Новости 26 задача егэ информатика

Разбор всей демоверсии ЕГЭ по информатике 2024 в плейлисте. Шпаргалка по задачам по ЕГЭ по информатике 2023. За это задание вы можете получить 2 балла на ЕГЭ в 2024 году.

Задание 26 | ЕГЭ по информатике 2023

ЕГЭ-2020: 23-е задание по информатике стало мемом, а 17-е по математике – песней Главная» Новости» 13 задание егэ информатика 2024.
Сайт учителя информатики - Задание №17 Инфоурок › Информатика ›Конспекты›Разбор задания №26 ЕГЭ (Информатика).
Решение 26 задания егэ информатика. Насчет заданий, которые были знакомы до экзамена: многие, цифра в цифру, есть на компегэ, от Евгения Джобса.
2 способа решения задания 26 на ЕГЭ по информатике 2023 | insperia - смотреть бесплатно ЕГЭ по информатике.
Решение 26 задания егэ информатика. Отмена. Воспроизвести. Информатика ЕГЭ Умскул.

Егэ информатика 26. Баллы за задания по информатике

Разбор заданий с прошедшего ЕГЭ 2023. Задание 26 → Умение обрабатывать целочисленную информацию с использованием сортировки. Тренировочные тесты ЕГЭ-2020 по всем предметам для 11 класса от авторов «СтатГрада» и других экспертов. Разбор нового типа 6 задания из Демоверсии l ЕГЭ 2023 по информатике l Коля Касперский из Вебиума. Самая важная информация для ЕГЭ по информатике — 2024: актуальные изменения, структура экзамена, типы заданий, темы и лайфхаки. Открытый банк заданий ЕГЭ. obzege. Информатика. ЕГЭ. Задания для подготовки. Задачи разных лет из реальных экзаменов, демо-вариантов, сборников задач и других источников.

Задания 20, 21 ЕГЭ по информатике: Аналитическое решение демоварианта

Группу вложенных друг в друга контейнеров называют блоком. Количество контейнеров в блоке может быть любым. Каждый блок, независимо от количества и размера входящих в него контейнеров, а также каждый одиночный контейнер, не входящий в блоки, занимает при хранении одну складскую ячейку. Зная размеры и цвета всех контейнеров, определите максимально возможное количество контейнеров в одном блоке и минимальное количество ячеек для хранения всех контейнеров.

В следующих N строках находятся значения объёмов файлов каждого пользователя все числа натуральные, не превышающие 100 , каждое в отдельной строке. Запишите в ответе два числа: сначала наибольшее число пользователей, чьи файлы могут быть помещены в архив, затем максимальный размер имеющегося файла, который может быть сохранён в архиве, при условии, что сохранены файлы максимально возможного числа пользователей. Источник: ссылка В решении этой задачи мы сначала записываем свободное место в переменную, а затем сортируем массив с файлами по возрастанию.

Начинаем заполнять массив пока место не закончится оно гарантированно закончится раньше.

Источник: ссылка В решении этой задачи мы сначала записываем свободное место в переменную, а затем сортируем массив с файлами по возрастанию. Начинаем заполнять массив пока место не закончится оно гарантированно закончится раньше. Так как после записи последнего файла у нас останется некоторое место, кторое слишком мало, чтобы записать в него следующий. Тогда мы выкидываем из массива последний сохранённый файл и следующим массивом бежим от того, который мы выкинули, до того файла, размер которого не превысит свободное место.

Входные данные: Первая строка входного файла содержит два целых числа: N — общее количество грузов и M — грузоподъёмность грузовика в кг. Каждая из следующих N строк содержит одно целое число — массу груза в кг. Подсчитаем сумму и количество груза. В столбце А выделяем диапазон, который на превышает полученное число, фиксируем количество 110 и массу последнего большого груза 123. Стараются взять как можно больше грузов, если это можно сделать несколькими способами, выбирают тот способ, при котором самый большой из выбранных грузов имеет наибольшую массу.

Задание №26 в Excel

Укажите хотя бы одно значение S, при котором у Васи есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Паши, и у Васи нет стратегии, которая позволит ему гарантированно выиграть первым ходом. Для указанного значения S опишите выигрышную стратегию Васи. Постройте дерево всех партий, возможных при этой выигрышной стратегии Васи в виде рисунка или таблицы. При количестве камней в куче от 14 и выше Паше необходимо увеличить их количество в пять раз, тем самым получив 70 или более камней. Паша своим первым ходом может сделать 14, 17 или 65 камней, после этого Вася увеличивает количество в пять раз, получая 70, 85 или 325 камней в куче. Для данных случаев Паше необходимо прибавить 4 камня к куче из 9 камней, либо 1 камень к куче из 12, и получить кучу из 13 камней. После чего игра сводится к стратегии, описанной в пункте 1б. Своим первым ходом Паша может сделать количество камней в куче 9, 12 или 40. Если Паша увеличивает кол-во в пять раз, тогда Вася выигрывает своим первым ходом, увеличивая количество камней в пять раз. Для случая 9 и 12 камней Вася использует стратегию, указанную в п. Задание 26 Крылов С.

Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 73. Победителем считается игрок, сделавший последний ход, то есть первым получивший такую позицию, что в кучах всего будет 73 камня или больше. В каждом случае опишите выигрышную стратегию; объясните, почему эта стратегия ведёт к выигрышу, и укажите, какое наибольшее количество ходов может потребоваться победителю для выигрыша при этой стратегии. Для каждой из начальных позиций 6, 32 , 7, 32 , 8, 31 укажите, кто из игроков имеет выигрышную стратегию. Для начальной позиции 7, 31 укажите, кто из игроков имеет выигрышную стратегию. Постройте дерево всех партий, возможных при указанной вами выигрышной стратегии. Представьте дерево в виде рисунка или таблицы. Перед игроками лежат две кучи камней. За один ход игрок может добавить в одну из куч по своему выбору два камня или увеличить количество камней в куче в два раза. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 44. Победителем считается игрок, сделавший последний ход, то есть первым получивший такую позицию, что в кучах всего будет 44 или больше камней. При каких S: 1а Петя выигрывает первым ходом; 1б Ваня выигрывает первым ходом? Назовите одно любое значение S , при котором Петя может выиграть своим вторым ходом. Назовите значение S, при котором Ваня выигрывает своим первым или вторым ходом. Укажем это в таблице. Значит рассмотрим ситуации, что Петя мог бы ходить первым ходом в 7;S и в 10;S. Соответственно, выигрышными являются и все позиции 7;больше 19. Отметим такие позиции, учитывая, что это первый ход Пети, и кол-во камней в первой куче должно быть 5. Найденные позиции будут проигрышными позициями - : Находим единственное такое значение — 5; 19.

Везде следующим ходом выиграет Ваня, см. Это задание из второй части высокого уровня сложности. Примерное время выполнения задания 30 минут. Максимальный балл за выполнение задания — 3. Проверяемые элементы содержания: — Умение построить дерево игры по заданному алгоритму и обосновать выигрышную стратегию. Задание 26 Два игрока, Паша и Валя, играют в следующую игру. Игра завершается в тот момент, когда количество камней в куче становится не менее 20. Если при этом в куче оказалось не более 30 камней, то победителем считается игрок, сделавший последний ход. Например, если в куче было 17 камней и Паша удвоит количество камней в куче, то игра закончится, и победителем будет Валя. Будем говорить, что игрок имеет выигрышную стратегию , если он может выиграть при любых ходах противника.

На рёбрах дерева указывайте, кто делает ход; в узлах — количество камней в позиции.

Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч по своему выбору один камень или увеличить количество камней в куче в три раза.

Например, пусть в одной куче 10 камней, а в другой 7 камней; такую позицию в игре будем обозначать 10, 7. Тогда за один ход можно получить любую из четырёх позиций: 11, 7 , 30, 7 , 10, 8 , 10, 21. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней. Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 68.

Победителем считается игрок, сделавший последний ход, то есть первым получивший такую позицию, при которой в кучах будет 68 или больше камней. Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, то есть не являющиеся выигрышными независимо от игры противника.

Выполните следующие задания. Задание 1 в Укажите все такие значения числа S, при которых Петя может выиграть за один ход. Укажите минимальное значение S, когда такая ситуация возможна. Задание 2 Укажите такое значение S, при котором у Пети есть выигрышная стратегия, причём одновременно выполняются два условия: Петя не может выиграть за один ход; Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Для указанного значения S опишите выигрышную стратегию Пети. Задание 3 Укажите значение S, при котором одновременно выполняются два условия: у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети; у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом. Для указанного значения S опишите выигрышную стратегию Вани. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани в виде рисунка или таблицы.

Из предложенных 23 заданий первой части экзаменационной работы 12 относятся к базовому уровню проверки знаний, 10 — повышенной сложности, 1 — высокому уровню сложности. Три задачи второй части высокого уровня сложности, одна — повышенного. При решении обязательна запись развернутого ответа произвольная форма. В некоторых заданиях текст условия подан сразу на пяти языках программирования — для удобства учеников. Баллы за задания по информатике 1 балл - за 1-23 задания 2 балла - 25.

Всего: 35 баллов. Для поступления в технический вуз среднего уровня, необходимо набрать не менее 62 баллов. Чтобы поступить в столичный университет, количество баллов должно соответствовать 85-95. Для успешного написания экзаменационной работы необходимо четкое владение теорией и постоянная практика в решении задач. Открываем подписку на интерактивные тренажеры для подготовки к ЕГЭ 2016 года по информатике Каждый обладающий картой Visa, MasterCard, кошельком Яндес.

Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 30 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 22. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 22 или больше камней. Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. Выполните следующие задания.

Во всех случаях обосновывайте свой ответ. Обоснуйте, что найдены все нужные значения S, и укажите выигрывающий ход для каждого указанного значения S. Опишите выигрышную стратегию Вани. Укажите два таких значения S, при которых у Пети есть выигрышная стратегия, причём — Петя не может выиграть за один ход, и — Петя может выиграть своим вторым ходом, независимо от того, как будет ходить Ваня. Для каждого указанного значения S опишите выигрышную стратегию Пети.

Укажите значение S, при котором: — у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети, и — у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом. Для указанного значения S опишите выигрышную стратегию Вани. Постройте дерево всех партий, возможных при этой выигрышной стратегии Вани в виде рисунка или таблицы. На рёбрах дерева указывайте, кто делает ход, в узлах — количество камней в куче. Вопрос 1а.

Для этого достаточно число камней в куче увеличить вдвое и их всегда получится более 21. Вопрос 1б. Для ответа на этот вопрос нужно найти позиции, условно назовем их min0 , из которых все возможные ходы ведут в начальную выигрышную позицию, отмеченную нами как max0. Для того чтобы Петя гарантированно выиграл вторым ходом, то есть оказался в позиции max0 , после хода Вани, ему необходимо своим первым ходом «посадить Ваню в яму ». Проверим данную позицию на гарантированность победы!

Проверим данную позицию на гарантированность проигрыша Пети! Полякова Теория игр. Поиск выигрышной стратегии Для решения 26 задания необходимо вспомнить следующие темы и понятия: Выигрышная стратегия для того чтобы найти выигрышную стратегию в несложных играх, достаточно использовать метод перебора всех возможных вариантов ходов игроков; для решения задач 26 задания чаще всего для этого применяется метод построения деревьев ; если от каждого узла дерева отходят две ветви, то есть возможные варианты хода, то такое дерево называется двоичным если из каждой позиции есть три варианта продолжения, дерево будет троичным. Кто выиграет при стратегически правильной игре? Что должен сделать игрок с выигрышной стратегией первым ходом, чтобы он смог выиграть, независимо от действий ходов игроков?

Рассмотрим пример: Игра: в кучке лежит 5 спичек; играют два игрока, которые по очереди убирают спички из кучки; условие: за один ход можно убрать 1 или 2 спички; выигрывает тот, кто оставит в кучке 1 спичку Решение: Ответ: при правильной игре стратегии игры выиграет первый игрок; для этого ему достаточно своим первым ходом убрать одну спичку. Игроки ходят по очереди, первый ход делает Паша один в два раза.

Сложное 14 Рассмотрим ряд сложных задач типа 14 из ЕГЭ по информатике. Тип 14 это задачи на позиционные системы счисления. Задача 1. Определите, сколько различных значений может принимать выражение при всех возможных x и y.

Разбор демоверсии 2024 по информатике ЕГЭ | Задание 26 | Новая Школа

Тогда скидка предоставляется на товары стоимостью 125 и 144. Стоимость этих двух товаров со скидкой составит 201,75 руб. Самый дорогой товар, на который будет получена скидка, стоит 144 руб. В ответе нужно записать числа 1277 и 144. Грузы массой от 200 до 210 кг грузят в первую очередь, гарантируется, что все такие грузы поместятся.

Примерное время выполнения задания 30 минут. Максимальный балл за выполнение задания — 3. Проверяемые элементы содержания: — Умение построить дерево игры по заданному алгоритму и обосновать выигрышную стратегию. Элементы содержания, проверяемые на ЕГЭ: — Цепочки конечные последовательности , деревья, списки, графы, матрицы массивы , псевдослучайные последовательности.

Задание 26 Два игрока, Паша и Валя, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Паша. За один ход игрок может добавить в кучу один камень или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16 или 30 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится не менее 20.

Найдём максимальный размер файла при максимальном количестве файлов. Если покрутим таблицу вниз, то найдём такой файл размером 50. Это и будет наибольший файл при максимальном количестве файлов. Ответ получается 568 50. Второй способ с помощью Python. С помощью команды readline считываем первую строчку. С помощью команды split разбиваем строчку по пробелу на два числа. Переменная st — это список. В st[0] — будет подстрока с первым числом, в st[1] со вторым. Переменная s — это размер свободного пространства на диске, n — это количество пользователей. Мы должны использоваться функцию int , чтобы перевести из текстового типа данных в целый числовой. Заводим пустой список a. В него мы будем помещать все значения объёмов пользователей, которые идут ниже по файлу. Зачитываем последующие числа в список a, превращая их в целый тип данных. Заводим список b. В него будем класть элементы, которые записываем на диск. С помощью цикла пробегаемся по всем элементам. В начале проверяем, есть ли место для очередного элемента, а потом записываем элемент в список b.

Делители в строке таблицы также должны следовать в порядке возрастания. Изображение слайда Слайд 3: 25. Общий подход 3 Пишем решение «в лоб». Если получили ответ, то СТОП. Переходим к шагу 2. Не нужно оптимизировать без необходимости! Изображение слайда Слайд 4: 25. Изображение слайда Слайд 5: 25. Делители в парах: Проблема: вещественное! Проблема: полные квадраты! Изображение слайда Слайд 7: 25. Divs d then begin divs. Add x div d ; if divs. Add d ; divs. Count divs. Add i ; P rint primes. Count ; Время 0,3 с! Изображение слайда Слайд 12: 25. Пример 12 Б. Михлин Напишите программу, которая ищет среди целых чисел, принадлежащих числовому отрезку [194441; 196500] простые числа, оканчивающиеся на 93. Изображение слайда Слайд 13: 25. Пример 15 Рассматриваются целые числа, принадлежащих числовому отрезку [631632; 684934], которые представляют собой произведение двух различных простых делителей. Найдите такое из этих чисел, у которого два простых делителя больше всего отличаются друг от друга. Изображение слайда Слайд 16: 25. Изображение слайда Слайд 17: 25. Divs d then begin Пара « наименьший-наибольший » имеет наибольшую разность!

Разбор 26 задания ЕГЭ 2023 по информатике ( python )+ досрочный период 2023

Задача 1. На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом. На уроке рассмотрен разбор 26 задания ЕГЭ по информатике: дается подробное объяснение и решение задания 2017 года. Тегипрезентации к подготовке к егэ по информатике, рустьюторс задание 26 егэ, егэ информатика 26 задание критерии.

ЕГЭ-2022 по информатике. Вебинар "Выполнение задания №26"

задание 26 решение. Информатика, ЕГЭ, Задание 27, Вариант 3, Файл А, Реальный ЕГЭ 2022, Программа, Питон. В варианте ЕГЭ-2024 две задачи по теории вероятностей — это №4 и №5. По заданию 5 в Интернете почти нет доступных материалов. ЕГЭ-2022 по информатике. Вебинар "Выполнение задания №26". Информатика. Решения, ответы и подготовка к ЕГЭ от Школково. Теория по заданию №26 из ЕГЭ 2024 по информатике: конспекты, примеры заданий от ФИПИ, разборы задач с ответами, шаблоны и формулы для решения.

Похожие новости:

Оцените статью
Добавить комментарий