Новости искусственный интеллект в медицине и здравоохранении

В 2024 году технологии искусственного интеллекта будут более глубоко и масштабно внедряться в здравоохранении.

Виртуальная реальность в медицине

  • «Россия 1» 27.11.2023 «Утро России». «Искусственный интеллект в медицине: достижения и перспективы»
  • Роль искусственного интеллекта в различных областях здравоохранения
  • Интеллектуальный подход. 7 задач, которые решает ИИ в здравоохранении и фарме
  • Популярные статьи
  • ИИ-революция в генной инженерии: OpenCRISPR-1 открывает новую эру в редактировании ДНК / Хабр

Искусственный интеллект в медицине и здравоохранении

Правительство планирует поддержать рублём ИИ для медицины Федеральный проект «Цифровые сервисы здравоохранения» получит финансирование для внедрения искусственного интеллекта в медицину Российское правительство, по указанию премьер-министра Михаила Мишустина, намерено включить инновационные технологии в здравоохранение. Новый федеральный проект «Цифровые сервисы здравоохранения», в рамках которого предусмотрено внедрение искусственного интеллекта ИИ в медицину, станет частью стратегии развития этой сферы. Планируется, что с 2025 года будут выделены средства для финансирования данного процесса. Однако, несмотря на планы и возможности, внедрению технологий не исключено столкнуться с ограничениями и препятствиями. Изображение сгенерировано нейросетью Midjourney В настоящее время, ИИ в медицине представлен двумя типами решений: медицинскими анализ изображений, данных электронной медкарты, видеопотока и немедицинскими голосовые сервисы оптимизации работы центров обработки звонков, сервисы видеоаналитики для обеспечения безопасности пациента, чат-боты для первичного сбора данных о пациенте перед записью к врачу.

На конец 2023 г. При этом с учетом общего числа пациентов медучреждений общее число таких документов оценивается в 10 млрд. Все учреждения здравоохранения имеют доступ в интернет.

В государственных медучреждениях создано около 1 млн рабочих мест , подключенных к МИС.

Мониторинг за психическим здоровьем Традиционные модели здравоохранения часто игнорируют факторы психического здоровья пациентов, которые становятся одними из самых важных благодаря возможностям ИИ. Уникальные приложения позволяют заблаговременно выявлять психические отклонения за счет комплексного анализа речевых шаблонов, текстовых сообщений, социальной активности человека. Такие инструменты очень важны для своевременного вмешательства и решения психических нарушений до начала обострения.

Улучшение обучения специалистов Возможности ИИ становятся революционными в области обучения медиков. Благодаря симуляторам виртуальной реальности создается максимально реалистичная и захватывающая среда обучения. VR-симуляция облегчают отработку сложных процедур. За счет этого медицинские работники набираются опыта и получают уверенность в своих действиях без рисков для пациентов.

Внедрение ИИ существенно изменит здравоохранение в 2024 г. Благодаря алгоритмам машинного обучения медпомощь станет более эффективной, доступной, персонифицированной.

Авторы отмечают, что существует ряд условий, необходимых для дальнейшего развития ИИ в сфере здравоохранения: совершенствование нормативного регулирования, разработка единых стандартов по распоряжению биомедицинскими данными, их контролю и определению границ использования ИИ, этических норм; создание общедоступных датасетов, репрезентативных, релевантных и корректно структурированных медицинских данных, необходимых для обучения моделей, которые должны быть разработаны совместно с экспертным сообществом; стимулирование спроса со стороны государственных органов и медицинских организаций в виде грантов и субсидий на использование ИИ-продуктов и сбора данных для общего пользования внутри медицинских организаций; разработка ускоренных процедур сертификации и регистрации или решений на основе ИИ в медицине с четко определенной процедурой, сроками, алгоритмами для тестирования и апробации систем. Документы pdf16. Более подробную информацию об использовании файлов cookies можно найти здесь , наши правила обработки персональных данных — здесь.

Эксперт объяснил провал искусственного интеллекта в медицине

Искусственный интеллект в медицине: применение, технологии, вызовы, нормативное обеспечение и регулирование, программы практического внедрения. Искусственный интеллект приносит значительные инновации в медицину в России. Борис Зингерман — директор Ассоциации разработчиков и пользователей искусственного интеллекта в медицине и его экспертиза в этом вопросе особенна ценна. Искусственный интеллект в здравоохранении показывает впечатляющие результаты и в решении задачи раннего распознавания рака кожи. Решения с использованием искусственного интеллекта в медицине внедряют 70 российских регионов, сообщил заместитель министра здравоохранения РФ Павел Пугачев, выступая на форуме "Биотехмед". Специалисты с помощью искусственного интеллекта поставили свыше 8 миллионов диагнозов.

Хочу убедиться, что мне звонил ВЦИОМ

  • Журнал Nature опубликовал доклад о развитии ИИ в медицине
  • Росздравнадзор одобрил уже 17 российских медизделий с искусственным интеллектом - ФармМедПром
  • Как ИИ создает лекарства в 10 раз быстрее и в 600 раз точнее, чем человек
  • Как искусственный интеллект применяется в медицине
  • Конференция, выставка решений

Эксперимент

В 2024 году в практическом здравоохранении каждого региона должны работать по три решения на базе искусственного интеллекта. Использование искусственного интеллекта в медицине — это один из эффективных методов профилактики различных заболеваний. Искусственный интеллект оцифровывает данные.

Что хотите найти?

Та статистика, которую мы имели на начало октября, - это 70 регионов [, которые] уже приобрели и внедряют соответствующие решения", - сказал он на форуме "Биотехмед". Большая часть таких разработок - решения для работы с медицинскими изображениями, уточнил Пугачев.

Носимые технологии — пульсометры и смартчасы — одни из самых популярных устройств, которые подключены к системе IoMT. Трекеры собирают данные с помощью датчиков и сообщают о таких показателях организма, как частота сердечных сокращений, температура тела и артериальное давление. Эти данные можно отправлять врачам для анализа, диагностики и лечения. Наномедицина Нанотехнологии используются для создания таких высокочувствительных диагностических инструментов, как наносенсоры, которые позволяют блокировать заболевания и состояния на ранних стадиях.

Например, ученые разработали сверхминиатюрных нанороботов, которые вводятся в кровеносные сосуды для поиска раковых клеток или вирусов. Регенеративная медицина — важная часть наномедицины. Исследователи разрабатывают новые материалы и методы лечения — нановолокна и наночастицы, — которые помогают восстанавливать и регенерировать поврежденные ткани и органы. Умные имплантаты и трехмерная печать Умные имплантаты — это крошечные компьютеризированные устройства, вживляемые в организм для мониторинга состояния здоровья и восстановления определенной функциональной независимости у пациентов с различными видами паралича. Ученые уже успели установить микроэлектродный массив размером с монетку в зрительную кору головного мозга человека, страдающего слепотой, что позволило ему воспринимать буквы и формы.

Трехмерная 3D печать в здравоохранении используется для создания моделей, медицинских устройств, индивидуальных имплантатов или суставов, протезов, искусственных органов и клеток кожи для пострадавших от ожогов. По мере того как мы ориентируемся в сложностях современного здравоохранения, технологии продолжают оставаться движущей силой его совершенствования.

Область применения этого сервиса — фармакогеномика. Это подбор эффективного препарата и дозировки в лечении различных заболеваний на основе анализа генетического теста. Врачи при лечении чаще всего используют стандартные схемы медикаментозной терапии. ИИ помогает создать индивидуальный план с учетом индивидуальных особенностей пациента.

Надежный виртуальный помощник для врачей и пациентов, мгновенно отвечает на все вопросы. ИИ ежедневно собирает все новшества в области здравоохранения и оперирует только актуальными данными. Сервис помогает разработать алгоритм для эффективного лечения диабетической ретинопатии, спрогнозировать риск развития сердечно-сосудистых заболеваний. Приложение распознает человеческую речь, может интересоваться самочувствием, отвечать на любые вопросы, связанные со здоровьем. Это приложение предназначено для распознавания симптомов и формирования общей клинической картины. Оно предполагает диагнозы, исходя из полученных данных, подсказывает, к какому специалисту нужно обратиться.

Это помогает пациенту внимательно следить за состоянием своего здоровья, быстро получать нужную врачебную помощь без нерациональной траты времени на запись, ожидание и посещение непрофильных специалистов. Снижается нагрузка на медперсонал, увеличивается время общения доктора с пациентом. Использование искусственного интеллекта в медицине — это один из эффективных методов профилактики различных заболеваний. Любой человек может получить точную информацию о том, как скорректировать образ жизни, питания, чтобы избежать проблем со здоровьем. Для врачей ИИ стал надежным помощником при установлении наиболее вероятного диагноза и разработке эффективной схемы лечения. Применение искусственного интеллекта в медицине для разработки новых препаратов Чтобы разработать вакцину или новое лекарственное средство, требуется много времени и средств на дорогостоящие исследования и испытания.

ИИ помогает сократить время на разработку новых препаратов в несколько раз. Искусственный интеллект анализирует структуру существующих медикаментов на молекулярном уровне, предлагает новые, с учетом заданных требований. В 2019 году компания Insilico Medicine при помощи ИИ создала несколько препаратов для эффективного лечения мышечного фиброза. Раньше для этого назначали множество медикаментов, терапия не всегда была эффективной. Искусственный интеллект всего за 3 недели создал нужный алгоритм, ученые выбрали наиболее подходящие варианты, за 25 дней провели тестирование новых лекарств на животных. Для выбора оптимального варианта потребовалось 46 дней.

Новые приложения и системы, связанные с ИИ, обладают рядом неоспоримых преимуществ: Увеличенная вычислительная мощность приводит к более быстрому сбору и обработке данных. Увеличение объёма и доступности связанных со здоровьем данных, которые получены из личных и медицинских устройств врачей и пациентов. Рост геномных баз данных секвенирования. К 2019 году для специального исследования будут отобраны 1 миллион добровольцев. Исследование направлено на то, чтобы показать связь между состоянием здоровья, образом жизни, окружающей средой, а также социальным и экономическим статусом.

Полученные данные будут обработаны с помощью ИИ.

«Рутинные задачи с минимальным риском». Nature опубликовал доклад о развитии ИИ в медицине

Особое внимание уделяется радиологии — использованию нейросетей для анализа рентгеновских снимков. Google использовали алгоритмы для интерпретации снимков грудной клетки, чтобы поставить 14 различных диагнозов, от пневмонии до гипертрофии сердца и коллапса легкого. DNN также способны диагностировать отдельные виды рака , переломы, кровоизлияния, ретинопатию, поражения кожи и множество других заболеваний. Алгоритмы могут улучшить работу дерматологов, кардиологов, офтальмологов и даже психотерапевтов, позволяя отслеживать развитие депрессии. Примеры применения ИИ в здравоохранении на протяжении жизни человека Проблема состоит в том, что большинство исследований и отчетов все еще существуют только в виде препринта. Они не опубликованы и не проверены рецензентами.

В препринтах проверка работоспособности алгоритмов осуществляется с точки зрения точности, что еще не равно клинической эффективности. Эффективность подтверждается с помощью недешевых клинических испытаний. Нейронные сети для пациентов Алгоритмы, которые пациенты могут использовать самостоятельно, развиваются медленнее, чем те, которые используют клиницисты. Датчики на часах определяют частоту сердечных сокращений пользователя в состоянии покоя и при физической нагрузке, и когда происходит сильное отклонение от ожидаемого, пользователю выдается предупреждение о записи ЭКГ через часы, результаты которого затем интерпретирует алгоритм.

Нужно это для имитации разных патологий у пациентов. На некоторых образцах заболевания видны даже без УЗИ. Причем одну и ту же патологию создают с разными характеристиками, чтобы картина была максимально реалистична. Денис Леонов, старший научный сотрудник Центра диагностики и телемедицины: «Здесь заложены образования различной жесткости. Жесткость — один из диагностических критериев, который позволяет отличить одно образование от другого. Данный фантом позволяет научиться студентам работать в режиме эластографии».

А еще фантомы помогают настраивать медоборудование. Например, аппарат-фантом имитирует позвоночник человека. По нему можно исследовать остеопороз. Кости при этом заболевании становятся хрупкими, и как раз их состояние с максимальной точностью отражает фантом. Дмитрий Семёнов, руководитель сектора стандартизации и контроля качества Центра диагностики и телемедицины: «Наш фантом достаточно точно имитирует эту минеральную плотность. И если откалибровать томограф при помощи нашего фантома, то изображение с этого томографа можно использовать для диагностики остеопороза». Важно, что пациенту при этом проходить дополнительные исследования не нужно.

Авторы отмечают, что существует ряд условий, необходимых для дальнейшего развития ИИ в сфере здравоохранения: совершенствование нормативного регулирования, разработка единых стандартов по распоряжению биомедицинскими данными, их контролю и определению границ использования ИИ, этических норм; создание общедоступных датасетов, репрезентативных, релевантных и корректно структурированных медицинских данных, необходимых для обучения моделей, которые должны быть разработаны совместно с экспертным сообществом; стимулирование спроса со стороны государственных органов и медицинских организаций в виде грантов и субсидий на использование ИИ-продуктов и сбора данных для общего пользования внутри медицинских организаций; разработка ускоренных процедур сертификации и регистрации или решений на основе ИИ в медицине с четко определенной процедурой, сроками, алгоритмами для тестирования и апробации систем. Документы pdf16. Более подробную информацию об использовании файлов cookies можно найти здесь , наши правила обработки персональных данных — здесь.

Другой недавний пример — это использование суперкомпьютера IBM Watson в Токио, чтобы уточнить диагноз 60-летнего пациента с лейкемией и назначить успешное лечение, сопоставив генетические данные миллионов исследовательских работ. И таких кейсов становится все больше: так, белорусский стартап DBrain вместе с американской компанией LigoLabs с помощью технологий ИИ и блокчейн повышают точность диагностики онкологических заболеваний. Подобные технологии используются и в России — российская платформа Botkin. AI позволяет выявлять онкологические заболевания легких благодаря анализу медицинских изображений с помощью технологий искусственного интеллекта в облаке Microsoft Azure. Решение уже успешно внедрено в нескольких регионах страны. В России также есть цифровая гистологическая лаборатория UNIM, которая исследует гистологические материалы при помощи нейронной сети для постановки верного диагноза. Помимо этого, большой потенциал существует у использования ИИ в разработке и тестировании новых лекарств. Одна из крупнейших фармацевтических компаний — Novartis — совместно с Microsoft открыла ИИ-лабораторию, чтобы использовать "умные" алгоритмы в создании лекарственных препаратов. Подобными проектами занимается и Google: в 2018 году DeepMind смог лучше биологов предсказать форму свертывания белка. Это потенциально способно существенно ускорить процесс разработки новых лекарств. Основные препятствия Несмотря на большие перспективы, существует целый спектр ограничений для развития ИИ в медицине. Эти стоп-факторы должны стать основным объектом для совместной работы технологических компаний и медицинских организаций, так как их минимизация способна существенно расширить возможности применения этой технологии в здравоохранении. Нехватка компетенций и сотрудников.

Искусственный интеллект в медицине: преображение здравоохранения в XXI веке

Их главные преимущества в том, что хирургам не нужно вскрывать большие участки тела для операций и медицинское вмешательство практически не оставляет следов на коже. Ещё ИИ помогает студентам-медикам практиковаться. Нейросеть SAIS оценивает работу хирургов по видеозаписям проведённых ими операций. С ней начинающие специалисты смогут мгновенно получать фидбэк о своей работе и заниматься без наставников. А российская компания «Нейроспутник», входящая в Сколково, разрабатывает тренажёр для безопасного обучения будущих медиков: он заменит тела животных и людей, на которых обычно тренируются студенты.

Тренажёр — один из трёх элементов экосистемы «Левша». В неё также входит 3D-симулятор, который имитирует архитектуру сосудов конкретного пациента и позволяет подготовиться к операции, и робот-хирург на дистанционном управлении — он защищает врачей от рентгена и корректирует тремор в их движениях, минимизируя риски для пациента. Диагностика заболеваний Цифровые решения на базе искусственного интеллекта полезны для медицины не меньше роботов. Алгоритмы научились анализировать медицинские изображения и выявлять по ним заболевания — от плоскостопия до инсульта.

Основные преимущества таких разработок — скорость и точность. Они оптимизируют работу докторов, снижают вероятность ошибки и сокращают время получения результатов, что может спасти не одну жизнь. Разработчики СберМедИИ шагнули ещё дальше и научили искусственный интеллект ставить диагноз не по снимкам, а по словам. Они используются во всех взрослых поликлиниках Москвы и постепенно проникают в другие субъекты России.

ТОП-3 предлагает три наиболее вероятных диагноза по Международной классификации болезней на основе жалоб пациента. AIDA использует для постановки диагноза данные электронной медицинской карты за последние два года. Эти сервисы не вытесняют врачей, как может показаться, — наоборот, они помогают не упустить важные детали и вынести наиболее подходящее для пациента решение. Уход за больными В больницах искусственный интеллект активно помогает медсёстрам и медбратьям.

Российская компания «Третье мнение» создала умную видеоаналитику на базе компьютерного зрения — области искусственного интеллекта, которая может обнаружить, отследить и проанализировать увиденное.

Но, как я уже сказал, к приступу можно будет подготовиться, чтобы он нанёс минимальный вред. В этот день ребёнок должен быть дома и избегать активностей, которые могут быть опасны в случае потери сознания. То есть родители не должны пускать его на горку, на качели, в бассейн и так далее. Почему «Джейн» оказалась не у дел — Почему мы говорим о «Джейн» в прошедшем времени? Всё, что я вам рассказываю, связано с опытной эксплуатацией «Джейн» врачами одной московской больницы, специализирующимися на эпилепсии. Врачи ей пользовались под моим контролем. Наши алгоритмы помогли уточнить диагнозы и скорректировать лечение десятка пациентов. Однако в определённый момент мы столкнулись с проблемой — чтобы продолжать использовать систему, требовалось сертифицировать её в качестве медицинского изделия.

Процесс этот довольно сложный, он потребовал бы от нашего коллектива больших затрат времени и сил. Никто не мог дать гарантии того, что после сертификации «Джейн» купят. А делать такую сложную систему просто так, для себя, смысла не было. Поэтому я решил сосредоточиться на развитии других проектов. У нас был чат-бот, у нас была веб-версия, система «крутилась» на сервере. Если бы я не остановил разработку, то следующий модуль, который мы делали, обеспечивал бы вывод по аналогии. Предполагалось, что в систему загрузят большое количество историй болезни. И тогда «Джейн» могла бы находить совпадения, смотреть, как лечится один пациент, как другой, какие у них прогнозы, признаки выздоровления и так далее. И система такая будет очень полезна, если кто-то заинтересуется её покупкой и внедрением.

Проект «Джейн» развивался в течение трёх лет. Обнаруженные аналоги могли предложить только электронный дневник. Это были простые информационные системы для записи симптомов и жалоб пациентов. Таких крутых фишек, интеллектуальных функций, настроенных именно на проблему эпилепсии, как в «Джейн», больше ни у кого в мире не было. Встречались с представителями популярных компаний, предоставляющих услуги по лабораторной диагностике. Мы предлагали им войти в проект и развивать его под своим брендом. Мы могли бы сделать полную интеграцию. Но этого не случилось, никто из потенциальных инвесторов так и не решился на сотрудничество. Стоимость разработки интеллектуальной системы, подобной «Джейн», по оценкам АИИ , начинается от 250 тысяч рублей.

Что в России нужно сделать, чтобы на законных основаниях продавать медицинские системы? То есть мы должны фактически провести независимую оценку эффективности изделия, применяя методы доказательной медицины. Это довольно сложный процесс, который может тянуться годами. Какая должна быть методика? И разработка методики испытаний входит в состав клинических испытаний. То есть мы должны сначала разработать методику, представить её комиссии, которая подтвердит, что методика соответствует стандартам качества проведения клинических испытаний. Затем в ходе испытаний мы проходим по всем пунктам этой методики. Пишем научно-технические отчёты. Консилиумы их проверяют, подтверждают, что отчёты соответствуют критериям, описанным в документах.

В России IT-продукт с искусственным интеллектом впервые сумел успешно пройти технические и клинические испытания, получить статус медизделия и одобрение Росздравнадзора только в апреле 2020 года. Почему же в больницах до сих пор очень мало таких программ? MYCIN считается первой интеллектуальной компьютерной системой, разработанной специально для медиков. Её создали в 1970-х годах учёные Стэнфордского университета США. MYCIN предназначалась для подбора антибактериальной терапии. Название было образовано от суффикса «-мицин», часто встречающегося в названиях антибиотиков.

ИИ в белом халате Применение искусственного интеллекта ИИ в медицине открывает дополнительные возможности для улучшения диагностики, лечения и предотвращения заболеваний. Но, как и в любой другой сфере, применение ИИ в медицине имеет свои риски и ограничения.

Важно понимать, как общество воспринимает такие новации и какие ожидания и опасения связаны с их использованием. Особый интерес в этой связи представляют сравнительные межстрановые исследования, так как в них раскрываются коллективные ориентации и ценности, присущие тому или иному обществу. Опросы ВЦИОМ и Pew показывают, что в российском и американском обществе пациенты больше будут чувствовать дискомфорт, чем комфорт, если врач будет полагаться на искусственный интеллект для диагностики заболеваний и рекомендации лечения. Это значит, что и в российском, и в американском обществе существуют опасения по вопросу применения ИИ в здравоохранении. К чему все это приведет? ИИ обладает способностью обрабатывать огромные объемы данных и находить скрытые закономерности. Теоретически это позволит врачам лучше исследовать болезни, быстрее и точнее ставить диагнозы и эффективнее лечить пациентов.

В 2023 году решения на базе ИИ ввели в эксплуатацию 58 регионов страны. В целом за прошлый год субъекты Федерации приобрели 106 медицинских изделий решений с ИИ. На закупку таких решений было направлено 368,8 млн рублей из федерального бюджета и 79,5 млн рублей — из региональных.

В 2024 году в практическом здравоохранении каждого региона должны работать по три решения на базе искусственного интеллекта. Директор по акселерации фонда «Сколково» Юлия Щеглова представила доклад, посвященный мерам поддержки стартапов, разрабатывающих ИИ-решения в здравоохранении. Так, участниками конференции стали несколько компаний-разработчиков, получивших грантовую поддержку в рамках программ фонда.

Для чего в российских регионах используют ИИ в медицине

Лекторий ФКН в Библиотеке иностранной литературы им. М. И. Рудомино в рамках Дней компьютерных пересечение технологий и здравоохранения меняет будущ. Благодаря чудесам искусственного интеллекта медицинские работники получают доступ к беспрецедентным сведениям, основанным на миллиардах точек данных. нейротехнологии и технологии искусственного интеллекта. Искусственный интеллект в медицине.

«Россия 1» 27.11.2023 «Утро России». «Искусственный интеллект в медицине: достижения и перспективы»

Искусственный интеллект — это сильный инструмент, который способен принести пользу во многих отраслях и сферах медицины. Искусственный интеллект — это сильный инструмент, который способен принести пользу во многих отраслях и сферах медицины. Технологии на базе искусственного интеллекта охватывают всё больше сфер здравоохранения. Всемирная организация здравоохранения (ВОЗ) призывает в вопросах медицины относиться к «познаниям» созданных искусственным интеллектом больших языковых моделей «с осторожностью».

ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ В МЕДИЦИНЕ. ПЕРСПЕКТИВЫ РАЗВИТИЯ В РОССИИ

Для понимания, как это работает, сначала разберемся, что такое ИИ. ИИ — это компьютерные программы, которые могут решать задачи подобно человеческому мозгу. Они прогнозируют ситуации, анализируют данные и ищут скрытые закономерности. Чем ИИ отличается от обычных программ?

Он не просто работает по заранее заданным алгоритмам. ИИ обучаем. Пример: обычная программа не «видит» болезнь на рентгеновском снимке.

ИИ может научиться это делать. Искусственный интеллект — это система, построенная из слоев нейронов, которые анализируют и обрабатывают информацию. Если ИИ дает неправильные результаты, его переобучают, чтобы исправить ошибки и улучшить качество работы.

Чем больше данных у ИИ, тем точнее он работает. Это происходит потому, что так ИИ лучше понимает контекст и предоставляет более обоснованные сведения. Однако, изначальные данные могут быть неполными или тоже содержать ошибки.

Это также сказывается на результатах, которые выдает ИИ. ChatGPT оказался особенно хорош в общей медицине, но не так силен в специализированных областях, например, в офтальмологии. Области применения ИИ в медицине: диагностика заболеваний , микрохирургия и даже распознавание рака кожи по фото.

Области применения ИИ в медицине Разработки в разных медицинских областях ведутся по всему миру. Американский суперкомпьютер Watson помогает в анализе сердечных заболеваний и онкологии. Google разрабатывает ИИ DM Health для помощи офтальмологам, а израильская компания MedyMatch Technology создаёт систему для диагностики инсульта, сравнивая снимки мозга пациента с миллионами других снимков.

Диагностика заболеваний Особенно искусственный интеллект преуспел в точности диагностики болезней. ИИ имеет доступ к большому количеству медицинских данных, поэтому может быстро анализировать и предлагать решения. Как это работает?

Например, в сельском хозяйстве технологию используют для изменения свойств продуктов: можно удалить из арахиса ген, который вызывает аллергическую реакцию, можно создавать необычные сорта. Ученые даже занимались созданием комаров, не способных переносить малярию. Редакторы генов, основанные на технологию CRISPR и полученные из микробов, хоть и являются важным и незаменимым инструментом, часто демонстрируют значительные функциональные недостатки, особенно при переносе в чужеродную среду, например в клетки человека. Компания Profluent считает, что основанный на AI-технологиях генный редактор OpenCRISPR представляет собой мощную альтернативу, которая позволит обойти различные ограничения и даст возможность создавать оптимальные свойства. Используя большие языковые модели LLM , обученные работе с биологическим разнообразием, мы демонстрируем успешное и максимально точное редактирование генома человека с помощью программируемого редактора генов, разработанного с использованием искусственного интеллекта. Это удалось благодаря систематическому анализу 26 терабаз собранных геномов и метагеномов. С помощью AI появилась возможность генерировать в 4,8 раза больше белковых кластеров, чем существует в природе.

Продолжая пользоваться сайтом, вы подтверждаете, что были проинформированы об использовании файлов cookies сайтом НИУ ВШЭ и согласны с нашими правилами обработки персональных данных. Вы можете отключить файлы cookies в настройках Вашего браузера Принять все.

Так, участниками конференции стали несколько компаний-разработчиков, получивших грантовую поддержку в рамках программ фонда. Важной темой дискуссий стали расхождения в результатах работы над аналогичными задачами врачей и ИИ, их выявление и корректировка, а также недостаток в публичном поле исследований эффективности тех или иных ИИ-решений. Решения на базе ИИ регионы сегодня рассматривают уже не в качестве любопытной новинки, а как еще один компонент системы здравоохранения, который должен решать конкретные задачи и обладать доказанной эффективностью. Исходя из региональных показателей, в текущем году таких кейсов станет примерно в 3 раза больше, в том числе ИИ-решений, работающих со структурированными электронными медицинскими документами СЭМД и медицинскими записями. Наша компания располагает опытом работы с большими массивами медицинских записей и документов, которые необходимы для обучения и работы моделей ИИ. Совместные интеграционные проекты с разработчиками систем ИИ для здравоохранения и систем поддержки принятия врачебных решений уже стали важным направлением нашей работы.

Похожие новости:

Оцените статью
Добавить комментарий