Но вернемся к теме: научный журнал PLOS ONE недавно пополнился исследованием, в котором ученые решили выяснить реальную способность человеческого глаза различать количество увиденных кадров в секунду.
Сколько кадров в секунду видит человеческий глаз в кино и играх.
Был проведен эксперимент, когда людям было предложено посмотреть видео с частотой 220 кадров в секунду. В одном из кадров находился летающий объект. Так вот, практически все подтвердили, что в кадре они видели некий объект, рассмотреть который был невозможно из-за очень высокой частоты кадров. Но важен тот факт, что люди его все же заметили. Так что в итоге получилось? Мы поддержим ученых, которые подтверждают тот факт, что человеческий глаз видит до 50-60 кадров в секунду.
Техник и юрист. Или наоборот, но не только. Причём рисуется сначала одна половина кадра, а потом, через строку, другая. Это уменьшает заметность мерцания.
Каждый из 24 "изначальных" кадров показывают два или даже три раза, чтобы уменьшить мерцание. У цифровой проекции частоты при показе могут быть еще выше.
Сколько FPS видит человеческий глаз? Это необходимое количество кадров, при котором видеоряд воспринимается наиболее удобно: нет провисаний или скачков. Когда Вы концентрируете внимание на чём-либо, то способны воспринимать до сотни кадров в секунду, не упуская при этом семантической нити происходящего. Допустим играя в шутер вы можете воспринимать 220 кадров и более. Важным фактором в подаче изображения, естественно, является монитор.
На инерции основаны и оптические иллюзии: например, круги, которые мы воспринимаем как движущиеся. В действительности движение отсутствует. На картинке Вы видите только один кадр, но боковое зрение посылает сигнал в мозг, говоря ему, что что-то там нечисто и надо бы это проверить. В итоге мозг посылает сигнал обратно, преобразовывая 1 кадр в несколько. Это необходимо, чтобы Вы обернулись и удостоверились, что за ближайшими кустами не кроется опасность. Иными словами, это продиктовано инстинктом самосохранения. Что такое кадровая частота Принцип кино можно понять на основе работы простейшего электронно-оптического проектора. Отдельные изображения на плёнке последовательно проходят через механизм проектора. Встроенная лампа направляет на них световой поток, посредством которого оптическая система поочерёдно проецирует кадры на экран, создавая иллюзию движения. Для традиционной целлулоидной плёнки скорость смены изображений выражается в кадрах в секунду, или FPS англ. Frames per Second. Для цифровых фильмов используют понятие «частоты обновления», которая выражается в герцах Гц. Чем выше значения показателей, тем быстрее сменяются статичные изображения и реалистичнее выглядит иллюзия движения. FPS и частота обновления немного отличаются. Под FPS подразумевают число самостоятельных кадров, отображаемых в секунду. Частота обновления — это общее количество показов всех изображений за то же время. Дело в том, что для большей реалистичности и минимизации прерывистости видео один кадр может показываться два и более раз, что сопряжено с увеличением скорости кадросмены. Звук Всё сложнее стало со звуком. Теперь нельзя крутить фильм быстрее или медленнее. Нужно соблюдать постоянную кадровую частоту, чтобы скорость, а значит и тембр голоса не изменялся на протяжении фильма. С 16 FPS была проблема, звук не звучал точно, как задумывалось. Нужно было выбрать новую частоту, чтобы она была больше 16 и в итоге давала 48 проецируемых FPS. В итоге, вместо трёхлезвийного обтюратора стали использовать двулезвийный. И утвердили новый фрейм рейт — 24 FPS. Всё просто и удобно. То есть мы знаем, что половина секунды — 12 FPS, треть — 8, а четверть — 6. Тут вроде становится понятно — мы и сейчас используем 24 FPS. Тогда зачем нам 25, 30 и тем более 29,97? Откуда взялся миф про 24 кадра Стандартная кинопленка 35 мм после проявки Center for Teaching Quality Миф о том, что человеческий глаз видит максимум 24 кадра в секунду, имеет вековую историю. Он уходит корнями в эпоху зарождения кинематографа. Первые фильмы, снятые в конце XIX века братьями Люмьер, имели 16 кадров в секунду. Эту цифру выбрали потому, что расход стандартной пленки 35 мм при такой частоте составлял ровно 1 фут в секунду. Таким образом упрощались расчеты необходимого количества пленки для съемок. Потребность в увеличении частоты возникла с переходом от немого кино к звуковому. Дорожка в те времена писалась на пленку рядом с картинкой в виде полосок, каждая из которых соответствовала определенной частоте. Малая длина пленки, прокручиваемой за секунду всего 30 см , не позволяла записать звук достаточно четко, поэтому длину нужно было увеличивать. Волнообразные линии вверху — звуковая дорожка Википедия — Wiki Увеличить показатели FPS именно до 24 решили тоже не просто так. Секундный расход пленки теперь составлял 1,5 фута, минутный — 90 футов или 30 ярдов. Эти цифры тоже оказались удобными для расчетов при планировании бюджета съемок. Частоту пытались увеличить и больше, до 30, 48 и даже 60 кадров за секунду, но возникли проблемы. Для такой скорости требовалось более точное и выносливое оборудование как для съемки, так и воспроизведения в кинотеатрах , а расход пленки существенно увеличивался.
Глаз человека против матрицы смартфона: мегапиксели, разрешение и не только!
Сегодня я вам расскажу сколько кадров в секунду видит глаз человека! Исследования, эксперименты и научные обоснования и комментарии о том, сколько же Гц видит глаз обычного человека, и отличаются ли геймеры от нас. Хотя человеческий глаз способен воспринимать около 60 FPS, для разного типа контента требуется разное количество кадров. Возникает вполне логичный вопрос – сколько мегапикселей содержится в глазу человека?
Сколько кадров в секунду видит человеческий глаз? Что такое FPS?
Представьте, насколько ужасной была бы матрица, поглощающая только каждый десятый фотон?! Знаете ли вы какая эффективность современных матриц на 64 или 108 мегапикселей? То есть, если на матрицу попадает 100 фотонов, они могут «создать» до 120 электронов. Это превосходный показатель.
А теперь посмотрим на наш глаз. Чтобы активировать хотя бы одну колбочку «цветной пиксель» , нужно гораздо больше фотонов, чем требуется для активации одной палочки «пиксель», учитывающий только яркость. Поэтому в темноте недостаточно света для активации колбочек и мы «делаем снимки» только черно-белыми палочками.
Если в матрице смартфона фотоны поглощают кусочки кремния, то в палочках этим занимаются специальные молекулы под названием родопсин. Одна молекула родопсина может поглотить 1 фотон света. Вот как выглядит такая палочка: Черно-белый пиксель палочка Обратите внимание на «полку» с дисками.
В каждом таком диске находится 10 тыс. То есть, каждый диск способен поглотить 10 тысяч фотонов. А теперь следите за цифрами: На сетчатке глаза 120 млн палочек В каждой палочке 1000 дисков В каждом диске 10 тыс.
А 108-Мп матрица смартфона с самыми современными эффективными пикселями может поглотить около 600 миллиардов фотонов, что примерно в 2000 раз меньше. Но проблема в том, что этих фотонов ночью очень мало. Днем такое преимущество дает гораздо лучший динамический диапазон, но как быть ночью?
Всего одного фотона достаточно для того, чтобы активировалась одна палочка. Но эта палочка не отправит никакого сигнала в мозг и мы не увидим картинку. Для этого нужно активировать хотя бы 10 палочек.
И здесь мы возвращаемся к вопросу об эффективности «матрицы» глаза. То есть, из 100 фотонов, попавших на сетчатку, палочками поглотится в лучшем случае 20 фотонов. Остальное будет «утилизировано» специальным слоем, который предотвращает хаотическое движение фотонов внутри глаза, чтобы не возникало никаких отражений, «засветки» и прочих проблем.
Именно из-за такого поглощения всех «лишних» фотонов наш зрачок кажется черным. Оттуда просто не возвращается свет. А если бы возвращался, мы бы видели кровь в сосудах задней части глаза.
Собственно, иногда это и происходит, когда мы используем вспышку яркий источник света при плохом освещении. Зрачки не успевают отреагировать на мощный поток света и прикрыть «диафрагму объектива». Слишком много фотонов залетает в глаз и, отражаясь, вылетает оттуда.
Процессор как секрет успеха! Или что нас ждет дальше? Возможно, вы уже догадались, что весь секрет качественного изображения заключается в мощнейшем «процессоре» обработки фотографий.
Мозг действительно получает плохую картинку, если сравнивать ее с тем, что выдает смартфон. Но глаза работают не покадрово. Они непрерывно ритмично совершают очень мелкие движения саккады , сканируя сцену своими жалкими 1.
Мозг объединяет две плоские картинки с двух глаз и строит трехмерное изображение. Он убирает тени от сосудов, силуэт носа, разукрашивает слепые пятна, делает догадки и превращает их в «реальную» картинку. Чтобы вы осознали масштаб его художественной самодеятельности, скрытой от вашего сознания, просто посмотрите на луну или солнце.
Вы замечали, какие они громадные над горизонтом и мелкие в зените? Бывало ли у вас такое, что вы даже говорили кому-то полюбоваться большой и красивой луной и желательно сделать это быстрее, пока она не поднялась вверх и не стала маленькой? Что же это за такое загадочное физическое явление?
Может всё дело в орбитах? Или в атмосфере, которая как-то не так преломляет свет и увеличивает размеры небесных тел? На самом деле, ни солнце, ни луна никак не изменяют своих размеров, будь они в зените или над горизонтом.
Это просто ваш мозг так развлекается, «делая снимок» маленькой луны над горизонтом, а затем в своем «фотошопе» увеличивает ее до захватывающих размеров и демонстрирует результаты своей работы вашему сознанию. Вы поражаетесь его талантам, звоните знакомым и советуете посмотреть на эту красоту.
Помните, я говорил про неравномерное распределение палочек и колбочек? Давайте посмотрим на этот график. Здесь мы видим концентрацию двух типов рецепторов в разных частях сетчатки. Красный скачок в середине графика. Это место называется Центральная ямка. Или Fovea.
Посмотрите на график, на нём наглядно показано распределение наших зрительных рецепторов. Если палочки, светочувствительные пиксели, распределены в основном по краям сетчатки. Но самое интересное вот в чем. Выясняется, что колбочки, находящиеся в ямке, в основном подключены уже отдельными проводочками, чтобы улучшить качество итоговой картинки. И именно здесь они в приоритете. То есть их можно назвать классическими пикселями, как в камере смартфона! Еще раз. Самые главные, четкие и цветные зрительные рецепторы расположены в самом центре нашей матрицы.
Чтобы представить ее размер: он примерно соответствует площади ногтя на вытянутой руке. И это действительно похоже на наш опыт: для того, чтобы внимательно рассмотреть предмет или прочитать текст, мы переводим на него взгляд. То есть как бы рассматриваем его центральной ямкой. Но почему же тогда, если по бокам у сетчатки только черно-белые колбочки, периферийные объекты мы все равно видим цветными? Это тоже интересный аспект, о нем еще поговорим. А ещё по этому графику видно, что угол обзора в ямке 0 градусов. То есть прямо по середине. Чем дальше мы удаляемся от центра, тем более размытым становится наше зрение, так как там становится слишком мало палочек и преобладают колбочки.
То есть наше периферийное зрение, по этой логике должно быть серым и размытым. Так и есть! Но обо всём по порядку. Такой подход может показаться странным. Но если подумать то всё логично. Это экономия ограниченного пространства в нашем глазу. Главное получить только в одном месте хорошее качество картинки, остальное за нас сделает наш мозг! Но об этом мы расскажем дальше.
DPI А пока: давайте посчитаем. Там сосредоточены в большем количестве все наши колбочки. И более того, они подключены отдельно, совсем как пиксели в камерах. А давайте сравним посчитаем DPI этой матрицы. Что такое DPI? Это количество точек на дюйм. Давайте посчитаем у самой зоркой части нашего глаза, центральной ямки. Сейчас будет чутка несложной математики, не пугайтесь, или включите ускорение.
Или 96 750 000 на квадратный дюйм. А нам нужно на 1 дюйм, то есть единицу длины. Тут тоже все просто — извлекаем квадратный корень. Получается 9 836. То есть плотность пикслей глаза в самой насыщенной точке это 9 836 DPI. Нехило так. То есть глаз примерно втрое круче. Вот такая занимательная математика от Droider.
Но давайте немного передохнём от этих графиков, мы вернёмся к ним в конце. Займёмся прикладными тестами! Будет интересно. Мы знаем, как устроены пиксели на сетчатке. Мы знаем их плотность в самой продвинутой области, но мы не знаем еще кое-чего. Вернемся к графику. Возможно вы заметили на графике странную область правее центра? Там нету ни палочек, ни колбочек.
Это слепое пятно на наших глазах! Сейчас расскажу поподробнее. Слепое пятно, итоговое качество изображения. Перед вами фотография, которая выявит несовершенство наших глаз. Откройте наше видео на экране побольше, желательно на компьютере, закройте правый глаз, посмотрите левым глазом на плюсик в кружочке. Правый плюсик исчез! Поздравляю, вы только что обнаружили слепое пятно вашего глаза. Что происходит?
Абсолютно все сигналы воспринимаемые нашими палочками и колбочками отправляются в наш мозг с помощью зрительного нерва.
Кроме того, важно учитывать ограничения монитора при определении максимального FPS, которое можно наблюдать. Один из основных факторов — это возраст человека. У детей и подростков восприятие FPS более высокое, чем у взрослых. Это связано с более быстрой работой зрительной системы у молодых людей. Другим важным фактором является уровень опыта игрока. Профессиональные игроки и люди, которые много времени проводят за компьютерными играми, имеют более высокую чувствительность к изменениям кадров в секунду. Они способны замечать и анализировать даже самые маленькие различия в FPS. Также влияние на восприятие FPS оказывает качество монитора.
Чем выше разрешение и частота обновления изображения, тем более плавно и реалистично будут отображаться движения на экране. Мониторы с высоким FPS позволяют игрокам четко видеть каждый кадр и быстро реагировать на происходящее в игре. Игровые настройки также оказывают влияние на восприятие FPS. Некоторые люди предпочитают играть с максимальными настройками графики, чтобы получить максимально реалистичное изображение. Однако это может привести к снижению FPS и ухудшить игровой опыт. Другие игроки предпочитают установить низкие настройки графики, чтобы увеличить FPS и получить более плавное изображение. Стоит также отметить, что восприятие FPS может быть индивидуальным для каждого человека. Некоторые люди могут легко различать и оценивать различия в FPS, в то время как другие могут не замечать эти изменения. В конечном счете, оптимальное количество кадров в секунду зависит от предпочтений и способностей каждого игрока.
Практическое значение FPS для видеоигр Частота кадров в секунду FPS — это важный параметр, определяющий плавность и реалистичность изображения в видеоиграх. Чем выше FPS, тем более плавное и реалистичное будет воспроизведение движений и действий на экране. Оптимальное значение FPS для видеоигр зависит от типа игры и предпочтений игрока. В некоторых жанрах, таких как шутеры от первого лица или гоночные игры, высокая частота кадров может быть критически важна для точности и реакции. В таких играх игрокам может понадобиться стабильные 60 или даже 120 FPS для достижения максимальной отзывчивости. Рекомендуем прочитать: Определение распространенных видов черных гусениц: руководство для Стебель 2024 В других жанрах, например, визуально насыщенных RPG или приключенческих играх, плавность движений может менее значима, и FPS в диапазоне от 30 до 60 может быть достаточным. Это позволяет распределить вычислительную мощность графической карты на более высокие текстуры и эффекты. Однако стоит отметить, что частота кадров выше 60 FPS не всегда ощущается человеческим глазом. Обычно глаз воспринимает изображение с частотой кадров около 24 FPS как плавное.
Это объясняется особенностями восприятия глаза и физиологией зрения. Итак, оптимальная частота кадров для видеоигр зависит от множества факторов, таких как жанр игры, системные требования и предпочтения игрока. Важно найти баланс между плавностью изображения и производительностью компьютера, чтобы достичь наилучшего опыта игры.
Однако к возможностям человеческого глаза это не имеет никакого отношения — в отдельных ситуациях наш глаз способен видеть 400 и более кадров в секунду. Кроме того, наш «внутренний» FPS динамичный, поскольку работает по отличным от монитора принципам. Отвечая на вопрос, есть ли смысл в мониторах с высокой герцовкой — безусловно, есть.
Сколько FPS видит человеческий глаз?
Смотрите видео онлайн «Сколько FPS видит человек? В заключение, можно сказать, что вопрос о том, сколько кадров в секунду видит человеческий глаз, не имеет однозначного ответа. Сколько кадров в секунду воспринимает человеческий глаз. Сколько кадров в секунду видит человеческий глаз, количество фпс (fps), которое воспринимает глаз, принцип восприятия.
Сколько FPS видит человеческий глаз
Сколько кадров в секунду видит человеческий глаз? | Сайт вопросов и ответов | Сколько кадров в секунду воспринимает человеческий глаз. |
Частота кадров: сколько визуальной информации воспринимает человек? | Читала где-то, что человеческий глаз может видеть от 24 до 30 кадров в секунду. |
Какое самое высокое разрешение телевизора может видеть человеческий глаз? | 120 кадров видит муха, глаз человека так не может. |
Сколько кадров в секунду видит человеческий глаз в кино и играх. | Каково разрешение человеческого глаза в мегапикселях: отвечаем на интересные вопросы. |
Сколько мегапикселей имеет человеческий глаз?
- Сколько FPS видит человеческий глаз
- Сколько кадров в секунду реально видит человеческий глаз: Развенчание мифов
- Правда ли, что 24 кадров в секунду это предел
- Сколько кадров в секунду (FPS) может видеть человеческий глаз
- Аспекты зрения
Эволюция глаза
- Глаз человека против матрицы смартфона: мегапиксели, разрешение и не только! - Deep-Review
- Сколько мегапикселей в человеческом глазу? Разбор |
- Сколько кадров в секунду видит человеческий глаз? Что такое FPS?
- Сколько кадров в секунду видит человеческий глаз
Сколько должно быть кадров в секунду. Сколько кадров в секунду видит человеческий глаз
Чем быстрее вы листаете книгу, тем больше кадров в секунду вы видите. Вот только вместо кадров человеческое зрение задействует непрерывный поток информации от глаз, который поступает в мозг человека в виде электрических сигналов. Лучший Telegram-канал про технологии возможно Кроме того, расширяя понятие FPS, стоит учитывать герцы Гц — это предел аппаратного обеспечения, на котором дисплей монитора может обновлять изображение на экране. Например, монитор с частотой обновления в 45 Гц может демонстрировать разрывы изображения и пропуск кадров, если на нём воспроизвести видео с частотой 60 FPS, особенно при отсутствии технологии переменной частоты обновления. Именно по этой причине геймеры нуждаются в мониторах с частотой обновления 120 Гц и выше, так как в случае использования дисплея с более низкой частотой они могут заметить размытость при движении или мерцание. Откуда взялся миф про ограничения человеческого глаза На текущий момент довольно проблематично приписать возникновения мифа о том, что вы не можете видеть больше 60 кадров в секунду, какому-то конкретному ресурсу или человеку. Но в сети люди сходятся во мнении, что распространённое заблуждение, вероятно, пришло к нам из Голливуда. Дело в том, что на текущий момент большинство фильмов снимаются с частотой в 24 кадра в секунду — это самая низкая частота кадров, необходимая, чтобы движения в кадре выглядели естественными для человека.
И со временем мы настолько привыкли к 24 кадрам в секунду, что теперь это настоящий стандарт того, как должно выглядеть кино.
Если долго смотреть на такое, могут заболеть глаза и голова, а у человека с эпилепсией может случиться приступ. При коротком времени показа кадра 1 миллисекунду показывает — 10 мс не показывает чувствительность глаз становится еще выше. Даже если человек не видит не воспринимает сознательно смены кадра, и картинка плавная, резкие цветные вспышки когда кадр показывается , чередующиеся с черным фоном кадр не показывается , зрительная система улавливает. Ведь в режиме снижения яркости включается ШИМ-регулятор подсветки, который быстро включает и гасит пиксели. Циклов включения-гашения за секунду происходит 240, то есть их частота — 240 Гц или 240 кадров в секунду.
Полосы на экране — эффект от мерцания, которое замечает камера Человек вроде и не видит смену кадров с такой частоты, картинка кажется плавной, но чувствительная зрительная система все же фиксирует этот процесс. То есть, сознание хоть и видит за секунду меньше кадров, но глаза способны уловить и больше. Просто из-за очень высокой частоты мозг напрягается, но не обрабатывает эту информацию до конца. Незаметными для людей с высокочувствительным зрением становятся только частоты смены кадра и мерцания порядка 1000 Гц. Именно от 1 кГц 1000 кадров в секунду — предел восприятия, преодолеть который большинство человеческих глаз не может. Таким образом, при наблюдении движущегося изображения, в большинстве случаев, человеческий глаз видит максимум около 100-150 кадров в секунду, но воспринимать способен на порядок больше.
Сколько кадров в секунду fps видит человеческий глаз Человеческий глаз способен улавливать множество последовательных кадров, распознавая каждый из них, что образует четкую картинку. Благодаря этому действию люди разработали кинофильмы. Раньше считалось, что в них могут встроить 25 кадр, невидимый для человека. Но так ли это? Любой врач может ответить на этот вопрос, зная, как устроено глазное яблоко. Правда ли, что 24 кадров в секунду это предел Практически 100 лет назад братья Люмьер придумали первый кинофильм.
В это время подбирали количество кадров, необходимое на пленке. Число 16 выбрали, потому что так было бюджетно, удобнее для воспроизведения кадров. На самом деле человеческий глаз может увидеть в десятки раз больше последовательных кадров. От их числа и скорости воспроизведения зависит четкость картинки. После развития кинофильма к немому кино добавился звук. Это означало то, что количество кадров в секунду необходимо увеличить.
Это связано с тем, что малая длина пленки не могла позволить записать чистый звук. В это время выбрали расход кадров в количестве 24, так как это позволяло сократить расход пленки, осуществлялся удобный расчет для планирования бюджета фильма. Позже количество кадров пытались увеличить до 60, но это вызвало проблему, поэтому кинорежиссеры решили остановиться только на 24. При увеличении их числа возрастала стоимость на 1 кинофильм, пленку, монтаж. Поэтому 24 кадра являются стандартным для производства кинофильмов. Миф о 25 кадрах появился после того, как данное число вошло в стандарт Европы для телевидения.
На данный момент в США принято снимать фильмы, в которых частота кадров составляет 30. С какой частотой на самом деле видит человеческий глаз Органы зрения человека — не искусственное приспособление. Поэтому ни один ученый с точностью не может выявить цифру, какое количество кадров в секунду воспринимают глаза человека. Для каждого индивида данные варьируют в зависимости от степени развитости головного мозга и глазных яблок, скорости передачи нервного импульса, остроты зрения. На самом деле, человеческие органы зрения видят не попеременные кадры, а картинку целиком. Кадры глаза воспринимают только в том случае, если просматривать кинофильм.
Окружающая действительность видится человеком следующим образом: в результате смены картинки в процессе движения человеку без разницы, сколько кадров в секунду образуется, изображение для него не поменяется; глаза воспринимают объекты лучше, если они движутся быстро и резко; если перед глазами человека располагается движущийся объект, то чем больше кадров в секунду будет, тем лучше восприятие. Именно из-за вышеперечисленных факторов можно сказать, что человек видит картинку с FPS намного больше, чем 24 кадра в секунду. Насколько четко будут отображаться движущиеся предметы в головном мозге человека, зависит здоровье органов зрения. Если острота восприятия снижается, картинка будет расплывчатой. Влияет не только количество кадров в секунду, но и следующие факторы: амплитуда смены кадра; резкость от перехода на разные цвета; время, необходимое для одного кадра. Можно склеить 100 не схожих кадров вместе и перелистывать их быстро.
Создатели начали проводить эксперименты. Целью этого было узнать, какое количество кадров необходимо, чтобы видимая картинка на мониторе казалась реалистичной. Хотя в стандартных мультфильмах, кино и видео норма этого показателя равна 24, но результаты опытов помогли киноиндустрии и игровым компаниям продвинуться вперед. А основным количеством кадров в гонках, аркадах, шутерах и других стало 50, однако может изменяться из-за скорости интернета. Комфортное число FPS для игр и кино В чем отличие между fps в играх и кадрами в кино В кино, в отличии от видеоигр используется постоянная частота кадров, которая неизменна на протяжении всего фильма.
Исключение могут составлять сцены с замедленной, либо ускоренной съемкой, которые, как правило, занимают очень малую часть времени. Из-за сохраняющейся периодичности зрение и мозг адаптируются, тем самым на время утрачивая способность, воспринимать происходящее в виде отдельных кадров, фрагментов. В видеоиграх все немного иначе. Постоянная чистота кадров невозможна, потому как все игровые локации «места» и сцены генерируются «создаются» в реальном времени. Помимо этого, различные локации обладают разным количеством объектов, качеством детализации.
Кино снято в 2D, то есть обладает только шириной и высотой, а видеоигры предстают перед нашими глазами, в том виде, в котором мы видим, то есть в 3D. В видеоиграх за обработку изображения отвечают два основных компонента — видеокарта для обработки графики и процессор для расчётов. Игровой мир, неспособен загрузиться полностью сразу. Он подгружается частями, исходя из действий и передвижений игрока. Следовательно, количество объектов меняется в большую или меньшую сторону, что постоянно изменяет используемую мощность и нагрузку на компоненты.
Вследствие чего, постоянно изменяется и частота кадров. Фиксированного значения не существует, возможны только рамки, между которыми происходят изменения. Существует минимальное, максимальное и среднее значение, которое будет отличаться в зависимости от игры и сцены. По причине постоянно изменяющегося количества кадров, мозг неспособен адаптироваться, что позволяет замечать даже незначительные изменения. В данном случае работает правило, чем больше, тем лучше, так как среднее значение может иметь к примеру пределы от 27к.
Из чего следует, что 27 будет мало, а 40 и более достаточно для комфортного восприятия. Сколько кадров в секунду видит глаз человека? Если вы покажете человеку один кадр в секунду на протяжении длительного периода времени, со временем он станет воспринимать не изображения по отдельности, а картину движения в общем. Однако демонстрация видеоизображения в таком ритме дискомфортна для человека. Еще во времена немого кино частота кадров доходила до 16 в секунду.
При сравнении кадров немого кино и современных фильмов остается ощущение, что в начале 20-го века снимали в замедленном темпе. При просмотре так и хочется немного поторопить экранных героев. В настоящее время стандарт для съемки — 24 кадра в секунду. Это та частота, которая комфортна для человеческих органов зрения. Но предел ли это, что там за границами этого диапазона?
Сколько кадров в секунду видит человек, теперь вам известно. Пределы человеческого зрения сколько кадров в секунду видит человеческий глаз 24 кадра в секунду — не предел возможностей человеческого глаза. Это оптимальное количество кадров, при котором видеоряд воспринимается наиболее удобно: нет провисаний или скачков. Когда кинематограф был немой и киномеханики крутили ручки, они самостоятельно выбирали скорость видеоряда исходя из темперамента зрителей: для спокойной публики частота составляла 20-24 кадра, а для активной — 24-30. Изменяя параметры, Вы сможете установить личную скорость зрения: Когда Вы концентрируете внимание на чём-либо, то способны воспринимать до сотни кадров в секунду, не упуская при этом семантической нити происходящего.
Статья сколько кадров в секунду видит человеческий глаз опубликована в рубрике — Познавательное. Откуда взялся миф про 24 кадра Стандартная кинопленка 35 мм после проявки Center for Teaching Quality Миф о том, что человеческий глаз видит максимум 24 кадра в секунду, имеет вековую историю. Он уходит корнями в эпоху зарождения кинематографа. Первые фильмы, снятые в конце XIX века братьями Люмьер, имели 16 кадров в секунду. Эту цифру выбрали потому, что расход стандартной пленки 35 мм при такой частоте составлял ровно 1 фут в секунду.
Таким образом упрощались расчеты необходимого количества пленки для съемок. Потребность в увеличении частоты возникла с переходом от немого кино к звуковому. Дорожка в те времена писалась на пленку рядом с картинкой в виде полосок, каждая из которых соответствовала определенной частоте. Малая длина пленки, прокручиваемой за секунду всего 30 см , не позволяла записать звук достаточно четко, поэтому длину нужно было увеличивать. Волнообразные линии вверху — звуковая дорожка Википедия — Wiki Увеличить показатели FPS именно до 24 решили тоже не просто так.
Секундный расход пленки теперь составлял 1,5 фута, минутный — 90 футов или 30 ярдов. Эти цифры тоже оказались удобными для расчетов при планировании бюджета съемок. Частоту пытались увеличить и больше, до 30, 48 и даже 60 кадров за секунду, но возникли проблемы. Для такой скорости требовалось более точное и выносливое оборудование как для съемки, так и воспроизведения в кинотеатрах , а расход пленки существенно увеличивался. Помимо затрат на саму пленку, увеличивались также стоимость монтажа, время на его произведение.
В итоге все так и остановились на 24 кадрах, эта частота стала отраслевым стандартом на много десятилетий.
В кинематографе для сдвига мерцаний выше физиологического предела с 1902 года применяется холостая лопасть обтюратора кинопроектора , перекрывающая изображение одного неподвижного кадрика вторично [2] [15]. В телевидении для этих же целей при сохранении близкой к кинематографу кадровой частоты применяется чересстрочная развертка. Изображение целого кадра строится дважды — сначала чётными строками, а затем нечётными. Кроме того, кадровая частота телевидения изначально для упрощения конструкции приёмника привязывалась а именно, в точности соответствовала к частоте местных электросетей [14]. При этом, по понятной причине, работоспособными были только телеприёмники, питающиеся от того же первичного генератора, что и передатчик. В дальнейшем, при появлении в телесигнале специальных управляющих синхроимпульсов, равенство кадровой частоты и частоты питающего напряжения стало вредным, оно приводило к появлению медленно плывущих по экрану участков разной яркости и другим проблемам у первых поколений телевизионных приёмников.
С появлением цветного телевидения стандарта NTSC полукадровая частота была изменена с 60 на 59,94 Гц из-за технических особенностей модуляции цветовой поднесущей. Поэтому при телекинопроекции кадровая частота стала кратной — 23,976 Гц. В разных телевизионных стандартах HDTV применяются чересстрочная и прогрессивная построчная развертки, поэтому изображение может передаваться как полями, так и целыми кадрами. Но в конечном счете, максимальная частота смены изображений по-прежнему равна 50 Гц в Европе и 60 Гц в странах, использующих американскую систему США , Канада , Япония и т. Тот же процесс в европейских стандартах, основанных на кадровой частоте 25 Гц, происходит с этой частотой, незначительно ускоряя движение на экране. В большинстве систем видеонаблюдения используется существенно пониженная частота кадров, поскольку их главной задачей является не качественная передача движения, а регистрация событий с максимальной длительностью при минимальном объёме информации. В современных стандартах цифровой видеозаписи частота кадров может быть переменной в зависимости от темпа движения и интенсивности потока видеоданных.
Переменная кадровая частота используется в некоторых медиаконтейнерах для более эффективного сжатия видео. Основные статьи: Чересстрочная развёртка и Прогрессивная развёртка В телевидении для обеспечения передачи плавности движения в условиях ограниченной полосы пропускания канала передачи видеосигнала каждый кадр последовательно передается двумя полями полукадрами — чётным и нечётным, что увеличивает частоту кадровой развёртки вдвое.
Глаз человека против матрицы смартфона: мегапиксели, разрешение и не только!
Статья сколько кадров в секунду видит человеческий глаз опубликована в рубрике — Познавательное. Сколько кадров в секунду видит человеческий глаз в кино и играх. Восприятие и реакция Эта статья о том, какие частоты кадров может воспринимать человеческий глаз. В четвертых, нельзя установить цифру сколько кадров глаз в состоянии разделить. Миф о том, что человеческий глаз видит максимум 24 кадра в секунду, имеет вековую историю.
Как устроен человеческий глаз
- Не пропустите
- Как много кадров в секунду человек может видеть?
- Глаз человека против матрицы смартфона: мегапиксели, разрешение и не только!
- Глаз человека против матрицы смартфона: мегапиксели, разрешение и не только!
- Частота кадров: сколько визуальной информации воспринимает человек?
Сколько кадров в секунду видит человек. Строение глаза и интересные факты
Поэтому, например, люди по-разному видят движение и свет, а периферийное зрение лучше справляется с некоторыми аспектами картинки, чем основное — и наоборот. Время, за которое человек воспринимает визуальную информацию, суммируется из времени, за которое свет попадает в глаза, времени передачи полученной информации в мозг и времени её обработки. По словам профессора психологии Джордана Делонга Jordan DeLong , обрабатывая визуальные сигналы, мозг постоянно занимается калибровкой, высчитывая средние показатели с тысяч и тысяч нейронов, поэтому вся система более точна, чем её отдельные составляющие. Как отмечает исследователь Эдриен Чопин Adrien Chopin , скорость света едва ли можно изменить, а вот часть визуального восприятия, проходящую в мозгу ускорить вполне реально. Игры — едва ли не единственный способ заметно улучшить основные показатели вашего зрения: чувствительность к контрасту, внимание и способность отслеживать движение множества объектов одновременно. Эдриен Чопин, исследователь когнитивных функций мозга Как отмечает Уилтшир, именно геймеры, которые чаще всего пекутся о высокой частоте кадров, способны воспринимать визуальную информацию быстрее любых других людей.
Отличия в восприятии движения и света Если лампочка работает на частоте в 50 или 60 Гц, большинству людей освещение кажется постоянным, однако есть те, кто в таком случае замечает мерцание. Этого эффекта также можно добиться, если крутить головой смотря на LED-фары автомобиля. Однако оба эти примера не говорят о том, как человеческий глаз воспринимает игры, где главным параметром является движение. Как отмечает профессор Томас Бьюзи Thomas Busey , на высоких скоростях задержка меньше 100 миллисекунд начинает действовать так называемый закон Блоха. Человеческий глаз не способен отличить яркую вспышку, которая длилась наносекунду, от менее яркой протяжённостью в десятую долю секунды.
По схожему же принципу работает фотокамера, которая на большой выдержке может впустить в себя больше света. Тем не менее закон Блоха не значит, что ограничение в восприятии для человека останавливается на 100 миллисекундах. В некоторых случаях люди различают артефакты в изображении при 500 кадрах в секунду задержка в 2 миллисекунды. Как отмечает профессор Джордан Делонг, восприятие движения во многом зависит и от того, в каком положении человек находится. Если он сидит на месте и следит за объектом, то это одна ситуация, а если сам куда-то идёт, то совершенно другая.
Это связано с отличиями между основным и периферийным зрением, которые достались людям от их первобытных предков. Когда человек смотрит прямо на объект, он различает мельчайшие детали, однако его зрение плохо справляется с быстро движущимися предметами. Периферийное зрение, напротив, страдает недостатком деталей, но действует намного быстрее. Именно с этой проблемой столкнулись разработчики шлемов виртуальной реальности. Если 60 и даже 30 Гц вполне хватает для монитора, на который человек смотрит прямо, то для того, чтобы зритель нормально чувствовал себя в VR, частоту кадров необходимо повысить до 90 Гц.
И, что интереснее всего, в байку про 24 кадра люди верили даже лет 15-20 назад, когда повсеместно встречались ЭЛТ-мониторы, наглядно опровергающие это утверждение своим мерцанием. Он уходит корнями в эпоху зарождения кинематографа. Первые фильмы, снятые в конце XIX века братьями Люмьер, имели 16 кадров в секунду. Эту цифру выбрали потому, что расход стандартной пленки 35 мм при такой частоте составлял ровно 1 фут в секунду. Таким образом упрощались расчеты необходимого количества пленки для съемок.
Потребность в увеличении частоты возникла с переходом от немого кино к звуковому. Дорожка в те времена писалась на пленку рядом с картинкой в виде полосок, каждая из которых соответствовала определенной частоте. Малая длина пленки, прокручиваемой за секунду всего 30 см , не позволяла записать звук достаточно четко, поэтому длину нужно было увеличивать. Секундный расход пленки теперь составлял 1,5 фута, минутный — 90 футов или 30 ярдов. Эти цифры тоже оказались удобными для расчетов при планировании бюджета съемок.
Частоту пытались увеличить и больше, до 30, 48 и даже 60 кадров за секунду, но возникли проблемы. Для такой скорости требовалось более точное и выносливое оборудование как для съемки, так и воспроизведения в кинотеатрах , а расход пленки существенно увеличивался. Помимо затрат на саму пленку, увеличивались также стоимость монтажа, время на его произведение. В итоге все так и остановились на 24 кадрах, эта частота стала отраслевым стандартом на много десятилетий. Окончательно утвердили частоту около 25 кадров в секунду тотальная электрификация Европы и появление телевидения.
При частоте переменного тока 50 Гц смен направления в секунду 24-25 кадров удобно привязывать к параметрам тока. При таком подходе смена кадра происходит один раз на период синусоиды. Это про камеру можно сказать: пишет видео в разрешении 3240х2160 точек, с частотой 60 кадров в секунду. А человеческий глаз видит именно кадры только в том случае, если смотрит на проявленную пленку или раскадровку цифрового видео в редакторе. Зрительная система воспринимает картинку целостно, замечая только ее изменения.
Поэтому никакой конкретной цифры, указывающей на пределы возможностей глаза, нет. Если картинка не меняется — разницы нет, будет за секунду меняться 5 кадров, 25, или 250. Пределы восприятия сильно зависят от особенностей наблюдаемого объекта. Чем быстрее он движется, чем резче эти движения — тем выше предельная частота. Сравнение 5, 10, 15 и 30 кадров в секунду на медленной картинке Наблюдая видео, на котором человек медленно идет по прямой, глаз не заметит существенной разницы между 24 и 60 кадров в секунду, так как движения плавные.
Если этот человек быстро бежит — разница уже будет, ролик в 60 FPS покажется намного плавнее и приятнее, чем в 24 FPS. А если этот человек не просто бежит, а бежит зигзагом, попутно прыгая через препятствия — то даже разница между 60 и 120 FPS будет заметна, в пользу большей частоты. Сравнение 12, 18, 25 и 60 кадров в секунду на динамичном видео Чтобы проверить это, не нужно далеко ходить. Достаточно запустить на компьютере тяжелую игрушку сначала на низких настройках, чтобы FPS был высоким, а потом — на высоких или максимальных, чтобы получить меньше 30 FPS. Вы сразу заметите разницу: в первом случае объекты хоть и будут менее детальными, но движения — гораздо более плавными.
Увидев разницу между 30, 60 и 100 FPS, можно наглядно убедиться, что человеческий глаз видит гораздо больше 24 кадров в секунду. Предел, после которого разница становится не видна, зависит от индивидуальных особенностей зрения, и в случае с видео или игрой составляет 80-150 кадров в секунду, а иногда и больше. Пределы восприятия зрительной системы Помимо кадровой частоты, имеют значение и амплитуда смены кадра, резкость цветовых переходов, время показа каждого кадра. Если просто набрать разноцветных картинок, склеить их в видеоролик и менять со скоростью 120 кадров в секунду, человек хоть и не заметит все цвета, но будет испытывать дискомфорт. Причина дискомфорта — напряжение глаз, которые пытаются зафиксировать каждую смену, и зрительного центра в мозге.
Если долго смотреть на такое, могут заболеть глаза и голова, а у человека с эпилепсией может случиться приступ. При коротком времени показа кадра 1 миллисекунду показывает — 10 мс не показывает чувствительность глаз становится еще выше. Даже если человек не видит не воспринимает сознательно смены кадра, и картинка плавная, резкие цветные вспышки когда кадр показывается , чередующиеся с черным фоном кадр не показывается , зрительная система улавливает. Ведь в режиме снижения яркости включается ШИМ-регулятор подсветки, который быстро включает и гасит пиксели. Циклов включения-гашения за секунду происходит 240, то есть их частота — 240 Гц или 240 кадров в секунду.
Полосы на экране — эффект от мерцания, которое замечает камера Человек вроде и не видит смену кадров с такой частоты, картинка кажется плавной, но чувствительная зрительная система все же фиксирует этот процесс.
У них повышена чувствительность. Как уже говорилось, есть колбочки и палочки. Их основная задача — трансформировать фотоны в электроэнергию нашей нервной системы. Речь о сложной фотохимической реакции. Оболочка, которая находится снаружи и постепенно переходит в роговицу, называется склерой.
Движения глаз происходят за счет мышц, прикрепленных к последней. Сзади находится сосудистая оболочка, которая посылает кровь ко всей структуре глазного яблока. Нервы посылают сигнал в мозг, и мы видим изображения. Рекомендуем также ознакомиться: «8 способов улучшить свое ночное зрение». Сколько мегапикселей видит человеческий глаз Сетчатка содержит около пяти миллионов рецепторов всевозможных цветов. Если перевести на пиксельный язык, то получится всего пять единиц — не самый оптимальный вариант, с учетом того, как далеко ушли нынешние устройства.
Несмотря на это в глазу есть еще сто миллионов рецепторов монохромного плана. Они определяют любую информацию, которая поступает. О наличии полноценных пикселей в сетчатке говорить невозможно — зато есть субпиксели.
Разрешение глаза человека. Цветовое зрение у животных. Процессы определяющие видение человека и животных. Цветовое видение.
Цветовое зрение человека и животных. Оптическая система глаза диоптрии. Преломляющая сила оптической системы глаза. Преломляющая сила роговицы равна. Фокусное расстояние глаза. Глаза дар природы. Глаз человека.
Как человеческий глаз различает цвета. Как видят мир собаки. Поле зрения собаки. Как собака видит человека. Сколько мегапикселей в человеческом глазу. Кадров в секунду. Частота кадров в секунду монитора.
Как видят мир насекомые. Поле зрения человека. Поле зрения человека и животных. Человеческий глаз воспринимает как разные цвета. Основные цвета для человеческого глаза. Глаз воспринимает цвет. Как глаз видит цвет.
Фокусное расстояние объектива разница. Фокусное расстояние объектива схема. Фокусное расстояние объектива видеокамеры. Угол обзора объектива таблица. Интересные факты о цвете глаз человека. Восприятие цветов глазом. Норма остроты зрения физиология.
Острота зрения формула через угол зрения. Понятие об остроте зрения. Острота зрения 01. Ход лучей через прозрачную среду глаза схема. Ход лучей в оптической системе глаза. Проекция изображения на сетчатку глаза. Оптическая система глаза состоит из.
Глаз человека и фотокамера. Разрешение зрения человека. Глаз и зрение формирование изображения на сетчатке. Воздействие света на сетчатку глаза. Где возникает зрительный образ. Схема возникновения зрительных ощущений. Оптическая сила глаза.
Оптическая сила хрусталика. Оптическая сила глаза человека. Оптическая сила хрусталика глаза формула. Человеческий глаз способен различать около оттенков. Цвета различаемые глазом человека. Человеческий глаз способен различать. Размер человеческого глаза.
Угол поля зрения объектива.
Мифы про FPS и зрение человека, в которые уже можно не верить
Сколько кадров в секунду видит человеческий глаз | Комфортное число FPS для игр и кино. Это сложный вопрос, потому что человеческий глаз на самом деле не видит в «кадрах в секунду», а глаза у всех разные. Заблуждение на тему «какой уровень FPS не может видеть человеческий глаз», похоже, началось с того, что люди говорили «мы не можем видеть больше 24 FPS». Какова максимальная частота кадров, которую видит человеческий глаз?
Сколько мегапикселей в человеческом глазу? Разбор
Но вернемся к теме: научный журнал PLOS ONE недавно пополнился исследованием, в котором ученые решили выяснить реальную способность человеческого глаза различать количество увиденных кадров в секунду. Сегодня я вам расскажу сколько кадров в секунду видит глаз человека! Какова максимальная частота кадров, которую видит человеческий глаз?