Высокий коэффициент Джини в Москве объясняется вполне понятными факторами, которые уже указывались ранее. Индекс Джини не применяется для анализа государств, где действует плановая экономика, поскольку уровень дохода в таких странах априори не имеет большого разрыва между трудящимися, так как регулируется государством.
Коэффициент Джини — индекс концентрации доходов, справедливости и неравенства
При сильном расслоении снижается социальная мобильность и талантливые бедняки не могут развить свои способности. Возникают «ловушки неравенства», когда институты разделенного общества запирают бедных в своей социальной страте. Необходима более широкая и научно обоснованная количественная оценка эффективности преодоления неравенства, доказывающая его эффективность для общества в целом. Должна быть разработана и предъявлена обществу система институциональных изменений, через которые возможно перейти из ловушки неравенства к лучшему для всех равновесию, с оценкой конкретных политических мер, направленных на расширение возможностей для обездоленных. Доказывается, что доступное образование повышает уровень человеческого капитала и в то же время способствует более равномерному распределению доходов. Но представители населения с высоким уровнем дохода зачастую выступают против бесплатного образования, полагая, что оно происходит за их счет, одновременно пытаясь предотвратить конкуренцию за высокооплачиваемую работу со стороны талантливых бедняков.
Эти тезисы обосновываются авторами статьи с помощью математической модели. Автор работы [9] Gyimah-Brempong, 2002 на основе панельных данных по странам Африки изучала влияние коррупции на экономический рост и неравенство. Доказывается, что коррупция тормозит рост, уменьшая вложения в основной капитал. В статье [10] Qudrat-I Elahi, 2005 рассматривается научная обоснованность критерия благосостояния Парето для оценки альтернативных сценариев экономического неравенства. Принцип Парето может быть ошибочным при оценке влияния неравенства, поскольку рынки труда не удовлетворяют условиям совершенной конкуренции.
Использовались данные примерно по ста тысячам человек за 6 лет. Оказывается, что увеличение доходов в регионе и неравенства в образовании имеет значимую связь с последующим экономическим ростом. На более высоких уровнях экономического развития накопление физического капитала замещается накоплением человеческого капитала. Авторы статьи [12] Ryvkin, Semykina, 2017 экспериментально изучали различные модели неравенства. Они проводили лабораторный эксперимент, где студенты могли инвестировать в прибыльные проекты и определять уровень налогов голосованием.
В другой серии экспериментов автократии размер инвестиций и распределение осуществлялись извне, но существовал риск экспроприации. Участники эксперимента могли добровольно перейти от демократии к автократии большинством голосов. В эксперименте участвовали 228 добровольцев, которые играли роли бедных и богатых и участвовали в голосованиях. Игра показала, что играющие роли богатых очень редко 13 из 304 голосовали за смену режима. Переход к демократии почти полностью определялся голосами бедных.
В группах, которые перешли на автократию, бедные получали выгоды, и уровень неравенства значительно снизился во всех циклах игры. Это происходит при условии, что автократ выполняет свои обещания. Более подробный обзор литературы по проблемам неравенства можно найти в работе [13] Sukharev, 2020. Некоторые сложности с обработкой данных возникают из-за того, что административное деление РФ за эти годы изменялось: происходили переименования, объединения и присоединения. В частности, данные по индексам ВРП имеются с 1997 по 2016 г.
Данные по ВРП 2017—2018 гг. Для оценки темпов экономического роста по субъектам регионам удобнее использовать индексы ВРП, которые имеются в виде процентов прироста падения по сравнению с предыдущим годом, а не данные по физическому объему, которые нужно было бы нормировать к начальному уровню. В рамках модели Кузнеца-Пикетти предполагалось обнаружить зависимость между темпами роста и неравенства типа перевернутой U или S кривой, поскольку мы имеем набор данных за 21 год по более чем 80 регионам, значительно различающимся по своему экономическому развитию. Для анализа использовался Microsoft Excel 2013, строились точечные диаграммы диаграммы рассеяния с линиями полиномиальных трендов. Кроме того, вычислялся коэффициент корреляции по каждому году.
При этом были получены результаты с очень большим разбросом по годам, что затрудняет поиск каких-либо зависимостей. Однако можно заметить, что в последние годы 2015—2018 корреляция между коэффициентом Джини и индексом ВРП стала больше и более устойчивой по своей величине. Были исключены регионы, по которым в эти годы отсутствовали данные. Также для повышения информативности диаграмм исключен город Москва, в котором неравенство постоянно значительно почти вдвое больше среднего по России точка статистического «выброса».
Страна, в которой один резидент получил весь доход, а все остальные ничего не заработал, будет иметь коэффициент Джини дохода 1.
Тот же анализ может быть применен к распределению богатства «коэффициент Джини богатства» , но поскольку богатство труднее измерить, чем доход, коэффициенты Джини обычно относятся к доходу и выглядят просто как «коэффициент Джини» или «индекс Джини», без указав, что они относятся к доходу. Коэффициенты богатства Джини, как правило, намного выше, чем для дохода. Коэффициент Джини — важный инструмент для анализа распределения доходов или богатства в стране или регионе, но его не следует принимать за абсолютное измерение дохода или богатства. По данным ОЭСР , в стране с высоким и низким уровнем доходов может быть один и тот же коэффициент Джини, если доходы распределяются одинаково внутри каждой из них: в Турции и США в 2016 году коэффициенты Джини по доходам составляли около 0,39-0,40. Графическое представление индекса Джини Индекс Джини часто представлен графически через кривую Лоренца , которая показывает распределение доходов или богатства путем нанесения процентиля населения по доходу на горизонтальную ось и совокупного дохода на вертикальной оси.
Коэффициент Джини равен площади под линией полного равенства 0,5 по определению за вычетом площади под кривой Лоренца, деленной на площадь под линией абсолютного равенства. Другими словами, это вдвое больше площади между кривой Лоренца и линией полного равенства. Чтобы оценить коэффициент Джини дохода для Гаити в 2012 году, мы найдем площадь под кривой Лоренца: около 0,2. Вычитая это число из 0,5 площадь под линией равенства , мы получаем 0,3, которое затем делим на 0,5. Другой способ восприятия коэффициента Джини — это показатель отклонения от идеального равенства.
Чем дальше кривая Лоренца отклоняется от идеально равной прямой линии которая представляет собой коэффициент Джини, равный 0 , тем выше коэффициент Джини и тем менее равным является общество. В приведенном выше примере Гаити более неравное, чем Боливия.
Источник: Getty Images В 2015 году Греция, Таиланд, Израиль и Великобритания оказались неравны в равной степени, то есть все четыре страны имели одинаковый коэффициент Джини — общий показатель неравенства доходов. Коэффициент Джини, равный 1 единице , означает, что в обществе наблюдается абсолютное неравенство, в то время как 0 ноль означает полное равенство. В действительности население любой страны или региона в каждый конкретный момент находится где-то между этими показателями.
The Gini index measures the area between the Lorenz curve and a hypothetical line of absolute equality, expressed as a percentage of the maximum area under the line. Thus a Gini index of 0 represents perfect equality, while an index of 100 implies perfect inequality.
Коэффициент Джини. Формула. Что показывает
Показатель Джини позволяет определить наиболее достоверные данные, выделяя конкретные сегменты экономики, поэтому европейские государства решили начать использовать его и в торговом секторе. С учетом меняющейся экономической картины мира применение статистического показателя для измерения структуры торговли страны приводит экспертов к новому, более подробному показателю участия фирм в торговле — торговому индексу Джини GTI. Торговый индекс Джини измеряет асимметрию в торговле на основе количества экспортеров и их доли в стоимости экспорта. Основными источниками данных для корректного измерения GTI являются торговая статистики на уровне фирмы и база данных Евростата о торговле с разбивкой по характеристикам предприятий TEC. База данных TEC показывает количество микро менее 10 сотрудников , малых менее 50 сотрудников , средних менее 250 сотрудников и крупных фирм более 250 сотрудников , занятых в торговле, и категории товаров, экспортируемые каждым классом фирм. Торговый индекс Джини может быть рассчитан для всех этих четырех размерных классов экспортеров, начиная от микрофирм и заканчивая «суперэкспортерами» крупными предприятиями.
Несмотря на то, что главы государств обычно не подкрепляют свои заявления торговой статистикой на уровне компаний, они стараются проводить целенаправленную торговую политику для поддержки участия своих МСП в глобальных цепочках поставок. Так, в ноябре 2023 года президент Франции Эммануэль Макрон, ссылаясь на статистические данные, которые указывают на неиспользованный экспортный потенциал, заявил, что доля французских МСП в общем объеме французского экспорта невелика и ниже, чем у немецких и итальянских коллег. Он также выступил в поддержку нескольких инициатив, направленных на увеличение числа французских фирм-экспортеров. А новый министр Южной Кореи по делам малых предприятий и стартапов объявил об обязательстве поддержать все существующие 90 000 корейских фирм-экспортеров в расширении их экспортной деятельности. Таким образом, индекс Джини используется не только для выявления неравенства среди населения, но и для выявления секторов государственной политики, которые требуют особого внимания для повышения уровня жизни населения, а также улучшения общих экономических показателей страны.
В этих странах правительства предпринимают шаги для снижения неравенства доходов и бедности, в том числе через программы социальной поддержки, налоговые реформы и инвестиции в образование и здравоохранение.
В первой деревне все жители зарабатывают одинаково — 10 рублей в год, во второй деревне распределение дохода иное: 3 человека зарабатывают по 5 рублей, 4 человека — по 10 рублей и 3 человека по 15 рублей. И в третьей деревне 7 человек получают 1 рубль в год, 1 человек — 10 рублей, 1 человек — 33 рубля и один человек — 50 рублей.
Для каждой деревни рассчитаем коэффициент Джини и построим кривую Лоренца. Представим исходные данные по деревням в виде таблицы и сразу рассчитаем и для наглядности: Код на Python import pandas as pd import numpy as np import matplotlib. Ещё один немаловажный момент.
Давайте мысленно закрепим концы кривой в точках и и начнем изменять её форму. Вполне очевидно, что площадь фигуры не изменится, но тем самым мы переводим членов общества из «среднего класса» в бедные или богатые при этом не меняя соотношения доходов между классами. Возьмем для примера десять человек со следующим доходом: Теперь к человеку с доходом «20» применим метод Шарикова «Отобрать и поделить!
В этом случае коэффициент Джини не изменится и останется равным 0,772, мы просто притянули «закрепленную» кривую Лоренца к оси абсцисс и изменили её форму: Давайте остановимся на ещё одном важном моменте: рассчитывая коэффициент Джини, мы никак не классифицируем людей на бедных и богатых, он никак не зависит от того, кого мы сочтем нищим или олигархом. Но предположим, что перед нами встала такая задача, для этого в зависимости от того, что мы хотим получить, какие у нас цели, нам необходимо будет задать порог дохода четко разделяющий людей на бедных и богатых. Если вы увидели в этом аналогию с Threshold из задач бинарной классификации, то нам пора переходить к машинному обучению.
Машинное обучение 1. Общее понимание Сразу стоит заметить, что, придя в машинное обучение, коэффициент Джини сильно изменился: он рассчитывается по-другому и имеет другой смысл.
Как мы уже знаем, понятие справедливости не является точно определённым для экономистов. В зависимости от системы моральных ценностей справедливость может быть установлена тем или иным образом. Экономисты гораздо более едины при определении того, что такое эффективность. Эффективной является та налоговая система, которая менее всего приводит к искажению стимулов у участников рынка, а следовательно, и к возникновению безвозвратных потерь.
Покажем, каким образом безвозвратные потери связаны с искажением стимулов у участников рынка. По теме «рыночное равновесие» мы помним, что безвозвратные потери возникали, когда налоги и субсидии изменяли положение кривых спроса и предложения, то есть изменяли экономическое поведение людей. Безвозвратные потери заключались в том, что какие-то покупатели не смогли купить товар, а какие-то производители не могли продать товар по сравнению с ситуацией, когда цены точно отражают предельные издержки. Рассмотрим простой пример: индивид А оценивает удовольствие от потребления мороженого в 60 рублей, индивид В - в 40 рублей. Если цена стаканчика мороженого оставляет 30 рублей, то каждый из них его купит и получит удовольствие. Сумма потребительского излишка будет равна 40 рублей 30 рублей у индивида А и 10 рублей у индивида В.
Если мы введем налог на потребление мороженого в размере 20 рублей на один стаканчик, то ситуация на рынке кардинально поменяется: индивид А все еще будет потреблять мороженое, а вот индивид В откажется от его потребления. Суммарный потребительский излишек теперь будет равен только 10 рублям это излишек индивида А. Налоговые сборы при это составят 20 рублей их оплатит опять же только индивид А , и их получает государство. На этом простом примере мы убедились, что при налогообложении возникли безвозвратные потери в размере 10 рублей. И они возникают потому, что индивид В поменял свое экономическое поведение, полностью отказавшись от потребления мороженого. Таким же образом любые налоги приводят к безвозвратным потерям, поэтому можно смело утверждать, что любые налоги неэффективны в этом смысле.
Задача экономистов заключается в том, чтобы найти такие налоги, которые будут минимально искажать стимулы людей, а значит, и приводить к минимальным безвозвратным потерям. Налоги могут взиматься по-разному в зависимости от величины дохода. Для того, чтобы оказать это, нам будут нужны два типа налоговых ставок: средняя налоговая ставка и предельная налоговая ставка. У прогрессивного налога средняя ставка налога растет по мере увеличения дохода, а значит, предельная налоговая ставка превышают среднюю. Примеры прогрессивных налогов: налоги на доходы во Франции, налоги в Швеции, автомобильный налог в России. У пропорционального налога средняя ставка не изменяется с ростом дохода, а значит, средняя налоговая ставка совпадает с предельной.
В случае, если индивиду предложена одинаковая налоговая ставка при существовании некоего налогонеоблагаемого минимума или же предоставлен налоговый вычет , то данная налоговая система является уже не пропорциональной, а прогрессивной. Индивид сначала вообще не платит налогов, а потом, после превышения налогонеоблагаемого минимума, начинает платить налог по одинаковой ставке. У регрессивных налогов средняя ставка падает с ростом дохода, а значит, предельная ставка налога оказывается ниже средней. Примеры регрессивных налогов: акцизы - поскольку человек оплачивает их при покупке товара вне зависимости от его дохода. Например, от 10 до 30 рублей в стоимости каждой пачки сигарет составляют акцизные сборы, и человек оплачивает их вне зависимости от величины дохода при покупке каждой пачки сигарет. Таким образом, для бедняка этот налог составляет существенную часть его дохода, а для миллионера он будет несущественным.
Другие примеры регрессивных налогов — это любые фиксированные налоги и пошлины. Например, в РФ человек вынужден заплатить фиксированную пошлину в размере около 1000 рублей при регистрации номерного знака автомобиля. Данный вид налога является регрессивным, поскольку пошлина оставляет большую часть дохода для бедного человека, и меньшую часть дохода для богатого человека. Какой из данных видов налогов является более справедливым? Популярной является точка зрения, что прогрессивные налоги являются более справедливыми, а регрессивные менее справедливыми.
Всё очень просто. Богатые используют деньги в качестве инструмента обогащения.
У бедных же денег нет, и большинство из них тонут в болоте кредитов, из-за чего они становятся ещё беднее. Тут, конечно, нужен пример. Смотри, допустим есть 5 человек: Вася Пупкин капитал 20 рублей Иван Иванов капитал 2 000 рублей Средняк Средняков капитал 20 000 рублей Игорь Альфаинвестор капитал 2 000 000 рублей Вагит Алекперов капитал 200 000 000 000 рублей Прошёл год. Вася и Иван, не имея средств к существованию, перебивались мелкими подработками, мелкими кражами и потребительскими кредитами. В итоге, Вася должен банку 100 000 рублей, а Иван — 20 000 рублей. Средняк Средняков как работал, так и работает. Зарплату ему увеличили на сумму инфляции и теперь в конце месяца его капитал составляет 22 000 рублей.
Учитывая инфляцию, он остался на том же уровне благосостояния, в отличие от Васька и Ванька, влезших в кредиты. Игорь и Вагит инвестировали свои капиталы в акции и ETF. Оба получили хорошую доходность. Игорь получил больше в процентах на капитал. Из этого примера видно, насколько тяжело бедным не стать беднее, и насколько просто богатому стать богаче. Даже ничего не делая, получая мизерный процент на многомиллиардный капитал, ты всё равно за отрезок времени разбогатеешь на большую сумму, чем человек с миллионом, организовавший суперприбыльный бизнес, и работающий как белка в колесе. В данном примере есть ещё один показательный персонаж — Средняк Средняков.
Он олицетворяет собой человека, живущего от зарплаты до зарплаты. Он не становится беднее, но и богаче тоже не становится. Хотя он находится в той позиции, когда ему намного легче, чем Васе или Ивану начать инвестировать, двигаясь в сторону жизни, когда «деньги делают деньги, которые делают деньги, которые делают деньги, которые… и т.
Доверять Джини или нет: вот в чем вопрос
Пенза А.С. 8 (495) 568-00-42 (доб. 99729). ca_PenzaAS@ Коэффициент Джини (индекс концентрации доходов) по субъектам Российской Федерации. Коэффициент Джини, показатель, используемый в статистике для оценки степени концентрации изучаемого признака или неравномерности его распределения. Коэффициент Джини в стране важен, поскольку он помогает выявить высокий уровень неравенства доходов, которое может иметь ряд нежелательных политических и экономических последствий. В России коэффициент Джини в последние годы держится на уровне 0,41. About In the News Newsletter API. Коэффициент Джини в стране важен, поскольку он помогает выявить высокий уровень неравенства доходов, которое может иметь ряд нежелательных политических и экономических последствий.
Россия занимает 1-е место в мире по неравенству благосостояния
расскажем в подробностях про Коэффициент Джини — статистический показатель степени расслоения общества данной страны или. News turk | новости турции. Это список стран или зависимостей по показателям неравенства доходов, включая коэффициенты Джини. Распределенный за весь период существования России, как самостоятельного государства, коэффициент Джини выглядит следующим образом. Коэффициент Джини стран мира ежегодно с 1967 по 2020 годы в виде рейтинга и визуализации. About In the News Newsletter API.
Коэффициент Джини (индекс концентрации доходов)
The Gini coefficient measures inequality on a scale from 0 to 1. Higher values indicate higher inequality. Depending on the country and year, the data relates to income measured after taxes and benefits, or to consumption, per capita. Коэффициент Джини – статистический показатель, который используется для характеристики уровня экономического неравенства в стране. В России коэффициент Джини в последние годы держится на уровне 0,41. В РФ, по данным конца 2014 года, коэффициент Джини по доходам был равен 0,42, а по имуществу – 0,921, что свидетельствует о высоком уровне общественного неравенства. Показатель: Коэффициент Джини (распределение дохода), Категории: Демографические и социально-экономические показатели. Индекс Джини: коэффициент Джини выраженный в процентах (то есть коэффициент Джини умноженный на 100%).
Уровень жизни. Динамические ряды
Социальное неравенство: в чем выражается, как посчитать с помощью индекса Джини и кривой Лоренца | Коэффициент или индекс Джини позволяют оценить экономическое неравенство в конкретной стране или между государствами. |
Россия – чемпион мира по расслоению богатства населения | The average for 2020 based on 53 countries was 35.03 index points. The highest value was in Colombia: 53.5 index points and the lowest value was in Slovenia: 24 index points. The indicator is available from 1963 to 2022. Below is a chart for all countries where data are available. |
Росстат отметил рост доходного неравенства в России | Для измерения фактического распределения доходов используют «кривую Лоренца» и «коэффициент Джини», показывающие, какая доля совокупного дохода приходится на каждую группу населения, что позволяет судить об уровне экономического неравенства в данной стране. |
Quality of Life Index by Country 2024 | Однако коэффициент Джини позволяет выяснить уровень неравенства также и по накопленному богатству. |
Россия занимает 1-е место в мире по неравенству благосостояния — OfficeLife | В РФ, по данным конца 2014 года, коэффициент Джини по доходам был равен 0,42, а по имуществу – 0,921, что свидетельствует о высоком уровне общественного неравенства. |
Карта: Уровень экономического неравенства в мире
Коэффициент Джини, значение по странам мира и в России | Показатели коэффициента Джини в России за все время измерения (1991—2018). |
Список стран по показателям неравенства доходов | В РФ, по данным конца 2014 года, коэффициент Джини по доходам был равен 0,42, а по имуществу – 0,921, что свидетельствует о высоком уровне общественного неравенства. |
Список стран по равенству доходов | "В скандинавских странах, которые порой называют государствами "победившего рыночного социализма", Коэффициент Джини достаточно стабилен, и если и меняется, то крайне невысокими темпами. |
Минфин пообещал больше не повышать налоги на богатых | Коэффициент Джини снизился до 0,391 в 2014 году, и его текущее значение означает худший показатель с 2009 года, уточняет Turkish Minute. |
Коэффициент Джини | Для измерения фактического распределения доходов используют «кривую Лоренца» и «коэффициент Джини», показывающие, какая доля совокупного дохода приходится на каждую группу населения, что позволяет судить об уровне экономического неравенства в данной стране. |
Как измеряют социальное неравенство
Коэффициент Джини равен отношению площади фигуры, ограниченной прямой абсолютного равенства и кривой Лоренца, к площади всего треугольника под кривой Лоренца. Данные официальной статистики опери-руют также и другими характеристиками дифференциации доходов, среди которых – децильный коэффициент фондов и ин-декс Джини. всех стран мира представлены в таблицах по основным регионам мира а также флаги стран, изменения показателя на один период, дата и т.д. В РФ, по данным конца 2014 года, коэффициент Джини по доходам был равен 0,42, а по имуществу – 0,921, что свидетельствует о высоком уровне общественного неравенства. Высокий коэффициент Джини в Москве объясняется вполне понятными факторами, которые уже указывались ранее. Latest numbers for economic inequality, which is the difference in how assets, wealth, or income are distributed among individuals and/or populations. It is also described as the gap between rich and poor, income inequality, wealth disparity, wealth and income differences, or the wealth gap.
Индекс Джини по странам: коэффициент концентрации доходов
Показатель: Коэффициент Джини (распределение дохода), Категории: Демографические и социально-экономические показатели. В 2022 году был зафиксирован его минимум, а | Вступай в группу Новости РБК в Одноклассниках. В 2023 году в России коэффициент Джини, отражающий дифференциацию по доходам, составил 0,403 против 0,395 годом ранее, отчитался Росстат. В 2023 году в России коэффициент Джини, отражающий дифференциацию по доходам, составил 0,403 против 0,395 годом ранее, отчитался Росстат. Индекс Джини по странам: коэффициент концентрации доходов. В 2023 году в России коэффициент Джини, отражающий дифференциацию по доходам, составил 0,403 против 0,395 годом ранее, отчитался Росстат.