улучшением нейронных сетей — алгоритмов, имитирующих работу человеческого мозга.

Строка навигации

  • Специалист по кибербезопасности
  • Нейропилот и медиаполицейский: нейросеть назвала профессии будущего | ТЕЛЕПОРТ.РФ
  • ТОП-5 специальностей в сфере ИИ искусственного интеллекта
  • Огонь нейросетей: как попасть в индустрию
  • Нейросети в креативе, дизайн 2023 и новые творческие профессии

Каким специалистам стоит освоить нейросети уже сегодня

  • Восстание машин: как нейросети «вытесняют» людей из профессий
  • Нейросети-2023: на что способен ИИ и кого он заменит в первую очередь | РИАМО | РИАМО
  • Специалист по устойчивому развитию
  • Новая профессия – ПРОМПТ-инженер. Будет очень востребованной!
  • Специалист по нейронным сетям: кто это

Похожие новости:

Оцените статью
Добавить комментарий