стереометрия формулы для егэ. Выучить формулы по математике – это еще не все, что надо для успешной сдачи ЕГЭ. Формулы для профильного егэ-2022 по математике геометрия планиметрия 2d площади фигур: окружность:s=pir2 треугольник:s=1/2ah параллелограмм:s=ah четырхугольник:s=1/2d1d2sinvarphiу ромба varphi=90 трапеция:s=ab/2h стереометрия 3d.
5 задание Формулы стереометрии -2 - Курс ПРОФИЛЬ 2022 от Абеля / Математика ЕГЭ
Результат округлите до сотых. Какой долг будет 15-го числа 25-го месяца, если общая сумма выплат после полного погашения кредита составит 691 тысяч рублей? Найдите всe значения параметра a, при каждом их которых система имеет ровно 3 различных решения. Источники заданий варианта: школа Пифагора, Профиматика, беседы vk. Программа экзамена, как и в прошлые годы, составлена из материалов основных математических дисциплин. В билетах будут присутствовать и математические, и геометрические, и алгебраические задачи. Структура экзамена Задания ЕГЭ профильной математики разделены на два блока. Поэтому при подготовке к ЕГЭ теорию по математике всегда подкрепляйте решением практических задач. Как будут распределять баллы Задания части первой КИМов по математике близки к тестам ЕГЭ базового уровня, поэтому высокого балла на них набрать невозможно. Баллы за каждое задание по математике профильного уровня распределились так: Длительность экзамена и правила поведения на ЕГЭ Для выполнения экзаменационной работы отведено 3 часа 55 минут 235 минут. В это время ученик не должен: За подобные действия экзаменующегося могут выдворить из аудитории.
На государственный экзамен по математике разрешено приносить с собой только линейку, остальные материалы вам выдадут непосредственно перед ЕГЭ. Справочные материалы выдаются на месте. Эффективная подготовка — это решение онлайн тестов по математике 2022. Выбирай тренировочные задания и получай максимальный балл! Формулы стереометрии. Общий обзор! В этой статье общий обзор формул для решения задач по стереометрии. Нужно сказать, что задачи по стереометрии довольно разнообразны, но они несложны.
Ее можно посчитать для квадрата, прямоугольника, параллелограмма, треугольника, ромба, трапеции, круга. Объем присущ трехмерным объектам, таким как куб, шар, параллелепипед, призма, пирамида, конус. Объемные тела условно делят на многогранники состоят из нескольких многоугольников и поверхности вращения есть условная линия, вдоль которой вращается плоская фигура. На вычисление объема это не влияет.
Конус называется описанным около пирамиды , когда их вершины совпадают, а его основание описано около основания пирамиды. Причём описать конус около пирамиды можно только тогда, когда все боковые ребра пирамиды равны между собой необходимое и достаточное условие. Важное свойство: Пирамида и цилиндр Цилиндр называется вписанным в пирамиду , если одно его основание совпадает с окружностью вписанной в сечение пирамиды плоскостью, параллельной основанию, а другое основание принадлежит основанию пирамиды. Цилиндр называется описанным около пирамиды , если вершина пирамиды принадлежит его одному основанию, а другое его основание описано около основания пирамиды. Причём описать цилиндр около пирамиды можно только тогда, когда в основании пирамиды — вписанный многоугольник необходимое и достаточное условие. Сфера и шар Определения: Сфера — замкнутая поверхность, геометрическое место точек в пространстве, равноудалённых от данной точки, называемой центром сферы. Сфера также является телом вращения, образованным при вращении полуокружности вокруг своего диаметра. Радиусом сферы называется отрезок, соединяющий центр сферы с какой-либо точкой сферы. Хордой сферы называется отрезок, соединяющий две точки сферы. Диаметром сферы называется хорда, проходящая через ее центр. Центр сферы делит любой его диаметр на два равных отрезка. Любой диаметр сферы радиусом R равен 2R. Шар — геометрическое тело; совокупность всех точек пространства, которые находятся на расстоянии не большем заданного от некоторого центра. Это расстояние называется радиусом шара. Шар образуется вращением полукруга около его неподвижного диаметра. Обратите внимание: поверхность или граница шара называется сферой. Можно дать и такое определение шара: шаром называется геометрическое тело, состоящее из сферы и части пространства, ограниченного этой сферой. Радиусом , хордой и диаметром шара называются радиус, хорда и диаметр сферы, которая является границей данного шара. Разница между шаром и сферой аналогична разнице между кругом и окружностью. Окружность — это линия, а круг — это ещё и все точки внутри этой линии. Сфера — это оболочка, а шар — это ещё и все точки внутри этой оболочки. Плоскость, проходящая через центр сферы шара , называется диаметральной плоскостью. Сечение сферы шара диаметральной плоскостью называется большой окружностью большим кругом. Теоремы: Теорема 1 о сечении сферы плоскостью. Сечение сферы плоскостью есть окружность. Заметим, что утверждение теоремы остается верным и в случае, если плоскость проходит через центр сферы. Теорема 2 о сечении шара плоскостью. Сечение шара плоскостью есть круг, а основание перпендикуляра, проведенного из центра шара к плоскости сечения, есть центр круга, полученного в сечении. Наибольший круг, из числа тех, которые можно получить в сечении данного шара плоскостью, лежит в сечении, проходящем через центр шара О. Он то и называется большим кругом. Его радиус равен радиусу шара. Любые два больших круга пересекаются по диаметру шара AB. Этот диаметр является и диаметром пересекающихся больших кругов. Через две точки сферической поверхности, расположенные на концах одного диаметра на рис. A и B , можно провести бесчисленное множество больших кругов. Например, через полюса Земли можно провести бесконечное число меридианов. Определения: Касательной плоскостью к сфере называется плоскость, имеющая со сферой только одну общую точку, а их общая точка называется точкой касания плоскости и сферы. Касательной плоскостью к шару называется касательная плоскость к сфере, которая является границей этого шара. Любая прямая, лежащая в касательной плоскости сферы шара и проходящая через точку касания, называется касательной прямой к сфере шару. По определению касательная плоскость имеет со сферой только одну общую точку, следовательно, касательная прямая также имеет со сферой только одну общую точку — точку касания. Теоремы: Теорема 1 признак касательной плоскости к сфере. Плоскость, перпендикулярная радиусу сферы и проходящая через его конец, лежащий на сфере, касается сферы. Теорема 2 о свойстве касательной плоскости к сфере. Касательная плоскость к сфере перпендикулярна радиусу, проведенному в точку касания. Многогранники и сфера Определение: В стереометрии многогранник например, пирамида или призма называется вписанным в сферу , если все его вершины лежат на сфере. При этом сфера называется описанной около многогранника пирамиды, призмы. Аналогично: многогранник называется вписанным в шар , если все его вершины лежат на границе этого шара. При этом шар называется описанным около многогранника. Важное свойство: Центр сферы, описанной около многогранника, находится на расстоянии, равном радиусу R сферы, от каждой вершины многогранника. Приведем примеры вписанных в сферу многогранников: Определение: Многогранник называется описанным около сферы шара , если сфера шар касается всех граней многогранника. При этом сфера и шар называются вписанными в многогранник. Важно: Центр сферы, вписанной в многогранник, находится на расстоянии, равном радиусу r сферы, от каждой из плоскостей, содержащих грани многогранника. Приведем примеры описанных около сферы многогранников: Объем и площадь поверхности шара Теоремы: Теорема 1 о площади сферы. Площадь сферы равна: где: R — радиус сферы. Теорема 2 об объеме шара. Объем шара радиусом R вычисляется по формуле: Шаровой сегмент, слой, сектор В стереометрии шаровым сегментом называется часть шара, отсекаемая секущей плоскостью. Площадь основания шарового сегмента: Площадь внешней поверхности шарового сегмента: Площадь полной поверхности шарового сегмента: Объем шарового сегмента: В стереометрии шаровым слоем называется часть шара, заключенная между двумя параллельными плоскостями. Объем шарового слоя проще всего искать как разность объемов двух шаровых сегментов. В стереометрии шаровым сектором называется часть шара, состоящая из шарового сегмента и конуса с вершиной в центре шара и основанием, совпадающим с основанием шарового сегмента. Здесь подразумевается, что шаровой сегмент меньше чем пол шара. Объем шарового сектора вычисляется по формуле: Определения: В некоторой плоскости рассмотрим окружность с центром O и радиусом R. Через каждую точку окружности проведем прямую, перпендикулярную плоскости окружности. Цилиндрической поверхностью называется фигура, образованная этими прямыми, а сами прямые называются образующими цилиндрической поверхности. Все образующие цилиндрической поверхности параллельны друг другу, так как они перпендикулярны плоскости окружности. Прямым круговым цилиндром или просто цилиндром называется геометрическое тело, ограниченное цилиндрической поверхностью и двумя параллельными плоскостями, которые перпендикулярны образующим цилиндрической поверхности. Неформально, можно воспринимать цилиндр как прямую призму, у которой в основании круг. Это поможет легко понять, а при необходимости и вывести формулы для объема и площади боковой поверхности цилиндра. Боковой поверхностью цилиндра называется часть цилиндрической поверхности, расположенная между секущими плоскостями, которые перпендикулярны ее образующим, а части круги , отсекаемые цилиндрической поверхностью на параллельных плоскостях, называются основаниями цилиндра. Основания цилиндра — это два равных круга. Образующей цилиндра называется отрезок или длина этого отрезка образующей цилиндрической поверхности, расположенный между параллельными плоскостями, в которых лежат основания цилиндра. Все образующие цилиндра параллельны и равны между собой, а также перпендикулярны основаниям. Осью цилиндра называется отрезок, соединяющий центры кругов, являющихся основаниями цилиндра. Высотой цилиндра называется перпендикуляр или длина этого перпендикуляра , проведенный из какой-нибудь точки плоскости одного основания цилиндра к плоскости другого основания. В цилиндре высота равна образующей. Радиусом цилиндра называется радиус его оснований. Цилиндр называется равносторонним , если его высота равна диаметру основания. Если секущая плоскость параллельна оси цилиндра, то сечением цилиндра служит прямоугольник, две стороны которого — образующие, а две другие — хорды оснований цилиндра. Осевым сечением цилиндра называется сечение цилиндра плоскостью, проходящей через его ось. Осевое сечение цилиндра — прямоугольник, две стороны которого есть образующие цилиндра, а две другие — диаметры его оснований. Если секущая плоскость, перпендикулярна оси цилиндра, то в сечении образуется круг равный основаниям. На чертеже ниже: слева — осевое сечение; в центре — сечение параллельное оси цилиндра; справа — сечение параллельное основанию цилиндра. Цилиндр и призма Призма называется вписанной в цилиндр , если ее основания вписаны в основания цилиндра. В этом случае цилиндр называется описанным около призмы. Высота призмы и высота цилиндра в этом случае будут равны. Все боковые ребра призмы будут принадлежать боковой поверхности цилиндра и совпадать с его образующими. Так как под цилиндром мы понимаем только прямой цилиндр, то вписать в такой цилиндр можно также только прямую призму. Примеры: Призма называется описанной около цилиндра , если ее основания описаны около оснований цилиндра. В этом случае цилиндр называется вписанным в призму. Высота призмы и высота цилиндра в этом случае также будут равны. Все боковые ребра призмы будут параллельны образующим цилиндра. Так как под цилиндром мы понимаем только прямой цилиндр, то вписать такой цилиндр можно только в прямую призму. Примеры: Цилиндр и сфера Сфера шар называется вписанной в цилиндр , если она касается оснований цилиндра и каждой его образующей. При этом цилиндр называется описанным около сферы шара. Сферу можно вписать в цилиндр, только если это равносторонний цилиндр, то есть диаметр его основания и высота равны между собой. Центром вписанной сферы будет служить середина оси цилиндра, а радиус этой сферы будет совпадать с радиусом цилиндра. Пример: Цилиндр называется вписанным в сферу , если окружности оснований цилиндра являются сечениями сферы. Цилиндр называется вписанным в шар, если основания цилиндра являются сечениями шара. При этом шар сфера называется описанным около цилиндра. Вокруг любого цилиндра можно описать сферу. Центром описанной сферы также будет служить середина оси цилиндра. Пример: На основе теоремы Пифагора легко доказать следующую формулу, связывающую радиус описанной сферы R , высоту цилиндра h и радиус цилиндра r : Объем и площадь боковой и полной поверхностей цилиндра Теорема 1 о площади боковой поверхности цилиндра : Площадь боковой поверхности цилиндра равна произведению длины окружности его основания на высоту: где: R — радиус основания цилиндра, h — его высота. Эта формула легко выводится или доказывается на основе формулы для площади боковой поверхности прямой призмы. Площадью полной поверхности цилиндра , как обычно в стереометрии, называется сумма площадей боковой поверхности и двух оснований. Площадь каждого основания цилиндра то есть просто площадь круга вычисляется по формуле: Следовательно, площадь полной поверхности цилиндра S полн. Эта формула также легко выводится доказывается на основе формулы для объема призмы. Теорема 3 Архимеда : Объём шара в полтора раза меньше объёма, описанного вокруг него цилиндра, а площадь поверхности такого шара в полтора раза меньше площади полной поверхности того же цилиндра: Конус Определения: Конусом точнее, круговым конусом называется тело, которое состоит из круга называемого основанием конуса , точки, не лежащей в плоскости этого круга называемой вершиной конуса и всех возможных отрезков, соединяющих вершину конуса с точками основания. Неформально, можно воспринимать конус как правильную пирамиду, у которой в основании круг. Это поможет легко понять, а при необходимости и вывести формулы для объема и площади боковой поверхности конуса. Отрезки или их длины , соединяющие вершину конуса с точками окружности основания, называются образующими конуса.
Центром сферы будет точка пересечения плоскостей, проходящих через середины рёбер пирамиды перпендикулярно им. Замечание: Из этой теоремы следует, что как около любой треугольной, так и около любой правильной пирамиды можно описать сферу. Однако, список пирамид около которых можно описать сферу не исчерпывается этими типами пирамид. Тогда точка О — центр описанного шара. Теорема: В пирамиду можно вписать сферу тогда, когда биссекторные плоскости внутренних двугранных углов пирамиды пересекаются в одной точке необходимое и достаточное условие. Эта точка будет центром сферы. Замечание: Вы, очевидно, не поняли того, что прочитали строчкой выше. Однако, главное запомнить, что любая правильная пирамида является такой, в которую можно вписать сферу. При этом список пирамид, в которые можно вписать сферу не исчерпывается правильными. Определение: Биссекторная плоскость делит двугранный угол пополам, а каждая точка биссекторной плоскости равноудалена от граней, образующих двугранный угол. На стереометрическом чертеже ниже изображен шар вписанный в пирамиду или пирамида описанная около шара , при этом точка О — центр вписанного шара. Причём вписать конус в пирамиду можно только тогда, когда апофемы пирамиды равны между собой необходимое и достаточное условие. Конус называется описанным около пирамиды , когда их вершины совпадают, а его основание описано около основания пирамиды. Причём описать конус около пирамиды можно только тогда, когда все боковые ребра пирамиды равны между собой необходимое и достаточное условие. Важное свойство: Пирамида и цилиндр Цилиндр называется вписанным в пирамиду , если одно его основание совпадает с окружностью вписанной в сечение пирамиды плоскостью, параллельной основанию, а другое основание принадлежит основанию пирамиды. Цилиндр называется описанным около пирамиды , если вершина пирамиды принадлежит его одному основанию, а другое его основание описано около основания пирамиды. Причём описать цилиндр около пирамиды можно только тогда, когда в основании пирамиды — вписанный многоугольник необходимое и достаточное условие. Сфера и шар Определения: Сфера — замкнутая поверхность, геометрическое место точек в пространстве, равноудалённых от данной точки, называемой центром сферы. Сфера также является телом вращения, образованным при вращении полуокружности вокруг своего диаметра. Радиусом сферы называется отрезок, соединяющий центр сферы с какой-либо точкой сферы. Хордой сферы называется отрезок, соединяющий две точки сферы. Диаметром сферы называется хорда, проходящая через ее центр. Центр сферы делит любой его диаметр на два равных отрезка. Любой диаметр сферы радиусом R равен 2R. Шар — геометрическое тело; совокупность всех точек пространства, которые находятся на расстоянии не большем заданного от некоторого центра. Это расстояние называется радиусом шара. Шар образуется вращением полукруга около его неподвижного диаметра. Обратите внимание: поверхность или граница шара называется сферой. Можно дать и такое определение шара: шаром называется геометрическое тело, состоящее из сферы и части пространства, ограниченного этой сферой. Радиусом , хордой и диаметром шара называются радиус, хорда и диаметр сферы, которая является границей данного шара. Разница между шаром и сферой аналогична разнице между кругом и окружностью. Окружность — это линия, а круг — это ещё и все точки внутри этой линии. Сфера — это оболочка, а шар — это ещё и все точки внутри этой оболочки. Плоскость, проходящая через центр сферы шара , называется диаметральной плоскостью. Сечение сферы шара диаметральной плоскостью называется большой окружностью большим кругом. Теоремы: Теорема 1 о сечении сферы плоскостью. Сечение сферы плоскостью есть окружность. Заметим, что утверждение теоремы остается верным и в случае, если плоскость проходит через центр сферы. Теорема 2 о сечении шара плоскостью. Сечение шара плоскостью есть круг, а основание перпендикуляра, проведенного из центра шара к плоскости сечения, есть центр круга, полученного в сечении. Наибольший круг, из числа тех, которые можно получить в сечении данного шара плоскостью, лежит в сечении, проходящем через центр шара О. Он то и называется большим кругом. Его радиус равен радиусу шара. Любые два больших круга пересекаются по диаметру шара AB. Этот диаметр является и диаметром пересекающихся больших кругов. Через две точки сферической поверхности, расположенные на концах одного диаметра на рис. A и B , можно провести бесчисленное множество больших кругов. Например, через полюса Земли можно провести бесконечное число меридианов. Определения: Касательной плоскостью к сфере называется плоскость, имеющая со сферой только одну общую точку, а их общая точка называется точкой касания плоскости и сферы. Касательной плоскостью к шару называется касательная плоскость к сфере, которая является границей этого шара. Любая прямая, лежащая в касательной плоскости сферы шара и проходящая через точку касания, называется касательной прямой к сфере шару. По определению касательная плоскость имеет со сферой только одну общую точку, следовательно, касательная прямая также имеет со сферой только одну общую точку — точку касания. Теоремы: Теорема 1 признак касательной плоскости к сфере. Плоскость, перпендикулярная радиусу сферы и проходящая через его конец, лежащий на сфере, касается сферы. Теорема 2 о свойстве касательной плоскости к сфере. Касательная плоскость к сфере перпендикулярна радиусу, проведенному в точку касания. Многогранники и сфера Определение: В стереометрии многогранник например, пирамида или призма называется вписанным в сферу , если все его вершины лежат на сфере. При этом сфера называется описанной около многогранника пирамиды, призмы. Аналогично: многогранник называется вписанным в шар , если все его вершины лежат на границе этого шара. При этом шар называется описанным около многогранника. Важное свойство: Центр сферы, описанной около многогранника, находится на расстоянии, равном радиусу R сферы, от каждой вершины многогранника. Приведем примеры вписанных в сферу многогранников: Определение: Многогранник называется описанным около сферы шара , если сфера шар касается всех граней многогранника. При этом сфера и шар называются вписанными в многогранник. Важно: Центр сферы, вписанной в многогранник, находится на расстоянии, равном радиусу r сферы, от каждой из плоскостей, содержащих грани многогранника. Приведем примеры описанных около сферы многогранников: Объем и площадь поверхности шара Теоремы: Теорема 1 о площади сферы. Площадь сферы равна: где: R — радиус сферы. Теорема 2 об объеме шара. Объем шара радиусом R вычисляется по формуле: Шаровой сегмент, слой, сектор В стереометрии шаровым сегментом называется часть шара, отсекаемая секущей плоскостью. Площадь основания шарового сегмента: Площадь внешней поверхности шарового сегмента: Площадь полной поверхности шарового сегмента: Объем шарового сегмента: В стереометрии шаровым слоем называется часть шара, заключенная между двумя параллельными плоскостями. Объем шарового слоя проще всего искать как разность объемов двух шаровых сегментов. В стереометрии шаровым сектором называется часть шара, состоящая из шарового сегмента и конуса с вершиной в центре шара и основанием, совпадающим с основанием шарового сегмента. Здесь подразумевается, что шаровой сегмент меньше чем пол шара. Объем шарового сектора вычисляется по формуле: Определения: В некоторой плоскости рассмотрим окружность с центром O и радиусом R. Через каждую точку окружности проведем прямую, перпендикулярную плоскости окружности. Цилиндрической поверхностью называется фигура, образованная этими прямыми, а сами прямые называются образующими цилиндрической поверхности. Все образующие цилиндрической поверхности параллельны друг другу, так как они перпендикулярны плоскости окружности. Прямым круговым цилиндром или просто цилиндром называется геометрическое тело, ограниченное цилиндрической поверхностью и двумя параллельными плоскостями, которые перпендикулярны образующим цилиндрической поверхности. Неформально, можно воспринимать цилиндр как прямую призму, у которой в основании круг. Это поможет легко понять, а при необходимости и вывести формулы для объема и площади боковой поверхности цилиндра. Боковой поверхностью цилиндра называется часть цилиндрической поверхности, расположенная между секущими плоскостями, которые перпендикулярны ее образующим, а части круги , отсекаемые цилиндрической поверхностью на параллельных плоскостях, называются основаниями цилиндра. Основания цилиндра — это два равных круга. Образующей цилиндра называется отрезок или длина этого отрезка образующей цилиндрической поверхности, расположенный между параллельными плоскостями, в которых лежат основания цилиндра. Все образующие цилиндра параллельны и равны между собой, а также перпендикулярны основаниям. Осью цилиндра называется отрезок, соединяющий центры кругов, являющихся основаниями цилиндра. Высотой цилиндра называется перпендикуляр или длина этого перпендикуляра , проведенный из какой-нибудь точки плоскости одного основания цилиндра к плоскости другого основания. В цилиндре высота равна образующей. Радиусом цилиндра называется радиус его оснований. Цилиндр называется равносторонним , если его высота равна диаметру основания. Если секущая плоскость параллельна оси цилиндра, то сечением цилиндра служит прямоугольник, две стороны которого — образующие, а две другие — хорды оснований цилиндра. Осевым сечением цилиндра называется сечение цилиндра плоскостью, проходящей через его ось. Осевое сечение цилиндра — прямоугольник, две стороны которого есть образующие цилиндра, а две другие — диаметры его оснований. Если секущая плоскость, перпендикулярна оси цилиндра, то в сечении образуется круг равный основаниям. На чертеже ниже: слева — осевое сечение; в центре — сечение параллельное оси цилиндра; справа — сечение параллельное основанию цилиндра. Цилиндр и призма Призма называется вписанной в цилиндр , если ее основания вписаны в основания цилиндра. В этом случае цилиндр называется описанным около призмы. Высота призмы и высота цилиндра в этом случае будут равны. Все боковые ребра призмы будут принадлежать боковой поверхности цилиндра и совпадать с его образующими. Так как под цилиндром мы понимаем только прямой цилиндр, то вписать в такой цилиндр можно также только прямую призму. Примеры: Призма называется описанной около цилиндра , если ее основания описаны около оснований цилиндра. В этом случае цилиндр называется вписанным в призму. Высота призмы и высота цилиндра в этом случае также будут равны. Все боковые ребра призмы будут параллельны образующим цилиндра. Так как под цилиндром мы понимаем только прямой цилиндр, то вписать такой цилиндр можно только в прямую призму. Примеры: Цилиндр и сфера Сфера шар называется вписанной в цилиндр , если она касается оснований цилиндра и каждой его образующей. При этом цилиндр называется описанным около сферы шара. Сферу можно вписать в цилиндр, только если это равносторонний цилиндр, то есть диаметр его основания и высота равны между собой. Центром вписанной сферы будет служить середина оси цилиндра, а радиус этой сферы будет совпадать с радиусом цилиндра. Пример: Цилиндр называется вписанным в сферу , если окружности оснований цилиндра являются сечениями сферы. Цилиндр называется вписанным в шар, если основания цилиндра являются сечениями шара.
Формулы для ЕГЭ по математике профиль
Если из одной точки проведены к плоскости перпендикуляр и наклонные, то: Перпендикуляр короче наклонных. Равные наклонные имеют равные проекции на плоскости. Большей наклонной соответствует большая проекция на плоскости. Скрещивающиеся прямые Если одна из двух прямых лежит на плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то эти прямые скрещиваются.
Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов. Профильная математика. Часть 2 Математика на отлично ЕГЭ 2022. Прямоугольный параллелепипед. Часть 1 Математика на отлично ЕГЭ 2022.
Пробные варианты ЕГЭ 2022 по математике базовый уровень Инструкция по выполнению работы Экзаменационная работа включает в себя 21 задание. На выполнение работы отводится 3 часа 180 минут. Ответы к заданиям записываются по приведённым ниже образцам в виде числа или последовательности цифр. Все бланки ЕГЭ заполняются яркими чёрными чернилами. Допускается использование гелевой или капиллярной ручки.
Пробные варианты ЕГЭ 2022 по математике базового уровня из различных источников. Пробные варианты ЕГЭ 2022 по математике базовый уровень Инструкция по выполнению работы Экзаменационная работа включает в себя 21 задание. На выполнение работы отводится 3 часа 180 минут. Ответы к заданиям записываются по приведённым ниже образцам в виде числа или последовательности цифр. Все бланки ЕГЭ заполняются яркими чёрными чернилами.
Формулы для ЕГЭ по математике профиль
Формулы нахождения площадей поверхностей и объемов фигур: таблица. Комбинация тел Тригонометрические уравнения Уравнения Стереометрия Стереометрия. Как можно чаще применяйте формулы при решении задач, тренируйте гибкость мышления, чтобы на ЕГЭ по профильной математике справиться со всеми заданиями. Мой канал в Telegram: +nv_AT3GKIq0zNTBiХочешь готовиться к ЕГЭ со мной? СТЕРЕОМЕТРИЯ. Основные формулы.
Все формулы для стереометрии для профиля - 85 фото
Формулы для стереометрии ЕГЭ математика профиль. Все формулы по математике для подготовки к ЕГЭ 2022. Ниже публикуем шпаргалки с формулами по основным разделам курса математики. Основные теоремы и формулы стереометрии. Стереометрия ЕГЭ формулы объемов и площадей.
Формулы по математике для ЕГЭ
Производные; Первообразные. Список внушительный, но вполне реальный, чтобы его выучить. Для того, чтобы лишний раз не гуглить в интернете «формулы для ЕГЭ по математике профильный уровень», приложим их ниже. А начнем по порядку из списка выше. Вам встретятся задачи на преобразование выражений, поэтому умение это делать будет вознаграждено баллами.
Исключение составляют лишь 5 формул по тригонометрии, но, естественно, они не помогут набрать максимальные баллы, если экзаменуемые не будут знать об остальных важных сведениях и математических свойствах. Содержание Формулы для ЕГЭ по профильной математике.
На чертеже это, например, AF. Диагональное сечение пирамиды — сечение пирамиды, проходящее через вершину пирамиды и диагональ основания. На чертеже это, например, ACE.
Еще один стереометрический чертеж с обозначениями для лучшего запоминания на рисунке правильная треугольная пирамида : Если все боковые ребра SA , SB , SC , SD на чертеже ниже пирамиды равны, то: Около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр точка O. Иными словами, высота отрезок SO , опущенная из вершины такой пирамиды на основание ABCD , попадает в центр описанной вокруг основания окружности, то есть в точку пересечения посерединных перпендикуляров основания. Важно: Также верно и обратное, то есть если боковые ребра образуют с плоскостью основания равные углы или если около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр, то все боковые ребра пирамиды равны. Если боковые грани наклонены к плоскости основания под одним углом углы DMN , DKN , DLN на чертеже ниже равны , то: В основание пирамиды можно вписать окружность, причём вершина пирамиды проецируется в её центр точка N. Иными словами, высота отрезок DN , опущенная из вершины такой пирамиды на основание, попадает в центр вписанной в основание окружности, то есть в точку пересечения биссектрис основания. Высоты боковых граней апофемы равны. Площадь боковой поверхности такой пирамиды равна половине произведения периметра основания на высоту боковой грани апофему. Важно: Также верно и обратное, то есть если в основание пирамиды можно вписать окружность, причем вершина пирамиды проецируется в её центр, то все боковые грани наклонены к плоскости основания под одним углом и высоты боковых граней апофемы равны. Правильная пирамида Определение: Пирамида называется правильной , если её основанием является правильный многоугольник, а вершина проецируется в центр основания.
Тогда она обладает такими свойствами: Все боковые ребра правильной пирамиды равны. Все боковые грани правильной пирамиды наклонены к плоскости основания под одним углом. Важное замечание: Как видим правильные пирамиды являются одними из тех пирамид к которым относятся свойства, изложенные чуть выше. Действительно, если основание правильной пирамиды — это правильный многоугольник, то центр его вписанной и описанной окружностей совпадают, а вершина правильной пирамиды проецируется именно в этот центр по определению. Однако важно понимать, что не только правильные пирамиды могут обладать свойствами, о которых говорилось выше. В правильной пирамиде все боковые грани — равные равнобедренные треугольники. В любую правильную пирамиду можно как вписать сферу, так и описать около неё сферу. Площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему. Формулы для объема и площади пирамиды Теорема об объеме пирамид, имеющих равные высоты и равные площади оснований.
Две пирамиды, имеющие равные высоты и равные площади оснований, имеют равные объемы Вы конечно, наверняка уже знаете формулу для объема пирамиды, ну или видите ее несколькими строчками ниже, и Вам кажется это утверждение очевидным, но на самом деле, если судить «на глаз», то данная теорема не так уж и очевидна см. Это относится кстати и к другим многогранникам и геометрическим фигурам: их внешний вид обманчив, поэтому, действительно — в математике нужно доверять только формулам и правильным расчетам. Объём пирамиды может быть вычислен по формуле: где: S осн — площадь основания пирамиды, h — высота пирамиды. Боковая поверхность пирамиды равна сумме площадей боковых граней. Для площади боковой поверхности пирамиды можно формально записать такую стереометрическую формулу: где: S бок — площадь боковой поверхности, S 1 , S 2 , S 3 — площади боковых граней. Полная поверхность пирамиды равна сумме площади боковой поверхности и площади основания: Определения: — простейший многогранник, гранями которого являются четыре треугольника, иными словами, треугольная пирамида. Для тетраэдра любая из его граней может служить основанием. Всего у тетраэдра 4 грани, 4 вершины и 6 рёбер. Тетраэдр называется правильным , если все его грани — равносторонние треугольники.
У правильного тетраэдра: Все ребра правильного тетраэдра равны между собой. Все грани правильного тетраэдра равны между собой. Периметры, площади, высоты и все остальные элементы всех граней соответственно равны между собой. Из общих формул для объема и площадей пирамиды, а также знаний из планиметрии не сложно получить формулы для объема и площадей правильного тетраэдра а — длина ребра : Определение: При решении задач по стереометрии, пирамида называется прямоугольной , если одно из боковых рёбер пирамиды перпендикулярно основанию. В таком случае, это ребро и является высотой пирамиды. Ниже примеры треугольной и пятиугольной прямоугольных пирамид. На рисунке слева SA — ребро, являющееся одновременно высотой. Усечённая пирамида Определения и свойства: Усечённой пирамидой называется многогранник, заключённый между основанием пирамиды и секущей плоскостью, параллельной её основанию. Фигура, полученная на пересечении секущей плоскости и исходной пирамиды, также называется основанием усеченной пирамиды.
Боковые грани усечённой пирамиды являются трапециями. На чертеже это, например, AA 1 B 1 B. Боковыми ребрами усеченной пирамиды называются части ребер исходной пирамиды, заключенные между основаниями. На чертеже это, например, AA 1. Высотой усеченной пирамиды называется перпендикуляр или длина этого перпендикуляра , проведенный из какой-нибудь точки плоскости одного основания к плоскости другого основания. Усеченная пирамида называется правильной , если она является многогранником, который отсекается плоскостью, параллельной основанию правильной пирамиды. Основания правильной усеченной пирамиды — правильные многоугольники. Боковые грани правильной усеченной пирамиды — равнобедренные трапеции. Апофемой правильной усеченной пирамиды называется высота ее боковой грани.
Площадью боковой поверхности усеченной пирамиды называется сумма площадей всех ее боковых граней. Формулы для усеченной пирамиды Объём усечённой пирамиды равен: где: S 1 и S 2 — площади оснований, h — высота усечённой пирамиды. Однако на практике, удобнее искать объем усеченной пирамиды так: можно достроить усечённую пирамиду до пирамиды, продлив до пересечения боковые рёбра. Тогда объём усечённой пирамиды можно найти, как разность объёмов всей пирамиды и достроенной части. Площадь боковой поверхности также можно искать как разность между площадями боковой поверхности всей пирамиды и достроенной части. Площадь боковой поверхности правильной усечённой пирамиды равна полупроизведению суммы периметров её оснований и апофемы: где: P 1 и P 2 — периметры оснований правильной усеченной пирамиды, а — длина апофемы. Площадь полной поверхности любой усеченной пирамиды, очевидно, находится как сумма площадей оснований и боковой поверхности: Пирамида и шар сфера Теорема: Около пирамиды можно описать сферу тогда, когда в основании пирамиды лежит вписанный многоугольник то есть многоугольник около которого можно описать сферу. Данное условие является необходимым и достаточным. Центром сферы будет точка пересечения плоскостей, проходящих через середины рёбер пирамиды перпендикулярно им.
Замечание: Из этой теоремы следует, что как около любой треугольной, так и около любой правильной пирамиды можно описать сферу. Однако, список пирамид около которых можно описать сферу не исчерпывается этими типами пирамид. Тогда точка О — центр описанного шара. Теорема: В пирамиду можно вписать сферу тогда, когда биссекторные плоскости внутренних двугранных углов пирамиды пересекаются в одной точке необходимое и достаточное условие. Эта точка будет центром сферы. Замечание: Вы, очевидно, не поняли того, что прочитали строчкой выше. Однако, главное запомнить, что любая правильная пирамида является такой, в которую можно вписать сферу. При этом список пирамид, в которые можно вписать сферу не исчерпывается правильными. Определение: Биссекторная плоскость делит двугранный угол пополам, а каждая точка биссекторной плоскости равноудалена от граней, образующих двугранный угол.
На стереометрическом чертеже ниже изображен шар вписанный в пирамиду или пирамида описанная около шара , при этом точка О — центр вписанного шара. Причём вписать конус в пирамиду можно только тогда, когда апофемы пирамиды равны между собой необходимое и достаточное условие. Конус называется описанным около пирамиды , когда их вершины совпадают, а его основание описано около основания пирамиды. Причём описать конус около пирамиды можно только тогда, когда все боковые ребра пирамиды равны между собой необходимое и достаточное условие. Важное свойство: Пирамида и цилиндр Цилиндр называется вписанным в пирамиду , если одно его основание совпадает с окружностью вписанной в сечение пирамиды плоскостью, параллельной основанию, а другое основание принадлежит основанию пирамиды. Цилиндр называется описанным около пирамиды , если вершина пирамиды принадлежит его одному основанию, а другое его основание описано около основания пирамиды. Причём описать цилиндр около пирамиды можно только тогда, когда в основании пирамиды — вписанный многоугольник необходимое и достаточное условие. Сфера и шар Определения: Сфера — замкнутая поверхность, геометрическое место точек в пространстве, равноудалённых от данной точки, называемой центром сферы. Сфера также является телом вращения, образованным при вращении полуокружности вокруг своего диаметра.
Радиусом сферы называется отрезок, соединяющий центр сферы с какой-либо точкой сферы. Хордой сферы называется отрезок, соединяющий две точки сферы. Диаметром сферы называется хорда, проходящая через ее центр. Центр сферы делит любой его диаметр на два равных отрезка. Любой диаметр сферы радиусом R равен 2R. Шар — геометрическое тело; совокупность всех точек пространства, которые находятся на расстоянии не большем заданного от некоторого центра. Это расстояние называется радиусом шара. Шар образуется вращением полукруга около его неподвижного диаметра. Обратите внимание: поверхность или граница шара называется сферой.
Можно дать и такое определение шара: шаром называется геометрическое тело, состоящее из сферы и части пространства, ограниченного этой сферой. Радиусом , хордой и диаметром шара называются радиус, хорда и диаметр сферы, которая является границей данного шара. Разница между шаром и сферой аналогична разнице между кругом и окружностью. Окружность — это линия, а круг — это ещё и все точки внутри этой линии. Сфера — это оболочка, а шар — это ещё и все точки внутри этой оболочки. Плоскость, проходящая через центр сферы шара , называется диаметральной плоскостью. Сечение сферы шара диаметральной плоскостью называется большой окружностью большим кругом. Теоремы: Теорема 1 о сечении сферы плоскостью. Сечение сферы плоскостью есть окружность.
Заметим, что утверждение теоремы остается верным и в случае, если плоскость проходит через центр сферы. Теорема 2 о сечении шара плоскостью. Сечение шара плоскостью есть круг, а основание перпендикуляра, проведенного из центра шара к плоскости сечения, есть центр круга, полученного в сечении. Наибольший круг, из числа тех, которые можно получить в сечении данного шара плоскостью, лежит в сечении, проходящем через центр шара О. Он то и называется большим кругом. Его радиус равен радиусу шара. Любые два больших круга пересекаются по диаметру шара AB. Этот диаметр является и диаметром пересекающихся больших кругов. Через две точки сферической поверхности, расположенные на концах одного диаметра на рис.
A и B , можно провести бесчисленное множество больших кругов. Например, через полюса Земли можно провести бесконечное число меридианов. Определения: Касательной плоскостью к сфере называется плоскость, имеющая со сферой только одну общую точку, а их общая точка называется точкой касания плоскости и сферы. Касательной плоскостью к шару называется касательная плоскость к сфере, которая является границей этого шара. Любая прямая, лежащая в касательной плоскости сферы шара и проходящая через точку касания, называется касательной прямой к сфере шару. По определению касательная плоскость имеет со сферой только одну общую точку, следовательно, касательная прямая также имеет со сферой только одну общую точку — точку касания. Теоремы: Теорема 1 признак касательной плоскости к сфере.
Пробные варианты ЕГЭ 2022 по математике базовый уровень Инструкция по выполнению работы Экзаменационная работа включает в себя 21 задание. На выполнение работы отводится 3 часа 180 минут. Ответы к заданиям записываются по приведённым ниже образцам в виде числа или последовательности цифр. Все бланки ЕГЭ заполняются яркими чёрными чернилами. Допускается использование гелевой или капиллярной ручки.
Шпаргалка по математике - алгебра и геометрия
2: Все Формулы Стереометрии Для Задания № 2, Профильная Математика Егэ 2023, Умскул. Стереометрия формулы ЕГЭ тела вращения. Формулы нахождения площадей поверхностей и объемов фигур: таблица.
Шпаргалки и формулы по стереометрии
Опыт решения задач, знания правил оформления заданий на экзамене не менее важны. С нами Вы подготовитесь к ЕГЭ наиболее продуктивно.
Вот они: Умея применять эти формулы для ЕГЭ по математике, профильный уровень вам уже будет решить легче. Но это далеко не все, что нужно знать, чтобы получить сто баллов за ЕГЭ.
Тем не менее, придется применять знания, которые представлены ниже: Перейдем к свойствам степеней, ведь в них тоже есть, что запомнить. Свойства степеней Эти свойства нужно знать и для того, чтобы решить «базу», так что гуманитарии тоже могут обратить внимание на это: Как вы видите, запоминать не очень много, зато формулы не самые простые. Но есть еще сложнее, и сейчас узнаем, какие они.
Профиматика - Игорь Уколов, Владислав Вуль 17. Задание 3. Ященко 36 вариантов. Мы с вами Шли шли и дошли до стереометрии Это задание номер три вариант первый Итак В цилиндрический сосуд налили 2100 см кубических воды уровень жидкости оказался.... Все типы 3 задание егэ математика профиль стереометрия Умскул - Артур Шарафиев 20. Вечно ступор то на пирамиде, то на цилиндре, какие-то непонятные коэффициенты в формулах.
Мы с вами Шли шли и дошли до стереометрии Это задание номер три вариант первый Итак В цилиндрический сосуд налили 2100 см кубических воды уровень жидкости оказался.... Все типы 3 задание егэ математика профиль стереометрия Умскул - Артур Шарафиев 20. Вечно ступор то на пирамиде, то на цилиндре, какие-то непонятные коэффициенты в формулах. Откуда вообще берутся, как это все выучить? Тип 1. Конус и цилиндр имеют общее основание и общую высоту конус вписан в цилиндр.
Формулы для ЕГЭ по математике профиль
Все бланки ЕГЭ заполняются яркими чёрными чернилами. Допускается использование гелевой или капиллярной ручки. При выполнении заданий можно пользоваться черновиком. Записи в черновике, а также в тексте контрольных измерительных материалов не учитываются при оценивании работы. Баллы, полученные Вами за выполненные задания, суммируются.
Равные наклонные имеют равные проекции на плоскости. Большей наклонной соответствует большая проекция на плоскости. Скрещивающиеся прямые Если одна из двух прямых лежит на плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то эти прямые скрещиваются. Через две скрещивающиеся прямые проходит единственная пара параллельных плоскостей.
Объемные тела условно делят на многогранники состоят из нескольких многоугольников и поверхности вращения есть условная линия, вдоль которой вращается плоская фигура. На вычисление объема это не влияет. В таблицах представлены основные формулы объемов и площадей фигур для ЕГЭ. Мы советуем сохранить их себе, чтобы пользоваться при подготовке к ЕГЭ и быстро повторить теорию перед экзаменом.
Формулы площадей плоских фигур по геометрии. Формулы площадей геометрических фигур ЕГЭ. Шпаргалка по стереометрии ЕГЭ 1 часть. Шпора по стереометрии ЕГЭ фигуры. Формулы для стереометрии ЕГЭ математика профиль. Справочные материалы по геометрии. Формулы геометрии шпаргалка. Справочный материал по стереометрии. Справочный материал по геометрии для ЕГЭ. Математика 11 класс формулы планиметрии. Основные геометрические формулы планиметрия. Формулы площадей ЕГЭ планиметрия. Основные формулы по геометрии планиметрия. Шпаргалка ЕГЭ математика профильный уровень геометрия. Геометрические формулы для ЕГЭ. Шпаргалка по математике ЕГЭ планиметрия стереометрия. Шпаргалки по геометрии 11 класс ЕГЭ геометрия. Формулы для ЕГЭ по математике планиметрия. Шпаргалка ЕГЭ математика планиметрия. Формулы площадей планиметрия. Формулы по планиметрии для ЕГЭ. Формулы площадей стереометрических фигур. Формулы для задач по стереометрии ЕГЭ. Формулы объёма геометрических фигур таблица. Все формулы объемов и площадей фигур для ЕГЭ. Формулы площадей фигур для ЕГЭ. Площади поверхности фигур формулы ЕГЭ. Формулы объемов геометрических фигур таблица ЕГЭ. Формулы площадей для ЕГЭ профильная математика. Формулы площади и объёма геометрических фигур. Формулы площадей фигур стереометрия. Формулы площадей всех фигур для ЕГЭ. Стенд для кабинета математики планиметрия. Формулы планиметрии для ЕГЭ профиль 1 часть. Формулы планиметрия для ЕГЭ математика профильный. Формулы для планиметрии ЕГЭ математика профиль. Формулы ЕГЭ математика стереометрия. Стереометрия формулы площадей и объемов. Формулы площадей фигур планиметрия. Формулы планиметрии для ЕГЭ. Площади фигур ЕГЭ математика профиль планиметрия. Формулы объёмов фигур 11 класс. Формулы тел вращения геометрия 11 класс. Формулы объемов тел вращения 11 класс. Площади фигур формулы стереометрия 11 класс. Формулы ЕГЭ математика профильный уровень геометрия. Основные формулы для профильной математики ЕГЭ. Формулы шпоры по математике ЕГЭ 2022. Формулы ЕГЭ математика профильный уровень Алгебра. Справочные материалы ЕГЭ математика профиль 2021. Справочный материал ЕГЭ математика 2022. Базовая математика ЕГЭ 2022. Справочные материалы ЕГЭ математика 2022. Геометрические формулы для ЕГЭ база. Геометрические формулы для ЕГЭ база математика. Теоремы планиметрии 10 класс. Основные формулы планиметрии для ЕГЭ. Шпаргалки по геометрии для подготовки к ОГЭ. Геометрические задания ЕГЭ профиль математика. Теоремы по геометрии для ОГЭ 2023. Геометрия на готовых чертежах 7-9 классы теорема Пифагора. Шпоры на ОГЭ по математике 2022. Формулы для ОГЭ по математике 2022. Шпаргалки по алгебре 9 класс ОГЭ. Шпаргалки ОГЭ математика 9 класс. Формулы для ЕГЭ профильная математика геометрия. Шпоры для ЕГЭ по математике 2021 профильный уровень геометрия.