Новости теория струн кратко и понятно

Теория струн кратко и струн — это одна из революционных и самых противоречивых теорий в физике, целью которой является объединение всех частиц и фундаментальных сил природы в единую тео.

Теория струн: кратко и понятно о сложном. В чем она заключается?

А теория струн может объединить эти две теории, например если сказать что световая волна это и есть струна с набором гармоник, которая и соответствует фотону. Теория струн рассматривалась как возможная «теория всего», единая структура, которая могла бы объединить общую теорию относительности и квантовую механику, две теории, лежащие в основе современной физики. Стало отчетливо понятно, что эта программа на самом деле является отнюдь не содержанием теории струн, а только еще одной областью ее приложения.

Теория струн кратко и понятно

Теория струн. Кратко и понятно. В связи с этим видео возникла ассоциация с фразой из Библии о том, что во время Апокалипсиса "небеса свернутся, как свиток". Эту теорию вспоминают в контексте теории струн, потому что она очень естественно возникает из ее уравнений. Теория струн позволила устранить эту проблему, хотя они и не опирается на теорию поля. Теория струн — это теория о том, что фундаментальными составляющими Вселенной являются одномерные "струны", а не точечные частицы (как это принято наукой). Квантовая теория струн возникла в начале 1970-х годов в результате осмысления формул Габриэле Венециано[7], связанных со струнными моделями строения адронов.

Теория суперструн популярным языком для чайников

теория струн имеет значительное значение для понимания ранней Вселенной и происхождения нашей вселенной. Теория струн — это теория о том, что фундаментальными составляющими Вселенной являются одномерные "струны", а не точечные частицы (как это принято наукой). меньших, чем атомы, электроны или кварки. Сравнительно недавно появился подход, дающий возможность разрешить это противоречие — теория струн.

Что такое теория струн простыми словами (насколько это возможно)?

Как известно, теория струн была предложена в 1970-х годах для решения проблем квантовой гравитации и Стандартной модели. Эти достижения убедили многих физиков, что теория струн способна выполнить свои обещания и стать окончательной объединяющей теорией. Теория струн предполагает, что в нашей Вселенной существует гораздо больше измерений, чем четыре нам привычные: три пространственных плюс время. Comments Off on Теория струн кратко и понятно. Что такое теория струн, какие пять основных элементов в нее входят, является ли она теорией всего, какие у нее недостатки в статье на

Теория струн. Возникновение теории, ее приложения

Квантовая механика – следствие теории струн? | Наука и жизнь Теория струн кратко и понятно.
Теория струн кратко и понятно. Теория струн для чайников. После того, как плавная и предсказуемая Общая теория относительности оказалась в неразрешимом конфликте с плутоватой квантовой механикой, лучшие умы человечества, начиная с Эйнштейна, принялись формулировать новую теорию.
Теория струн простым языком Теория струн, обобщение квантовой теории поля (КТП), связанное с ослаблением требований локальности и перенормируемости, открывшее возможность.
Теория струн на пальцах: что стоит за самой неоднозначной теорией мироздания - Та материя, сутью которой являются струны, составляет только 5% массы Вселенной — ее видимая часть.
Что такое теория струн? 20–минутное видео о теории струн. Про эту теорию впервые прочитал в журнале "Юный техник" ещё в школе.

Что такое теория струн простыми словами (насколько это возможно)?

Теория струн взяла на вооружение старую идею Калуцы-Клейна о скрытом «дополнительном» измерении и значительно расширила ее. Теория струн предполагает, что в нашей Вселенной существует гораздо больше измерений, чем четыре нам привычные: три пространственных плюс время. Как теория струн стала «теорией всего». Где-то к началу 1980-х ученые поняли, что теория струн, изначально придуманная для описания взаимодействий адронов, имеет более фундаментальный характер. Понятно, что с математиче ской точки зрения с гладкими поверхностями работать гораздо лучше и плодотворнее, чем с сингулярными — в этом объяснение успехов математи ческого аппарата теории струн. Теория струн сейчас — это лучшая попытка объединить общую теорию относительности и квантовую механику, поскольку сами струны несут в себе гравитационную силу, а их вибрация является случайной, как и предсказывает квантовая механика.

Теория струн

Но теория струн, одна из самых популярных и сложных в современной физике, гласит, что измерений на самом деле может быть больше. Струны Вселенной: суть теории В основе теории струн Вселенной — попытки физиков найти универсальную силу, которая объединяла бы основные взаимодействия, существующие в природе — гравитацию, сильные и слабые ядерные силы, электромагнетизм. Теория струн вполне может претендовать на роль такой силы. Согласно ей, элементарные неделимые частицы, из которых состоят все предметы и вещества, — это не точки, а струны, вибрирующие по определенным шаблонам. В процессе этой вибрации они, в отличие от музыкальных струн, не издают звук, а вырабатывают новые частицы. Кварк самая маленькая элементарная частица вибрирует по одному шаблону, электрон — по другому.

И, если теория относительности еще имеет под собой какую-то базу, проверенную временем, то квантовый раздел физики в этом плане еще совсем молод. Давайте для начала разберемся в двух этих отраслях. Наверняка многие из вас слышали про теорию относительности, даже немного знакомы с некоторыми ее постулатами, но вот вопрос: почему ее никак нельзя связать с физикой квантов, которая работает на микроуровне? Говоря кратко, ОТО постулирует о космическом пространстве и его искривлении, а СТО об относительности пространства-времени со стороны человека.

Говоря о теории струн, мы затрагиваем конкретно ОТО. Общая Теория Относительности говорит о том, что в космосе под действием массивных объектов пространство искривляется вокруг него а вместе с ним и время, ведь пространство и время — это совершенно неразделимые понятия. Понять, как это происходит, поможет пример из жизни ученых. Недавно был зафиксирован подобный случай, поэтому все рассказанное можно считать «основанным на реальных событиях». Ученый смотрит в телескоп и видит две звезды: одна находится впереди, а другая позади нее. Как мы смогли это понять? Очень просто, ведь та звезда, центра которой мы не видим, а видны только края — большая из этих двух, а другая звезда, которая видна в полном своем виде, является меньшей.

Благодаря совместным усилиям физиков по всему миру, была разработана стройная теория, включающая концепции конденсированных сред, космологию и теоретическую математику. Основные этапы ее развития: 1943—1959 гг.

Появилось учение Вернера Гейзенберга об s-матрице, в рамках которого предлагалось отбросить понятия пространства и времени для квантовых явлений. Гейзенберг впервые обнаружил, что участники сильных взаимодействий представляют собой протяженные объекты, а не точки; 1959—1968 гг. Были обнаружены частицы с высокими спинами моментами вращения. Итальянский физик Туллио Редже предложит группировать квантовые состояния в траектории которые были названы его именем ; 1968—1974 гг. Гарибрэле Венециано предложил модель двойного резонанса для описания сильных взаимодействий. Есиро Намбу развил эту идею и описал ядерные силы как вибрационные одномерные струны; 1974—1994 гг. Открытие суперструн, во многом благодаря работам российского ученого Александра Полякова; 1994—2003 гг. Появление М-теории, допустила большее, чем 11, количество измерений; 2003 — н.

Но вы не можете многое сделать с этими точечными частицами. Это оказалось серьезным препятствием при формулировании взаимодействия между различными частицами.

Теория струн. Что это?

Хотя число различных колебательных мод бесконечно, лишь немногим из них соответствуют малые массы и заряды. Остальные должны иметь гигантские массы порядка 10-5 грамм — это огромная величина в масштабах микромира! На наших ускорителях родить таких гигантов мы еще долго не сможем. Но они рождались на ранних стадиях Вселенной , когда энергия была в избытке. Теория струн естественно включает в себя и гравитацию с ее гипотетическим переносчиком — гравитоном. Вместо четырех фундаментальных взаимодействий она предлагает единое взаимодействие струн. Простейшее струнное взаимодействие — это разрыв и слияние струн. Скажем, две замкнутые струны объединяются в промежуточную замкнутую струну, которая потом опять распадается на две, но уже другие струны.

Мы понятия не имеет, как выглядят элементарные частицы. Как и темную энергию, темную материю, мы не можем наблюдать эти явления непосредственно, но у нас есть основания полагать, что они существуют. Мы рассматриваем эти частицы как точки в пространстве, хотя на самом деле они таковым не являются. Несмотря на все недостатки, этот метод — идея квантовой механики о том, что силы переносятся частицами — дает нам неплохое представление о вселенной и приводит к прорывам вроде квантовых растворителей и поездов на магнитной левитации. Общая теория относительности сама по себе тоже прошла хорошую проверку временем, объясняя нейтронные звезды и аномалии орбиты Меркурия, предсказывая черные дыры и искривление света. Но уравнения ОТО, к сожалению, перестают работать в центре черной дыры и в преддверии Большого Взрыва. Проблема в том, что свести их вместе не получается, потому что гравитация связана с геометрией пространства и временем, когда расстояния измеряются точно, а в квантовом мире измерить что-то нет никакой возможности. Когда ученые попытались изобрести новую частицу, которая поженила бы гравитацию с квантовой механикой, их математика просто дала сбой. В некотором смысле пришлось вернуться к школьной доске. Поэтому ученые предположили, что мельчайшие компоненты вселенной — это не точки, а струны. Различные колебания струн создают различные элементарные частицы вроде кварков. Вибрирующие струны могли бы составить всю материю и все четыре силы во Вселенной — включая гравитацию. Высшие измерения У теории суперструн есть проблема.

Многие новые теоретические конструкции проходят стадию неопределённости, прежде чем, на основании сопоставления с результатами экспериментов, признаются или отвергаются. Поэтому и в случае теории суперструн требуется либо развитие самой теории, то есть методов расчёта и получения выводов, либо развитие экспериментальной науки для исследования ранее недоступных величин. Фальсифицируемость и проблема ландшафта[ ] В 2003 году выяснилось [3] , что существует множество способов свести 10-мерные суперструнные теории к 4-мерной эффективной теории поля. Сама теория струн не давала критерия, с помощью которого можно было бы определить, какой из возможных путей редукции предпочтителен. Каждый из вариантов редукции 10-мерной теории порождает свой 4-мерный мир, который может напоминать, а может и отличаться от наблюдаемого мира. Всю совокупность возможных реализаций низкоэнергетического мира из исходной суперструнной теории называют ландшафтом теории. Оказывается, количество таких вариантов поистине огромно. Считается, что их число составляет как минимум 10100; не исключено, что их вообще бесконечное число. В результате получается удручающая картина. Каков бы ни был наш мир, всегда найдется способ свести его к суперструнной теории. Таким образом, суперструнная теория не только не противоречит современным экспериментальным данным, но и не будет противоречить никакому эксперименту в обозримом будущем. Это означает, что теория суперструн близка к тому, чтобы потерять ключевое свойство научной теории — фальсифицируемость. В течение 2005 года неоднократно высказывались предположения [4] , что прогресс в этом направлении может быть связан с включением в эту картину антропного принципа: мы существуем именно в такой Вселенной, в которой наше существование возможно. Вычислительные проблемы[ ] С математической точки зрения, ещё одна проблема состоит в том, что, как и квантовая теория поля , большая часть теории струн всё ещё формулируется пертурбативно в терминах теории возмущений. Несмотря на то, что непертурбативные методы достигли за последнее время значительного прогресса, полной непертурбативной формулировки теории до сих пор нет. Текущие исследования[ Изучение свойств чёрных дыр[ ] В 1996 г. В этой работе Строминджеру и Вафе удалось использовать теорию струн для нахождения микроскопических компонентов определенного класса чёрных дыр , а также для точного вычисления вкладов этих компонентов в энтропию. Работа была основана на применении нового метода, частично выходящего за рамки теории возмущений , которую использовали в 1980-х и в начале 1990-х гг. Результат работы в точности совпадал с предсказаниями Бекенштейна и Хокинга, сделанными более чем за двадцать лет до этого. Реальным процессам образования чёрных дыр Строминджер и Вафа противопоставили конструктивный подход. Они изменили точку зрения на образование чёрных дыр, показав, что их можно конструировать путем кропотливой сборки в один механизм точного набора бран, открытых во время второй суперструнной революции. Имея в руках все рычаги управления микроскопической конструкцией чёрной дыры , Строминджер и Вафа смогли вычислить число перестановок микроскопических компонентов чёрной дыры, при которых общие наблюдаемые характеристики, например масса и заряд , остаются неизменными. После этого они сравнили полученное число с площадью горизонта событий чёрной дыры — энтропией , предсказанной Бекенштейном и Хокингом, — и получили идеальное согласие. По крайней мере, для класса экстремальных чёрных дыр Строминджеру и Вафе удалось найти приложение теории струн для анализа микроскопических компонентов и точного вычисления соответствующей энтропии. Проблема, стоявшая перед физиками в течение четверти века, была решена. Для многих теоретиков это открытие было важным и убедительным аргументом в поддержку теории струн. Разработка теории струн до сих пор остается слишком грубой для прямого и точного сравнения с экспериментальными результатами, например, с результатами измерений масс кварка или электрона. Теория струн, тем не менее, дает первое фундаментальное обоснование давно открытого свойства чёрных дыр, невозможность объяснения которого многие годы тормозила исследования физиков, работавших с традиционными теориями. Даже Шелдон Глэшоу, Нобелевский лауреат по физике и убеждённый противник теории струн в 1980-е гг. Струнная космология[ ] Существует три основных пункта, в которых теория струн модифицирует стандартную космологическую модель. Во-первых, в духе современных исследований, всё более проясняющих ситуацию, из теории струн следует, что Вселенная должна иметь минимально допустимый размер. Этот вывод меняет представление о структуре Вселенной непосредственно в момент Большого взрыва , для которого в стандартной модели получается нулевой размер Вселенной. Во-вторых, понятие T-дуальности, то есть дуальности малых и больших радиусов в его тесной связи с существованием минимального размера в теории струн, имеет значение и в космологии.

Но, увы, даже на это открытие научное сообщество никак не отреагировало. Теория струн оставалась на грани выживания. Но Шварца это не остановило. Присоединиться к его поискам захотел только один ученый, готовый рискнуть своей карьерой ради таинственных струн — Майкл Грин. За открытие этих «оснований» в 2011 году была вручена Нобелевская премия по физике. Состояло оно в том, что расширение Вселенной не замедляется, как думали когда-то, а, наоборот, ускоряется. Объясняют это ускорение действием особой «антигравитации», которая каким-то образом свойственна пустому пространству космического вакуума. С другой стороны, на квантовом уровне ничего абсолютно «пустого» быть не может — в вакууме постоянно возникают и тут же исчезают субатомные частицы. Такое «мелькание» частиц, как полагают, и ответственно за существование «антигравитационной» темной энергии, которая наполняет пустое пространство. В свое время именно Альберт Эйнштейн, до конца жизни так и не принявший парадоксальные принципы квантовой механики которую он сам и предсказал , предположил существование этой формы энергии. Следуя традициям классической греческой философии Аристотеля с ее верой в вечность мира, Эйнштейн отказывался поверить в то, что предсказывала его собственная теория, а именно то, что Вселенная имеет начало. Чтобы «увековечить» мироздание, Эйнштейн даже ввел в свою теорию некую космологическую постоянную, и таким образом описал энергию пустого пространства. К счастью, через несколько лет выяснилось, что Вселенная — вовсе не застывшая форма, что она расширяется. Тогда Эйнштейн отказался от космологической постоянной, назвав ее «величайшим просчетом в своей жизни». Сегодня науке известно — темная энергия все-таки существует, хотя плотность ее намного меньше той, что предполагал Эйнштейн проблема плотности темной энергии, кстати, — одна из величайших загадок современной физики. Но как бы ни была мала величина космологической постоянной, ее вполне достаточно для того, чтобы убедиться в том, что квантовые эффекты в гравитации существуют. Шварц и Грин принялись за их устранение. И усилия их не прошли даром: ученые сумели устранить некоторые противоречия теории. Меньше чем за год число струнных теоретиков подпрыгнуло до сотен человек. Именно тогда теорию струн наградили титулом Теории Всего. Новая теория, казалось, способна описать все составляющие мироздания. И вот эти составляющие. Каждый атом, как известно, состоит из еще меньших частиц — электронов, которые кружатся вокруг ядра, состоящего из протонов и нейтронов. Протоны и нейтроны, в свою очередь, состоят из еще меньших частиц — кварков. Но теория струн утверждает, что на кварках дело не заканчивается. Кварки состоят из крошечных извивающихся нитей энергии, которые напоминают струны. Каждая из таких струн невообразимо мала. Мала настолько, что если бы атом был увеличен до размеров Солнечной системы, струна была бы размером с дерево. Так же, как различные колебания струны виолончели создают то, что мы слышим, как разные музыкальные ноты, различные способы моды вибрации струны придают частицам их уникальные свойства — массу, заряд и прочее. Знаете, чем, условно говоря, отличаются протоны в кончике вашего ногтя от пока не открытого гравитона? Только набором крошечных струн, которые их составляют, и тем, как эти струны колеблются. Конечно, все это более чем удивительно. Еще со времен Древней Греции физики привыкли к тому, что все в этом мире состоит из чего-то вроде шаров, крошечных частиц. И вот, не успев привыкнуть к алогичному поведению этих шаров, вытекающему из квантовой механики, им предлагается вовсе оставить парадигму и оперировать какими-то обрезками спагетти… Пятое измерение Хотя многие ученые называют теорию струн триумфом математики, некоторые проблемы у нее все же остаются — прежде всего, отсутствие какой-либо возможности в ближайшее время проверить ее экспериментально. Ни один инструмент в мире, ни существующий, ни способный появиться в перспективе, «увидеть» струны неспособен. Поэтому некоторые ученые, кстати, даже задаются вопросом: теория струн — это теория физики или философии?.. Правда, видеть струны «воочию» вовсе не обязательно. Для доказательства теории струн требуется, скорее, другое — то, что звучит как научная фантастика — подтверждение существования дополнительных измерений пространства. О чем идет речь? Все мы привыкли к трем измерениям пространства и одному — времени. Но теория струн предсказывает наличие и других — дополнительных — измерений. Но начнем по порядку. На самом деле, идея о существовании других измерений возникла почти сто лет назад. Пришла она в голову никому не известному тогда немецкому математику Теодору Калуца в 1919 году. Он предположил возможность наличия в нашей Вселенной еще одного измерения, которое мы не видим. Об этой идее узнал Альберт Эйнштейн, и сначала она ему очень понравилась.

Похожие новости:

Оцените статью
Добавить комментарий