Здесь Технологии Долголетия публикуют наиболее важные и актуальные новости о продлении жизни человека и событиях, связанных с этой тематикой. Болезни спинного мозга — это патологические состояния, вызванные пороками развития, дегенеративными изменениями, опухолями, сосудистыми нарушениями и повреждениями спинномозгового канала, которые приводят к структурно-функциональным изменениям отделов. В Университете МИСИС разработали прототип нейроимплантата, который поможет восстанавливать функции спинного мозга после травм и повреждений.
Починить спинной мозг: новые терапии на грани фантастики
По сути, был создан беспроводной интерфейс между головным и спинным мозгом, используя технологию интерфейса мозг-компьютер, которая преобразует мысли в действия. Помимо того, что импланты позволили восстановить повреждённые связи в центральной нервной системе, они выполняли ещё одну важную роль. Чем больше они использовались пациентом, тем лучше была его способность ходить. По мнению исследователей, это хороший признак того, что по крайней мере некоторые из его нейронов реорганизовались для восстановления связи.
Спустя год тренировок имплантаты позволили Герту-Яну ходить и стоять более естественно, без дополнительных датчиков движения, которые использовались в ранее протестированных технологиях для стимуляции движения. Он мог подниматься по лестнице и преодолевать некоторые препятствия.
Первые подтверждения перспективности такого подхода получены при анализе образцов сыворотки крови пациентов из биобанка Научно-технологического парка биомедицины Сеченовского Университета». Для оценки рисков возникновения заболевания необходимо ввести в разработанную компьютерную программу результаты анализа элементного профиля по заданным параметрам. Анализ проводится с помощью масс-спектрометрии с индуктивно-связанной плазмой. После ввода показателей анализа система, основанная на статистических моделях, просчитывает риск наличия патологического процесса и предоставляет результат. В дальнейшем в соответствии с этим результатом врач может принять решение о целесообразности проведения углубленного обследования.
Сейчас ученые Центра биоэлементологии и экологии человека продолжают исследования иономных профилей совместно с ведущими врачами из России и других стран.
Чтобы выделить ту субпопуляцию, которую исследователи искали принимающую участие в реабилитации , биологи использовали метод приоритезации. Алгоритм машинного обучения Augur выделил в построенном атласе те нейроны, экспрессия которых больше всего менялась при реабилитации. Оказалось, что есть группа нейронов, которая меняет свою экспрессию в ответ на все параметры терапии. Эти клетки экспрессировали маркеры Vsx2 и Hoxa10 и принадлежали к группе возбуждающих интернейронов.
Их назвали по этим генам и происхождению из спинного мозга spinal cord — SCVsx2::Hoxa10. Далее исследователи проверили, действительно ли эти клетки принимают участие в рутинной ходьбе до травмы и в самом процессе реабилитации. Для этого в обоих случаях активность клеток искусственно подавили и проверили, как это повлияло на движения. Оказалось, что эта субпопуляция не нужна для ходьбы здорового организма — ее отключение не повлияло на нее.
Более того, пациенты смогли управлять еще и интенсивностью движений, и силой сокращения мышц. Долгосрочные наблюдения за больными, получавшими электродную стимуляцию, позволили убедиться, что после терапии человек действительно может самостоятельно ходить, используя дополнительную поддержку поручни, опоры только для сохранения баланса. Она пока очень дорогостоящая и используется в научных, а не клинических целях. Кроме того, отечественными учеными разработан метод неинвазивной стимуляции нейронов спинного мозга с помощью накожных электродов. Накожная стимуляция позволяет не так избирательно, но все-таки активировать разные части нейронной сети в спинном мозге. Этот подход имеет все шансы войти в клиническую практику для восстановления пациентов с локомоторными нарушениями», — подвел итог Юрий Петрович Герасименко. Текст: Виталина Власова Съезд организован Физиологическим обществом им. Павлова и Институтом эволюционной физиологии и биохимии им.
Нейроинтерфейс между спинным и головным мозгом позволил ходить паценту с травмой позвоночника
Эти клетки экспрессировали маркеры Vsx2 и Hoxa10 и принадлежали к группе возбуждающих интернейронов. Их назвали по этим генам и происхождению из спинного мозга spinal cord — SCVsx2::Hoxa10. Далее исследователи проверили, действительно ли эти клетки принимают участие в рутинной ходьбе до травмы и в самом процессе реабилитации. Для этого в обоих случаях активность клеток искусственно подавили и проверили, как это повлияло на движения.
Оказалось, что эта субпопуляция не нужна для ходьбы здорового организма — ее отключение не повлияло на нее. А вот для восстановления при терапии электростимуляцией клетки SCVsx2::Hoxa10 оказались критически важны. Паралич может затруднять не только передвижение, но и общение пациентов с близкими.
Чтобы помочь таким людям, исследователи недавно создали модель, которая способна преобразовывать активность мозга в слова — сейчас она знает 1152 слова.
Процессы способствуют остеохондрозу, в целом дегенеративным изменениям, межпозвонковым грыжам, спондилезу, компрессионным нарушениям. Рассеянный склероз, который охватывает белое вещество спинного мозга. Виды заболеваний Развиваются заболевания спинного мозга в раннем возрасте при нарушении внутриутробного развития, генетической предрасположенности или возникают из-за гематом, абсцессов, новообразований, грыж, травм, возрастных изменений тканей и структур.
Инфаркт спинного мозга. Магистральная артерия закупоривается, возникает внезапная спинная боль, пациент утрачивает чувствительность, возникает паралич конечностей. Новообразования, кисты. Развиваются из-за аномалий краниовертебрального перехода, травмирования.
Проявляются нарушением глотания, атрофией языковых мышц, нарушением температурной, болевой чувствительности спины и плеч. Травматическая болезнь спинного мозга: необратимые и обратимые патологии, возникшие после травмирования. Поражаются близлежащие кровеносные сосуды, нервные участки, оболочки, сам спинной мозг. Нервные импульсы не проходят, чувствительность и двигательные функции снижаются или исчезают, возникает частичный или полный паралич.
Возникает из-за физических перегрузок, травмировании, возрастных изменений. Проявляется дегенеративными изменениями хрящевой ткани, компрессией нервных структур и спинного мозга. Поперечный миелит — воспаление спинномозгового вещества, которое ограничивает чувствительность и двигательные функции. Возникает из-за сдавливания нервных корешков межпозвонковыми грыжами.
Следствием может быть потеря способности двигать ногами и руками, чувствительности и других физиологических функций. По оценкам Всемирной организации здравоохранения ВОЗ , от 250 000 до 500 000 человек ежегодно получают подобные травмы. Предлагаются различные стратегии восстановления нейронных связей, как биологические активация роста аксонов нейронов, трансплантация клеток нейроглии, поддерживающих рост, и т. Однако пока что ни одна стратегия не признана достаточно эффективной и безопасной. Подобную конструкцию они исследовали на обезьянах еще в прошлом десятилетии. Имплантированный чип в головном мозге получал сигналы от нейронов моторной коры, контролирующих движения задних лап, и с помощью беспроводного интерфейса передавал декодированные сигналы на другой имплантат, расположенный ниже повреждения спинного мозга эпидуральная электростимуляция. В результате животные снова смогли ходить. В новой работе представлены результаты эксперимента, в котором участвовал человек с травмой спинного мозга. Два беспроводных регистратора, каждый из которых содержит 64 электрода, в ходе операции были размещены на твердой мозговой оболочке одна из трех оболочек, покрывающих мозг, самая внешняя , над областями, которые участвуют в контроле движений ног. Такой метод отведения потенциалов, при котором электроды располагаются на мозге, называется электрокортикографией, или ЭКоГ; потенциалы имеют большую амплитуду и разрешение, чем при ЭЭГ.
Участки, сильнее всего реагирующие на намерение пошевелить ногами, выбрали с помощью компьютерной томографии и магнитоэнцефалографии.
Блок управления получил внешнее беспроводное питание на частоте в 13,56 МГц, считанная мозговая активность транслировалась антенной на частоте в 405 МГц. Впрочем, без дешифратора не обошлось — его мужчине пришлось носить с собой. Алгоритм научили распознавать активность головного мозга и в ответ на команды совершать действия. В описываемом эксперименте — движения ногами.
Всего одна субпопуляция нейронов помогла пациентам начать ходить после паралича
Z-новости. В РФ создали препарат со стволовыми клетками для лечения травмы спинного мозга. Что происходит во время травмы? Российские новости. Столь необычный способ управления кресла в первую очередь предназначен для страдающих повреждением спинного мозга, передают американские СМИ. Несколько этапов экспериментов на мышах показали ученым возможность регенерации нейронов спинного мозга после травм позвоночника. Этот препарат призван помочь в лечении травм спинного мозга, устраняя воспалительный процесс и способствуя более эффективной реабилитации, пишет ТАСС.
Нейрохирурги ВКО поделились опытом имплантации нейростимулятора в спинной мозг
Первых испытателей компания отберет из числа пациентов с параличом из-за травмы шейного отдела спинного мозга или бокового амиотрофического склероза, говорится в сообщении Neuralink. спинной мозг? Данное видео даст вам полное представление об этом органе. Здесь отлично видно, что из себя представляют дорзальные и вентральные корешки спинномозговых нервов, как выглядит сегмент спинного мозга и, главное, где находится конский хвост. Когда участник исследования думает о движении руки или кисти, мы «перезаряжаем» его спинной мозг и стимулируем его мозг и мышцы, чтобы помочь восстановить связи, обеспечить сенсорную обратную связь и способствовать выздоровлению. А в участок спинного мозга, контролирующий движения ног, был имплантирован электронный нейростимулятор, который, стимулируя спинной мозг, заставляет его активизировать мышцы нижних конечностей.
Важная победа над природой: как скоро можно будет чинить спинной мозг
Больше всего повезло тем собакам , у которых были нарушены связи между близкорасположенными нейронами, что соответствует тонкому хирургическому разрезу или несильному сдвигу позвонков. Тем не менее, уже это является большим достижением. Один из хозяев собаки, отмечает, что это похоже на чудо: «До инъекции наш пес Джаспер не мог ходить и ползал, волоча задние ноги, а теперь он носится вокруг нашего дома и не отстает от других собак». В настоящее время ученые работают над созданием матриц, которые «укажут» клеткам OEC куда надо расти, чтобы восстановить связь в позвоночнике. Подобная технология сможет обеспечить восстановление нейронных связей даже при потере большого количества нейронов, как бывает, например, в случае компрессионных переломов.
Пока идет работа над полным излечением травм спинного мозга, ученые из Case Western Reserve University и клиники Кливленда пытаются хотя бы частично улучшить состояния людей с очень серьезными повреждениями нервной ткани. В случае с обширной потерей нейронов пока почти нет надежды на полное исцеление, но для пациентов было бы большим облегчением восстановить хотя бы частичную функциональность парализованной части туловища. Успехи в этой области уже есть, и они весьма существенные. Американским ученым удалось восстановить у подопытных крыс контроль над мочевым пузырем, причем потеря контроля произошла в результате серьезной травмы позвоночника: полного перерезания позвоночного столба с массивной потерей нейронов.
С помощью двух десятков нервных волокон ученые соединили разорванный спинной мозг. На рисунке видны нервные волокна и тонкий металлический проводок, защищающий новое нервное соединение от обрыва Ученые не ставили перед собой задачу полностью вернуть подопытным мышам подвижность — это было невозможно при такой серьезной травме. Вместо этого была проделана кропотливая работа по пересадке нервной ткани из груди крыс в место повреждения в позвоночнике. Спустя много месяцев нейроны, подпитанные специальными химическими веществами и факторами роста, смогли прорасти навстречу разорванным участкам спинного мозга и соединить его через огромный по медицинским меркам разрыв шириной более 5 мм.
В итоге получилось тонкое, всего в примерно 20 нервных волокон, соединение, которое, конечно, не могло полностью восстановить функциональность спинного мозга. Тем не менее, впоследствии, мыши восстановили некоторый контроль над потерянными функциями организма, в частности смогли контролировать мочевой пузырь. Потенциально, данная методика может помочь восстановить множество других функций, в частности 2 года назад с ее помощью у крыс с менее тяжелыми повреждениями мозга восстановили контроль над дыхательными мышцами. Возможно, в перспективе с помощью подобной технологии все же можно будет ремонтировать обширные повреждения спинного мозга и полностью восстанавливать его функциональность.
Также, в мае 2012 года ученые из Федеральной политехнической школы Лозанны сообщили об открытии совершенно нового пути лечения травм позвоночника. Эксперименты на крысах показали, что в случае травмы нижняя часть позвоночника, отделенная от головного мозга, может взять на себя управление движением нижних конечностей.
При заболеваниях и травмах нервной системы ученые научились восстанавливать утраченные функции с применением нейроимплантов, состоящих из наборов электродов. Электроды устанавливают так, чтобы они воздействовали током на нервные волокна в головном или спинном мозге в нужных участках — там, где что-то нарушено из-за болезни или где можно воздействовать на какую-либо зону и за счет ее активности решить проблему. Такой имплант берет на себя функции поврежденных нейронных структур и генерирует последовательность импульсов в соответствии с биологическим паттерном движения. Однако все еще остается нерешенной одна из главных задач — разработка интерфейсов электродов с оптимальными механическими, электрическими и биологическими свойствами. Нейроимплант располагается между костью, то есть жесткой тканью, и спинным мозгом — мягкой тканью, и вся эта конструкция находится еще и в движении, именно поэтому материал, из которого изготавливается нейроимплант, должен быть максимально похож на ткань нервной системы.
Травмы спинного мозга нарушают эту сложную сеть нейронных связей и могут вызвать паралич и полную неспособность передвигаться. Недавние исследования показали , что восстановить движения после травмы спинного мозга способна эпидуральная электрическая стимуляция — для такой терапии пациентам вживляют в спинной мозг небольшой генератор электрических импульсов, направляющий сигнал в задние корешки поясничного отдела спинного мозга. Стимуляция позволяет немедленно восстановить функцию двигательных сетей и позволяет пациентам вновь ходить. Однако биологические принципы, по которым работает такая терапия до сих пор не исследованы. Ученые из Федеральной политехнической школы Лозанны под руководством Клаудии Кате Claudia Kathe предположили, что электростимуляция воздействует на еще неисследованные нейроны, которые начинают участвовать в ходьбе лишь при восстановлении от паралича. Эту гипотезу поддержали и данные, полученные учеными — в клиническом испытании терапии нейронная активность в поясничных сегментах спинного мозга падала, а не возрастала. Это позволило предположить, что восстановлением активности после паралича занимается другая группа нейронов, которая не выполняет рутинную двигательную функцию. Чтобы проверить эту гипотезу, исследователи создали мышиную модель травмы спинного мозга, а также и терапевтическую систему стимуляции и механической поддержки веса тела при ходьбе.
В обоих случаях у животных были серьезные улучшения при ходьбе. Они использовали белок из водорослей.
Ученые КФУ разработали новый метод восстановления спинного мозга
Человеку с серьезной травмой позвоночника беспроводным способом подсоединили спинной мозг к головному — это вернуло пациенту подвижность, сообщает Science Alert со ссылкой на статью в журнале Nature. 40-летний мужчина смог снова ходить благодаря "цифровому мосту", который беспроводным способом соединяет головной мозг с участком спинного мозга, сообщает Sky News. В большинстве случаев инсульт спинного мозга бывает спровоцирован нарушениями работы сосудов, а не самого позвоночника. Однако оказалось, что в выражении «думать спинным мозгом» есть рациональное зерно, что является хорошей новостью для людей с травмами этого органа. Основные функции спинного мозга – это управление простыми двигательными рефлексами. По сути, был создан беспроводной интерфейс между головным и спинным мозгом, используя технологию интерфейса мозг-компьютер, которая преобразует мысли в действия.
Важная победа над природой: как скоро можно будет чинить спинной мозг
Ученые заявили, что революционная технология "превращает мысли в действия", восстанавливая нарушенную связь между головным мозгом и областью спинного мозга, контролирующей движения. Первым пациентом стал 40-летний голландец, инженер Герт-Ян Оскам, который получил травму спинного мозга после аварии на велосипеде во время работы в Китае в 2011 году. Он остался парализованным, но уже через несколько дней после того, как хирурги откалибровали имплантаты, он заметил улучшения. В течение пяти минут я мог управлять своими бедрами". Герт-Ян Оскам С тех пор, после долгих тренировок, пациент смог ходить, подниматься по лестнице и преодолевать пандусы. Он также вновь открыл для себя походы с друзьями в бар. Имплантаты оставались эффективными и через год, в том числе и тогда, когда Оскам находился дома без присмотра врачей.
Уникальность этого вмешательства в том, рассказывает Илья, единым блоком выпиливают часть шейного отдела позвоночника, расширяют спинно-мозговой канал и возвращают позвоночник на место, закрепляя специальными винтиками. Юрию Киндерову 71 год. Несмотря на возраст, операцию, которая шла четыре часа, он перенес успешно. Завтра его ждет выписка, а после — восстановление. И тогда он сможет вернуться к своим ученикам в казанской школе. Читайте новости в нашем Telegram и Дзен. Поделиться Рубрики новостей.
Аксоны прорастали сквозь рубцовую ткань. В значительной части случаев по другую сторону разрыва были зафиксированы новые нейронные связи. Правда, пока не удалось добиться восстановления подвижности у животных, парализованных в результате повреждения спинного мозга, но ученые считают, что «новорожденные» аксоны следует с нуля учить выполнять их функции, и не сомневаются в успехе. Читайте далее.
Спинальный стимулятор вводится с помощью обычной инъекции и быстро приводит к значимым результатам. Новый подход может облегчить реабилитацию пациентов и существенно снизить стоимость лечения. Подпишитесь , чтобы быть в курсе. Существующие сегодня спинальные стимуляторы имплантируются либо в дорсональную поверхность спинного мозга, либо непосредственно в ткань позвоночника. В первом случае есть риски неточного воздействия импланта на целевые нервы, а во втором операция несет риски повреждения ткани, а также проблемы биосовместимости.
Ученые восстановили разрушенный спинной мозг
Активация клеток микроглии в случае приобретения нейропротективного фенотипа способствует восстановлению нервной ткани. Нами, а также другими авторами, было доказано существование клеток промежуточного фенотипа», — рассказывает руководитель Центра превосходства «Персонифицированная медицина» и НИЛ «Генные и клеточные технологии» КФУ Альберт Ризванов. Исследователи КФУ выявили закономерность: чем серьезнее травма спинного мозга, тем ниже способность микроглии к делению и уничтожению чужеродных частиц и поврежденных клеток во всех посттравматических периодах. Это открытие поможет в разработке новых подходов к лечению травм спинного мозга. Полученные учеными НИЛ «Генные и клеточные технологии» новые научные результаты будут способствовать лучшему пониманию механизмов, происходящих в нервной ткани после травмы спинного мозга, и разработке новых методов лечения больных с такими травмами.
На данный момент исследование перешло на стадию изучения на животных крысы, in vivo , где предстоит подтвердить все полученные результаты.
Пациент, который уже год испытывает на себе изобретение, сам научился ходить по дому с костылями, садиться в машину, выходить из машины. Как отмечают ученые, пока неизвестно, сможет ли новая технология помочь больным с другими видам паралича, так как у пациента был частичный паралич например, он мог короткое время самостоятельно стоять на ногах. Впрочем исследователи считают, что расширенное применение устройства — дело времени и калибровки. Фото: Jimmy Ravier.
Скачать презентацию: Медиа-кит При перепечатке или цитировании материалов сайта Mosregion. На информационном ресурсе применяются рекомендательные технологии информационные технологии предоставления информации на основе сбора, систематизации и анализа сведений, относящихся к предпочтениям пользователей сети "Интернет", находящихся на территории Российской Федерации ".
При частичном травмировании спинного мозга в месте повреждения прекращается передача нервного сигнала. Чаще всего для устранения боли и снятия воспаления применяются различные фармацевтические препараты, хотя не всегда они приносят облегчение пациентам. Она подчеркнула, что поскольку терапевтических методов эффективного восстановления нервной ткани спинного мозга не существует, перспективной видится разработка изделий, имплантируемых в острую фазу травмы. Сейчас авторы изделия уже создали наноструктурированные каркасы, состоящие из резорбируемого полимера. Нейроимплантаты прошли испытания и доказали эффективность на клеточных культурах.