Новости дроби презентация

презентацию по теме Закрепление по теме Дроби. (Математика 4 класс, автор Петерсон Л.Г.) построила в виде испытаний, где закрепляются и повторяются знания в игровой. Презентация из 13 слайдов содержит различные задания и упражнения по теме, показаны примеры на тему дроби в музыке, медицине, пример самостоятельной работы. Презентация для дефектолога для 7, 6, 5 класса. Нахождение числа по значению его дроби.

Изображения по запросу Дроби

Слайд 2: На этом слайде темы, лежащие в основе презентации: Доли, Дроби, их чтение и запись, Правильные и неправильные дроби, Основное свойство дробей, Сравнение дробей. Презентация для внеурочного занятия по математике в 6 – 7 классах по теме «Аликвотные дроби». Разное, презентация, доклад, проект на тему. Официальная демоверсия проверочной работы по математике для 5 класса. ВПР в 2024 году будут проводиться по образцам и описаниям контрольных измерительных материалов 2023 года. История обыкновенных дробей Подготовила: учитель математики МКОУ «Чебаклинская СОШ» Сиканкина А.И.

Изображения по запросу Дроби

Если материал и наш сайт презентаций Mypresentation Вам понравились — поделитесь им с друзьями с помощью социальных кнопок и добавьте в закладки в своем браузере. Слайды и текст этой презентации Слайд 1 Слайд 2 Описание слайда: С самых древних времён у людей появилась С самых древних времён у людей появилась потребность в измерении длин, площадей, углов и других величин. Для получения более точных результатов меры стали делить на части, что привело к появлению дробей. Первыми в практике людей появились самые простые дроби , , и т.

Лишь значительно позже греки, а затем индусы стали использовать в вычислениях и другие дроби.

Увидеть наглядность, помогающую определить ряд простых чисел,... Этот материал весьма актуален.

Его знание пригодится в дальнейшем практически на каждом уроке. Чем раньше...

Слайд 8 Сложение обыкновенных чисел При сложении дробей с одинаковыми знаменателями числители складывают, а знаменатель оставляют тот же. Если слагаемые дроби имеют разные знаменатели, то надо: 1. Слайд 9 Сложение смешанных чисел Чтобы сложить смешанные числа, надо: привести дробные части этих чисел к наименьшему общему знаменателю; отдельно выполнить сложение целых частей и отдельно дробных частей и написать сумму в виде смешанного числа; если при сложении дробных частей получилась неправильная дробь, то выделить целую часть из этой дроби и прибавить её к сумме целых частей. Слайд 10 Вычитание обыкновенных дробей При вычитании дробей с одинаковыми знаменателями из числителя уменьшаемого вычитают числитель вычитаемого, а знаменатель оставляют тот же. Чтобы вычесть дроби с разными знаменателями, надо: 1.

Сложить полученные результаты. Слайд 12 Взаимное вычитание натуральных чисел, правильных дробей и смешанных чисел Чтобы вычесть из натурального числа смешанное число, надо написать натуральное число в виде смешанного числа и вычесть из одного смешанного числа второе. При вычитании из смешанного числа натурального числа надо из целой части смешанного числа вычесть натуральное число и к полученному числу приписать дробную часть смешанного числа. Если числитель смешанного числа меньше числителя вычитаемой дроби, то, уменьшив целую часть смешанного числа на единицу, надо превратить его в смешанное число, дробная часть которого является неправильной дробью, и далее выполнить вычитание. Слайд 13 Умножение дробей. Произведение двух дробей есть дробь, числитель которой равен произведению числителей данных дробей, а знаменатель — произведению их знаменателей. Чтобы умножить дробь на натуральное число, надо натуральное число представить в виде дроби со знаменателем 1 и выполнить умножение дробей.

Чтобы умножить дробь н натуральное число, надо её числитель умножить на это число, а знаменатель оставить без изменения. Два числа, произведение которых равно 1, называют взаимно обратными числами. Слайд 14 Переместительное, сочетательное и распределительное свойства умножения дробей. От перестановки множителей произведение не меняется. Чтобы произведение двух дробей умножить на третью дробь, можно первую дробь умножить на произведение второй и третьей дроби или произведение первой и третьей дробей умножить на вторую дробь. Чтобы умножить сумму разность дробей на дробь, можно умножить на эту дробь каждое слагаемое и сложить вычесть полученное произведение. Чтобы умножить смешанное число на натуральное число, можно: умножить целую часть на натуральное число; умножить дробную часть на натуральное число; сложить полученные результаты.

Слайд 15 Чтобы найти дробь от числа, нужно умножить число на эту дробь.

Cлайд 6 Приведение обыкновенных дробей к наименьшему общему знаменателю Число, которое может быть знаменателем для всех дробей, называют общим знаменателем. Наименьшим общим знаменателем данных несократимых дробей является наименьшее общее кратное знаменателей этих дробей. Число, на которое нужно умножить и числитель и знаменатель дроби, чтобы привести дроби к общему знаменателю, называют дополнительным множителем.

Чтобы найти дополнительный множитель, надо общий знаменатель разделить на знаменатель данной дроби. Полученное частное является дополнительным множителем этой дроби. Чтобы привести дроби к наименьшему общему знаменателю, надо: 1 найти наименьшее общее кратное знаменателей данных дробей, оно и будет их наименьшим общим знаменателем; 2 разделить наименьший общий знаменатель на знаменатели данных дробей, то есть найти для каждой дроби дополнительный множитель; 3 умножить числитель и знаменатель каждой дроби на её дополнительный множитель. При этом получим дроби с одинаковыми знаменателями.

Cлайд 7 Сравнивание обыкновенных дробей Если дроби имеют разные знаменатели, то прежде чем их сравнивать, их надо привести к общему знаменателю. Из двух дробей с одинаковыми знаменателями меньше та дробь, числитель которой меньше; больше та дробь, числитель которой больше. На числовом луче меньшая дробь изображается левее большей дроби, большая дробь располагается правее меньшей дроби. Из двух дробей с одинаковыми числителями неравными нулю меньше та дроь, знаменатель которой больше; больше та дробь, знаменатель которой меньше.

Cлайд 8 Сложение обыкновенных чисел При сложении дробей с одинаковыми знаменателями числители складывают, а знаменатель оставляют тот же. Если слагаемые дроби имеют разные знаменатели, то надо: 1. Cлайд 9 Сложение смешанных чисел Чтобы сложить смешанные числа, надо: привести дробные части этих чисел к наименьшему общему знаменателю; отдельно выполнить сложение целых частей и отдельно дробных частей и написать сумму в виде смешанного числа; если при сложении дробных частей получилась неправильная дробь, то выделить целую часть из этой дроби и прибавить её к сумме целых частей. Cлайд 10 Вычитание обыкновенных дробей При вычитании дробей с одинаковыми знаменателями из числителя уменьшаемого вычитают числитель вычитаемого, а знаменатель оставляют тот же.

Чтобы вычесть дроби с разными знаменателями, надо: 1. Сложить полученные результаты. Cлайд 12 Взаимное вычитание натуральных чисел, правильных дробей и смешанных чисел Чтобы вычесть из натурального числа смешанное число, надо написать натуральное число в виде смешанного числа и вычесть из одного смешанного числа второе. При вычитании из смешанного числа натурального числа надо из целой части смешанного числа вычесть натуральное число и к полученному числу приписать дробную часть смешанного числа.

Если числитель смешанного числа меньше числителя вычитаемой дроби, то, уменьшив целую часть смешанного числа на единицу, надо превратить его в смешанное число, дробная часть которого является неправильной дробью, и далее выполнить вычитание.

Применение обыкновенных дробей в жизни

Технология создания презентации «Игра – лабиринт для 5 класса по теме “Сложение и вычитание десятичных дробей”». Официальная демоверсия проверочной работы по математике для 5 класса. ВПР в 2024 году будут проводиться по образцам и описаниям контрольных измерительных материалов 2023 года. История обыкновенных дробей Подготовила: учитель математики МКОУ «Чебаклинская СОШ» Сиканкина А.И. Разное, презентация, доклад, проект на тему. Представление процента дробью и перевод дроби в проценты.

Урок-презентация "Дроби вокруг нас"

Вавилоняне внесли ценный вклад в развитие астрономии. Шестидесятеричными дробями пользовались в астрономии ученые всех народов до XVII века, называя их астрономическими дробями. В отличие от них, дроби общего вида, которыми пользуемся мы, были названы обыкновенными. Слайд 16 Записывать дроби как сейчас стали арабы. Происходит слово "дробь" от слова "дробить, разбивать, ломать на части". У других народов название дроби также связано с глаголами "ломать", "разбивать", "раздроблять". Слайд 19 В русских рукописных арифметиках XVII века дроби называли долями, позднее «ломаными числами».

Длина ракеты Восток — 1 с последней ступенью составляет 8 м. Решите задачу самостоятельно Пятачок принес для Винни два бочонка с медом. Масса одного бочонка 5 кг и он легче второго на 1 кг. Сколько меда было в двух бочонках?

По рецепту может потребоваться, например, 6 стаканов, литра. Но это уже на 1 стакан больше, чем литр. То есть дробью может быть обозначено количество меньше единицы, равное единице или больше единицы. Так как слово «дробь» обозначало часть, то есть меньше целого, то те дроби, которые обозначают количество, меньшее единицы, назвали «правильными» дробями, а остальные — «неправильными».

Число наверху называется числителем, внизу — знаменателем. Знаменатель показывает, на сколько частей разделили целое, а числитель — сколько частей взяли. Например, одну вторую половину и одну треть. Правильными дробями называют дроби у которых числитель меньше знаменателя, неправильными — у которых числитель больше или равен знаменателю. Любое смешанное число можно представить в виде неправильной дроби и наоборот.

Презентация по математике 5 класс "Действия с обыкновенными дробями"

Закрасьте одну часть красным цветом. ВЫВОД: красным цветом закрашена одна вторая часть полоски на практике обозначает половину некоторой величины Слайд 6 Описание слайда: Обыкновенные дроби Каждый может за версту Видеть дробную черту. Над чертой — числитель, знайте, Под чертою — знаменатель. Дробь такую, непременно, Надо звать обыкновенной.

Любое натуральное число можно записать в виде дроби с любым натуральным знаменателем. Числитель этой дроби равен произведению числа на этот знаменатель. Cлайд 2 Содержание: Деление и обыкновенные дроби. Основное свойство дроби и сокращение.

Правильные и неправильные дроби. Смешанные числа. Приведение обыкновенных дробей к наименьшему общему знаменателю. Сравнивание обыкновенных дробей. Сложение обыкновенных чисел. Сложение смешанных чисел. Вычитание обыкновенных дробей. Вычитание смешанных чисел.

Взаимное вычитание натуральных чисел, правильных дробей и смешанных чисел. Умножение дробей. Взаимно обратные числа. Переместительное, сочетательное и распределительное свойства умножения дробей. Переместительное свойство умножения дробей. Нахождение дроби от числа. Деление обыкновенных дробей. Нахождение числа по его дроби.

Числитель и знаменатель зачёркиваются чёрточками, и рядом с ними записываются результаты деления частные числителя и знаменателя на одно и то же число. Число, на которое делили числитель и знаменатель, держим в уме. Если числитель и знаменатель дроби умножить или разделить на одно и то же число, не равное нулю, то получится дробь, равная данной. Запишем это свойство в виде буквенных выражений. Сравнение дробей с одинаковыми знаменателями Из двух дробей с одинаковыми знаменателями больше та, у которой числитель больше.

Сравнение дробей с одинаковыми числителями Из двух дробей с одинаковыми числителями больше та, у которой знаменатель меньше. В первом случае торт разделили на 2 части знаменатель дроби равен 2 , и у вас в руках половина торта, а во втором — торт поделили на 8 частей, и у вас в руках маленькая часть торта. Сложение дробей с одинаковыми знаменателями Такой случай наиболее простой. При сложении дробей с равными знаменателями складывают числители, а знаменатель оставляют тот же.

Что они показывают. Виды дробей. Как от целого найти часть по его дроби. Как найти целое число по его дроби. Как складывать и вычитать дроби.

Презентация к уроку "Умножение десятичных дробей"

Тема ДРОБИ в учебниках математики разных лет - YouTube 6. ДРОБИ В ДРЕВНЕМ РИМЕ У древних римлян система дробей основывалась на делении на 12 долей единицы.
Презентация для повторения и подготовки к ВПР по теме "Действия с дробями" в 5 классе Презентация для школьников 5 класса содержит задачи по теме «Обыкновенные дроби».

Свежие записи

  • Презентация к уроку "Понятие о дроби. Обыкновенная дробь"
  • Действия с десятичными дробями 5 класс презентация
  • как в презентации сделать дробь | Дзен
  • Навигация по сайту

Презентация по теме "Понятие обыкновенной дроби"

Скачать презентацию на тему: "Дроби" с количеством слайдов в размере 6 страниц. На примерах показано, что дроби нужны не только в математике, но и в повседневной жизни. Занимательные рабочие листы математической серии "Цветные дроби" помогут наглядно показать и объяснить школьнику дроби в символах. Правильными дробями называют дроби у которых числитель меньше знаменателя, неправильными — у которых числитель больше или равен знаменателю. Предмет: Математика 6 класс Слайдов: 22 Формат Размер: 2.31 Мб Тема: Десятичные и обыкновенные дроби.

Презентация по теме "Обыкновенные дроби. 5 класс"

Публикую презентацию для 6 класса (урок № 2) по теме "Повторение. Обыкновенные дроби". Поиск математической и исторической литературы, чтобы узнать когда древние египтяне стали использовать дроби и проводить вычисления с использованием дробей. Описание: Урок математики. Презентация «Все действия с обыкновенными дробями» 8 кл. Ищите и загружайте графику Дроби бесплатно. Презентация по теме обыкновенные дроби 5 класс.

Презентация «Все действия с обыкновенными дробями»

Число, на которое нужно умножить и числитель и знаменатель дроби, чтобы привести дроби к общему знаменателю, называют дополнительным множителем. Чтобы найти дополнительный множитель, надо общий знаменатель разделить на знаменатель данной дроби. Полученное частное является дополнительным множителем этой дроби. Чтобы привести дроби к наименьшему общему знаменателю, надо: 1 найти наименьшее общее кратное знаменателей данных дробей, оно и будет их наименьшим общим знаменателем; 2 разделить наименьший общий знаменатель на знаменатели данных дробей, то есть найти для каждой дроби дополнительный множитель; 3 умножить числитель и знаменатель каждой дроби на её дополнительный множитель. При этом получим дроби с одинаковыми знаменателями. Слайд 7 Сравнивание обыкновенных дробей Если дроби имеют разные знаменатели, то прежде чем их сравнивать, их надо привести к общему знаменателю. Из двух дробей с одинаковыми знаменателями меньше та дробь, числитель которой меньше; больше та дробь, числитель которой больше. На числовом луче меньшая дробь изображается левее большей дроби, большая дробь располагается правее меньшей дроби.

Из двух дробей с одинаковыми числителями неравными нулю меньше та дроь, знаменатель которой больше; больше та дробь, знаменатель которой меньше. Слайд 8 Сложение обыкновенных чисел При сложении дробей с одинаковыми знаменателями числители складывают, а знаменатель оставляют тот же. Если слагаемые дроби имеют разные знаменатели, то надо: 1. Слайд 9 Сложение смешанных чисел Чтобы сложить смешанные числа, надо: привести дробные части этих чисел к наименьшему общему знаменателю; отдельно выполнить сложение целых частей и отдельно дробных частей и написать сумму в виде смешанного числа; если при сложении дробных частей получилась неправильная дробь, то выделить целую часть из этой дроби и прибавить её к сумме целых частей. Слайд 10 Вычитание обыкновенных дробей При вычитании дробей с одинаковыми знаменателями из числителя уменьшаемого вычитают числитель вычитаемого, а знаменатель оставляют тот же. Чтобы вычесть дроби с разными знаменателями, надо: 1. Сложить полученные результаты.

Слайд 12 Взаимное вычитание натуральных чисел, правильных дробей и смешанных чисел Чтобы вычесть из натурального числа смешанное число, надо написать натуральное число в виде смешанного числа и вычесть из одного смешанного числа второе. При вычитании из смешанного числа натурального числа надо из целой части смешанного числа вычесть натуральное число и к полученному числу приписать дробную часть смешанного числа. Если числитель смешанного числа меньше числителя вычитаемой дроби, то, уменьшив целую часть смешанного числа на единицу, надо превратить его в смешанное число, дробная часть которого является неправильной дробью, и далее выполнить вычитание. Слайд 13 Умножение дробей. Произведение двух дробей есть дробь, числитель которой равен произведению числителей данных дробей, а знаменатель — произведению их знаменателей.

Некоторые замечания по слайдам: - слайд 3 почти пустой, который детям не нужен в представленном виде, цель урока можно было дополнить мотивацией к учебному занятию, добавить графический материал для пояснения вопроса: зачем вообще изучать дроби и действия с дробями? Создатель презентации нарушает закон об авторском праве, так как в информационном продукте не указаны ссылки на используемый графический материал.

Кроме этого, не выполнены требования портала к размещению материала на его страницах нет логотипа, аннотации.

Но иногда приходится делить яблоко на части, то есть дробить, чтобы поделиться с кем-нибудь. Помните, как было в детском мультфильме: «Мы делили апельсин, Много нас, а он один… Приведите свой жизненный пример деления одного целого предмета на части. Интересно, а в древности знали про дроби? Слайд 3 Слайд 4 Описание слайда: Даже Пифагор, который трепетно Даже Пифагор, который трепетно относился к натуральным числам, создавая теорию музыкальной шкалы, связал основные музыкальные интервалы с дробями. Слайд 5 Описание слайда: Хочу всё знать и уметь — А как половину записать цифрами?

Материал презентации тесно связан с такими предметами как география и экология.

Все задания с дробями в данной презентации имеют отношение к озеру Байкал.

Похожие новости:

Оцените статью
Добавить комментарий