У России большой научный потенциал в области математики, программирования, физики и квантовой механики», – считает Семенников. Или построить новые методы долгосрочной защиты информации на основе квантовой и постквантовой криптографии, которые будут устойчивы к широкому классу атак, поскольку их надёжность сводится к фундаментальным законам физики. Новости компаний. Главным научным прорывом 2023 года в области квантовой физики стала разработка и проверка работы сразу нескольких квантовых компьютеров, способных автоматически корректировать случайные ошибки, возникающие в процессе их работы. Новости квантовой физики. 14 августа 2023 года. Главные Заголовки. Массивы квантовых стержней могли бы улучшить телевизоры или устройства виртуальной реальности.
Квантовая механика
Принципы квантовой физики, ставящие в тупик ученых: парадоксальная физика и ее главные загадки. Показав, что квантово-механические объекты, которые находятся далеко друг от друга, могут быть гораздо сильнее коррелированы друг с другом, чем это возможно в обычных системах, исследователи предоставили дополнительное подтверждение квантовой механике. Или построить новые методы долгосрочной защиты информации на основе квантовой и постквантовой криптографии, которые будут устойчивы к широкому классу атак, поскольку их надёжность сводится к фундаментальным законам физики. свежие новости дня в Москве, России и мире. Последние новости на сегодня. Физик признал некорректным сравнение квантовой запутанности с парой носков. Последние новости на сегодня. Физик признал некорректным сравнение квантовой запутанности с парой носков.
Прорыв уровня Эйнштейна? Создана теория, которая может объяснить весь мир
Эксперименты, которые доказали нарушение неравенств Белла, первым провел американец Клаузер. Заслуга француза Аспе состоит в том, что ему удалось доказать, что неравенства действительно не выполняются. Австриец Цайлингер смог экспериментально показать возможность квантовой телепортации, то есть изменение квантового состояния частицы из запутанной пары при изменении состояния другой, которая находится далеко от нее. Запутанные частицы влияют на состояние друг друга, даже если между ними больше тысячи километров. В 2021 году Нобелевской премией по физике были награждены Джорджио Паризи за открытие взаимодействия между беспорядком и флуктуациями в физических системах, а также Клаус Хассельман и Сюкуро Манабе за физическое моделирование климата Земли. В 2019 и 2020 годах Нобелевскую премию присуждали за работы, так или иначе связанные с космосом.
Слова «квантовая гравитация», возможно, ничего вам не говорят, но — терпение, всего через несколько десятков строк и несколько минут вы во всем разберетесь. И они противоречат друг другу. Ученые и инженеры просто применяют ту физику, которая им кажется уместной в данном случае. И всех это, конечно, тяготит, но — как быть-то, выхода не просматривается. Эти две физики — теория относительности и квантовая механика. Они появились практически одновременно, в начале ХХ века.
Благодаря Альберту Эйнштейну у нас есть такая вещь, как спутниковая навигация да, ее работа основана на теории относительности , благодаря квантовой механике у нее много «отцов» я сейчас пишу эти строки на компьютере, а вы читаете их на экране своего смартфона. Вся электроника — это чистейшая квантовая механика. Которую Эйнштейн не принял. И имел право: это две разные физики. Теория относительности воспринимает мироздание как море тягучего киселя. Солнце, Луна, мы с вами плаваем в этом киселе и создаем волны.
Кисель искривляется, а мы и не замечаем, потому что погружены в него. Эта вязкая жижа — пространство-время. Ученые поставили тысячи экспериментов, и все они подтвердили правоту Эйнштейна. Другие ученые выдвинули тысячи гипотез, чтобы Эйнштейна опровергнуть, и пока ни у кого не получилось. Квантовая механика — это как будто вы идете сквозь песчаный ураган. В лицо вам бьют песчинки.
Нет никакого киселя, вообще ничего вязкого и непрерывного. Есть сикстиллионы частиц, про которые мы ничего не знаем и принципиально а не потому, что у нас плохие приборы никогда не узнаем. В этом мире все странно. Можно общаться быстрее скорости света. Путешествовать во времени. Телепатировать и телепортировать.
Возможно вообще все. Сотни опытов подтвердили, что все так и есть.
В последнем случае использовались магнитные кластеры из атомов железа на кончике иглы микроскопа. В спектре туннельного тока были обнаружены признаки сразу нескольких спинаронных состояний, а зависимость от магнитного поля оказалась противоположной той, которая была бы в случае эффекта Кондо. Возможно, что и многие другие явления, ранее интерпретировавшиеся на основе эффекта Кондо, на самом деле объясняются спинаронами. Спинароны могут найти полезные применения в наноэлектронике.
Nature Physics, онлайн-публикация от 26 октября 2023 г. Оптический эффект Штарка в паре квантово запутанных фотонов 1 декабря 2023 Генерация пар фотонов в запутанном квантовом состоянии важна для применения в устройствах квантовой инофрмации. В квантовых точках запутанные по поляризации фотоны рождаются в процессе двухфотонного резонансного возбуждения в биэкситонно-экситонном каскаде, однако эффективность этого метода остается пока ниже, чем в методе параметрической вниз-конверсии. Basso Basset Римский университет Сапиенца, Италия и соавторы исследовали влияние индуцированного лазером эффекта Штарка на спектры излучения квантовых точек и на квантовую запутанность излучаемых фотонных пар [3]. Квантовая точка в GaAs облучалась фемтосекундными лазерными импульсами. Оказалось, что эффективность запутывания зависит от соотношения длительности лазерного импульса и времени жизни верхнего возбужденного состояния точки, ответственного за генерацию каскада.
В новом эксперименте длительность импульса была доведена до времени жизни указанного уровня, и была показана перспективность использования фотонных пар от квантовых точек на частотах выше ГГц, хотя пока остается широкое поле для дальнейших исследований и усовершенствований. Sreekanth Институт материаловедения и инжиниринга IMRE , Сингапур и соавторы продемонстрировали в своём эксперименте новый спектрограф для резонансной рамановской спектроскопии с поверхностным усилением в участке ближнего ИК-спектра [4].
Команда BNL изучала ионы золота, движущиеся почти со скоростью света. Их окружали облака фотонов, и когда они пролетали мимо рядом, фотоны взаимодействовали с глюонами, другим типом частиц, которые скрепляют атомные ядра. В результате такого взаимодействия образовались две новых частицы — пионы — с противоположными зарядами. Детектор RHIC смог измерить некоторые из их свойств: скорость и угол встречи, из которых позже ученые с беспрецедентной точностью вывели размер, форму и расположение глюонов в ядре атомов.
В прошлом физики уже пытались рассмотреть ядра атомов во всех подробностях, но результаты всегда были туманные. В этих экспериментах ядра выглядели больше, чем по расчетам, и это годами ставило ученых в тупик. Однако теперь загадка решена — команда BNL обнаружила эффект, который отвечает за странное поведение глюонов в ядрах.
Ключевую теорию квантовой физики наконец-то доказали. Главное
Главная» Новости» Квантовая физика новости. Лауреатами Нобелевской премии по физике 2022 года стали Ален Аспе, Джон Клаузер и Антон Цайлингер — за работы в области квантовой информации и квантовой запутанности. Лауреатами Нобелевской премии по физике 2022 года стали Ален Аспе, Джон Клаузер и Антон Цайлингер — за работы в области квантовой информации и квантовой запутанности. Квантовый – последние новости. В 1964 году физик Джон Белл придумал, как различить в эксперименте две версии квантовой механики — ортодоксальную и со скрытыми параметрами. В 1990–2013 годах занимался экспериментальной физикой в университете Инсбрука и Венском университете. В 2004–2013 годах возглавлял Институт квантовой оптики и квантовой информации (IQOQI) Австрийской академии наук.
Физика: 10 научных прорывов 2023 года со всего мира
Представьте, что отпраздновать Всемирный день квантовой науки собрались все великие ученые, которые приложили руку к созданию квантовой физики. Новости науки и техники/. В журнале «The Journal of chemical physics» опубликована статья «Magnetic dipole and quadrupole transitions in the ν2 + ν3 vibrational band of carbon dioxide» резидента Института квантовой физики Чистикова Д.Н. Физики из Китая, например, создали квантовый компьютер, работающий на фотонах, и за 200 секунд он провел бозонную выборку — это мегасложное вычисление, на которое могло уйти полмиллиарда лет работы самого быстрого суперкомпьютера. Новости науки» Tag» Квантовая механика. В частности, в квантовой физике постулируется, что квантовые законы реализуются на сверхмалых расстояниях и в мире сверхмалых частиц.
«ФИЗИКА ПОЛУПРОВОДНИКОВ БУДЕТ НУЖНА ВСЕГДА»
В работах приняли участие немецкие ученые из Технического университета Кайзерслаутерна-Ландау и Штутгартского университета. Предложенная концепция для получения энергии использует принципы квантовой механики вместо традиционного воспламенения топлива — как происходит, например, в двигателе внутреннего сгорания. Авторы проекта предложили задействовать охлажденные фермионы и бозоны в качестве основы для «квантовых двигателей», способных преобразовать энергию этих частиц в механическую работу. Схема работы двигателя Дело в том, что при температурах, близких к абсолютному нолю, бозоны имеют более низкое энергетическое состояние, чем фермионы, и эту разницу энергий можно использовать для питания двигателя. В частности, циклическое превращение фермионов в бозоны и обратно дает возможность извлекать энергию для питания квантового аналога механического двигателя.
И хотя физики давно догадывались об их существовании, статус реальных космических обитателей черные дыры получили несколько лет назад. Открытие гравитационных волн в 2017 году и первый снимок черной дыры 2019 год ознаменовали собой новую эру космических исследований — в самом ближайшем будущем мы узнаем много нового о Вселенной и существующих на ее просторах объектах.
Так, недавно в журнале Physical Review Letters вышла статья, авторы которой утверждают что эти космические монстры обладают уникальными и причудливыми квантовыми свойствами.
В частности, циклическое превращение фермионов в бозоны и обратно дает возможность извлекать энергию для питания квантового аналога механического двигателя. Чтобы превратить фермионы в бозоны, можно взять два фермиона и объединить их в единую систему.
Эта новая система — бозон. Его разрушение позволит нам снова получить фермионы. Делая это циклически, мы можем привести двигатель в действие без использования тепла, — объясняет профессор Томас Буш Thomas Busch , руководитель подразделения квантовых систем OIST.
Ранее для отдельных атомов Co и Ce на плоских металлических поверхностях наблюдались интересные спектроскопические аномалии туннельного тока при нулевом потенциале смещения. Хотя для атомов Ce было найдено объяснение таких аномалий как колебательных возбуждений атомов водорода, прикрепляющихся к атомам Ce, для Co это объяснение оказалось неприменимо. В случае атомов Co аномалии интерпретировались как эффект Кондо коллективное экранирование спинов примесей электронами проводимости и резонанс Фано. Новые теоретические вычисления методом функционала плотности и эксперимент F. Friedrich и др.
Атомы Co были помещены на поверхность меди при температуре 1,4 К и магнитном поле до 12 Т, и измерялся текущий через них туннельный ток как со спиновым усреднением, так и с поляризацией. В последнем случае использовались магнитные кластеры из атомов железа на кончике иглы микроскопа. В спектре туннельного тока были обнаружены признаки сразу нескольких спинаронных состояний, а зависимость от магнитного поля оказалась противоположной той, которая была бы в случае эффекта Кондо. Возможно, что и многие другие явления, ранее интерпретировавшиеся на основе эффекта Кондо, на самом деле объясняются спинаронами. Спинароны могут найти полезные применения в наноэлектронике.
Nature Physics, онлайн-публикация от 26 октября 2023 г. Оптический эффект Штарка в паре квантово запутанных фотонов 1 декабря 2023 Генерация пар фотонов в запутанном квантовом состоянии важна для применения в устройствах квантовой инофрмации.
Экспериментаторы надеются зафиксировать колебания массы атомов
Алексей Фёдоров, руководитель научной группы «Квантовые информационные технологии» Российского квантового центра: «Мы хотим добиться решения самых сложных прикладных задач, которые важны для каждого из нас с вами, которые непосильны для классических суперкомпьютеров. Уже сегодня на масштабе города решить все оптимизационные задачи, например, связанные с оптимизацией пробок, трафика до оптимального расписания общественного транспорта. Мы банально будем меньше тратить времени на какие-то вещи, быстрее добираться до работы». Что же предлагают создатели компьютеров будущего? В привычном для нас процессоре информация представлена в виде последовательности нулей и единиц, так называемых битов. Физически это контакты транзисторов. Так называемом кубите. Это значит, что он может быть немножечко 0, но в основном единицей.
В основном 1 и немножечко 0. Это дает нам большие возможности, мы можем закодировать больше информации в меньшем объеме». В качестве примера можно привести человека.
Источник света был расположен в центре экспериментальной установки, смонтированной на оптической скамье. Фотоны направлялись в противоположные концы скамьи и там проходили через пары поляризаторов, ориентированных под разными углами по отношению друг к другу. Эксперимент Клаузера и Фридмана в общей сложности продолжался 200 часов и в целом подтвердил нарушение неравенства Белла, которое они переписали применительно к своему протоколу.
Однако соавторы не смогли исключить все потенциальные источники «загрязнения» собранных данных паразитной информацией. Конкретно, их протокол не гарантировал, что наблюдатели на обоих концах скамьи устанавливают поляризаторы полностью независимо друг от друга. Поскольку предположение о такой независимости было важной частью теоремы Белла, итоги эксперимента Клаузера и Фридмана нельзя было считать окончательными. В середине 1970-х годов Клаузер продолжил изучение квантовой нелокальности, включая поиск обобщений теоремы Белла. Следующий шаг в 1981—82 годах сделали 35-летний аспирант Парижского университета Ален Аспе и трое его партнеров. Их экспериментальная установка с лазерной оптикой генерировала спутанные фотоны куда эффективнее и намного быстрее, нежели аппаратура предшественников.
Кроме того, она была снабжена высокочастотными оптико-акустическими переключателями, которые позволяли каждые 10 наносекунд перенаправлять фотоны в различные поляризаторы и детекторы. В итоге Аспе и его партнерам удалось доказать нарушение неравенства Белла куда надежней, чем предшественникам. Конкретно, в их версии этого неравенства постулаты квантовой механики могли бы быть поставлены под сомнение, если бы значения функции S лежали в промежутке от нуля до минус единицы. Она не противоречила ожидаемому из квантовомеханических вычислений численному значению функции S, равному 0,112. Если бы их результат был выражен в терминах стандартной версии теоремы Белла, значение функции S составило бы приблизительно 2,7 — явное нарушение белловского неравенства. Результаты этого эксперимента были опубликованы 40 лет назад A.
Aspect et al. Схема установки, предложенной Аспе и его коллегами. В 1982 году с ее помощью они показали нарушение неравенств Белла. Спутанные фотоны излучаются кальциевым источником L в противоположных направлениях. Расстояние между поляризаторами составляет примерно 12 м. Рисунок из статьи A.
Они показали, что спутанные частицы не просто реальны, но и ощущают присутствие друг друга на вполне приличных расстояниях в экспериментах парижских физиков дистанция между поляризаторами составляла 12 метров. Однако окончательно мощь неравенства Белла была продемонстрирована в самом конце прошлого столетия с участием еще одного нобелевского лауреата этого года Антона Цайлингера. Он и члены его группы продемонстрировали нарушение этого неравенства на дистанции 400 метров, причем для обеспечения полной стохастичности они применили квантовые генераторы случайных чисел G. Weihs et al. Правда, даже им всё же не удалось окончательно разделаться с подводными камнями, возникавшими при тестировании квантовой нелокальности. Контрольные эксперименты этого рода с другими протоколами еще не раз ставились и в нашем столетии, причем опять-таки не без участия Цайлингера.
Работа Аспе сильно подхлестнула и теоретические, и экспериментальные исследования всё более сложных спутанных состояний. В конце 80-х годов американцы Дэниэл Гринбергер Daniel Greenberger и Майкл Хорн Michael Horne вместе c Антоном Цайлингером и при участии Абнера Шимони Abner Shimony теоретически показали, что опыты с тройками спутанных частиц демонстрируют особенности КС много лучше, чем «парные» эксперименты это так называемая квантовая нелокальность Гринбергера — Хорна — Цайлингера, см. Greenberger—Horne—Zeilinger state. Подтверждение этому пришло лишь в 1999 году, когда в лаборатории Цайлингера в Венском университете впервые создали спутанные триады, опять-таки фотонные J. Pan et al. Experimental test of quantum nonlocality in three-photon GHZ entanglement.
С тех пор число спутанных в лаборатории частиц стало быстро расти. Например, в конце 2005 года физики из американского Национального института стандартов и технологий изготовили шестерку спутанных ионов бериллия. А уже в январе 2006 года немецкие ученые сообщили, что им впервые удалось «спутать» атом с фотоном. Но это уже другая история. Исследования Цайлингера также стали важным этапом на пути разработки методов, позволяющих переносить состояние одной квантовой частицы на другую — так называемой квантовой телепортации. Один из самых первых экспериментов этого рода он вместе с коллегами осуществил еще до своей новаторской проверки нарушения неравенства Белла D.
Bouwmeester et al. Experimental Quantum Teleportation. Используя квантовую спутанность частиц, такие операции можно производить практически с нулевой вероятностью ошибок. Эти методы нашли применение в разработке протоколов квантовой криптографии. Цайлингер также приложил руку как к созданию теоретической концепции так называемого обмена спутанностью entanglement swapping , M. Zukowski et al.
Event-ready detectors: Bell experiment via entanglement swapping , так и к ее первой экспериментальной реализации J. Experimental entanglement swapping: entangling photons that never interacted. Схема эксперимента, реализующего обмен спутанностью. В начальном состоянии квантовая система состоит из четверки фотонов, которые приготовляются в виде двух спутанных пар. Оптическая система белловского типа включает четыре канала, в каждый из которых поступает один фотон. Фотоны первой пары идут в каналы 1 и 2, второй — в каналы 3 и 4.
Одновременное измерение производится над фотонами, вошедшими в каналы 2 и 3, в результате чего фотон из второго канала телепортируется в четвертый. В результате эксперимента фотоны в каналах 1 и 4 образуют спутанную пару, хотя физически они друг с другом никак не взаимодействовали. Такой исход эксперимента полностью противоречит интуиции, основанной на нашем обитании в мире классической физики, однако он совершенно реален. Рисунок из пресс-релиза Нобелевского комитета, с сайта nobelprize. Кому это нужно? Исследование феномена КС имеет множество практических выходов.
Система спутанных частиц, как бы сильно она ни была размазана по пространству, — это всегда единое целое. Поэтому такие системы — буквально золотое дно для информатики. Правда, они не позволяют передавать сигналы со сверхсветовой скоростью, этот запрет специальной теории относительности остается нерушимым. Однако с их помощью можно, как я уже отмечал, копировать состояние квантовых объектов даже на километровых расстояниях и осуществлять передачу сообщений, полностью защищенных от перехвата это так называемая квантовая криптография. Феномен спутанности открывает путь и к созданию квантовых компьютеров. Квантовый компьютер может одновременно оперировать огромным количеством чисел, недоступным для любого классического вычислительного устройства.
И это свойство связано как раз с тем, что он использует спутанные состояния. Каждая элементарная ячейка классического компьютера существует сама по себе, причем лишь в одном из двух логических состояний, которые кодируют нуль и единицу. А в квантовом компьютере состояние ячейки является суперпозицией, смесью двух базисных состояний, нуля и единицы. Такой ячейкой, так называемым кубитом , может быть любая квантовая система с двумя возможными состояниями, скажем электрон с его двумя спиновыми ориентациями. Кубиты можно по-разному связать друг с другом, создав тем самым множество спутанных состояний. Для связанной системы из двух кубитов имеются уже четыре возможных состояния, из трех — восемь, из четырех — шестнадцать, и так далее.
Так что с ростом числа кубитов число состояний компьютера увеличивается по экспоненте. Поэтому квантовый компьютер в принципе позволяет в реальном времени решать задачи, для которых самому мощному классическому компьютеру понадобились бы зиллионы лет. И дело здесь не в какой-то особой логике, а просто в скорости вычислений. Надо подчеркнуть, что спутанные состояния чрезвычайно деликатны, физики-экспериментаторы столкнулись с этим давно.
И он получился. Гипотеза была изложена в докладе под названием "К теории распределения энергии излучения в нормальном спектре", который Макс Планк зачитал в Берлине на заседании Немецкого физического общества 14 декабря 1900 года. Он считал, что совершает "отчаянный шаг", потому что на тот момент подняться на подобную трибуну с выступлением о неких "шариках-квантах" было действительно, мягко говоря, смело. Среди слушателей в аудитории был человек, для которого этот доклад станет одним из важнейших событий в жизни. Альберт Эйнштейн. Эйнштейну понадобилось пять лет, чтобы соотнести эти чисто теоретические кванты с тем фактом, что падающий на какую-то поверхность свет выбивает из неё электроны, и притом скорость их вылетания абсолютно не зависит от интенсивности света, а зависит только от частоты.
Это называется фотоэффектом. Фото 1931 года. А вот стоит их потревожить и сместить с комфортной позиции, как они немедленно начинают что-то поглощать или излучать. Это и есть очень вкратце суть теории атома Бора. А потом в 1924 году француз Луи де Бройль довёл науку до заключения, которое, честно говоря, до сих пор воспринимается как нечто либо волшебное, либо просто-напросто жуткое а может быть, и то и другое : что не только электрон или фотон, но и вообще ЛЮБАЯ ЧАСТИЦА одновременно является волной. То есть словосочетание "корпускулярно-волновой дуализм" само по себе несколько холодит душу, но, если попытаться вдуматься в его смысл, становится ещё хуже. И ещё через три года этому последовало вящее доказательство.
Мы ежегодно проводим школу в Сочи по квантовым технологиям, и в прошлом году он там выступал. Мы много лет работаем совместно», — отметил Кулик. Квантовая коммуникация в России очень серьезно развита. Некоторые компании уже производят для нее технологическое оборудование. Одним словом, квантовая связь в России есть и она работает. Квантовому компьютеру можно задать несколько арифметических задач одновременно, он будет решать их параллельно, а не последовательно.
Сообщить об ошибке
- Новости квантовой физики
- Все материалы
- Квантовая физика • AB-NEWS
- Квантовая физика — узнай главное на ПостНауке
Новости квантовой физики
Армия России захватила опорный пункт ВСУ: новости СВО на вечер 16 декабря. Читайте последние новости на тему в ленте новостей на сайте РИА Новости. В стране полным ходом прокладывают сети квантовой связи. В данном обзоре новостей представлены последние открытия в физике и астрофизике. Физики из МФТИ совместно с коллегами из Франции экспериментально показали, что атомы примесей в полупроводниках могут формировать долгоживущие устойчивые квантовые состояния. Новости, анонсы, рекомендации. Бытовая техника. квантовая физика. 24.10.2019. Квантовая физика называется разделом теоретической физики, в котором изучаются квантово-механические и квантово-силовые системы, взаимодействия и законы их движения.
«ФИЗИКА ПОЛУПРОВОДНИКОВ БУДЕТ НУЖНА ВСЕГДА»
Новости. Фото дня. В этом видео представлена инновационная разработка в области эволюционной науки, которая предлагает новый взгляд на природу нашей Вселенной. Эта гипотеза нав. Физики создали «червоточину» внутри квантового компьютера. IBM представила самый мощный в мире квантовый компьютер.
Будущее квантовых компьютеров: перспективы и риски
По данным QuantumCTek, чип Xiaohong используется для проверки килокубитной системы, уже разработанной компанией независимо. Международная гонка кубитов Доцент CAS Лян Футянь Liang Futian сказал, что ключевые показатели чипа Xiaohong, как ожидается, достигнут уровня производительности чипов основных международных облачных платформ квантовых вычислений, таких как IBM. IBM заявила о выпуске чипа на тысячу кубитов в декабре 2023 г. Журнал Nature назвал его первым в мире. В январе 2024 г. Ранее D-Wave заявляла также о важных результатах исследований, демонстрирующих успешное устранение квантовых ошибок QEM в прототипе Advantage2.
Использовался перестраиваемый брэгговский отражатель из чередующихся слоёв стибнита Sb2S3, вносящего малые фазовые потери, и слоёв SiO2, а также тонкой металлической плёнки. На ней генерировались таммовские плазмоны с длинами волн 738-1504 нм. Непрерывная перестройка по частоте осуществлялась путём изменения структуры слоёв Sb2S3 от аморфных до кристаллических при электрическом нагреве. Лазерное излучение фокусировалось на образец с помощью линзы, и через ту же линзу наблюдался отклик рамановского рассеяния. Эксперимент показал перспективность данного устройстава как масштабируемой биосенсорной платформы для различных применений в клинической диагностике. В частности, устройство может регистрировать молекулы хромофора на волне 385 нм, и его работа была продемонтрирована для регистрации одного из белков-биомаркеров, важных для кардиологии. Nature Communications 14 7085 2023 Сверхмассивные чёрные дыры в ранней Вселенной 1 декабря 2023 Гравитационное поле массивных объектов, находящихся на луче зрения, фокусирует свет подобно линзе, и данный эффект помогает наблюдать небольшие галактики на значительном расстоянии. ЧД звёздного происхождения не успели бы нарастить свою массу до указанной величины, а модели с прямым гравитационным коллапсом массивного газового облака пока не исключены, но также сталкиваются с проблемой нехватки динамического времени. Зельдовичем и И. Новиковым в 1966 г [6] и обсуждавшиеся позднее в работе С. Хокинга [7]. Nature Astronomy, онлайн-публикация от 6 ноября 2023 г.
Чтобы обосновать это, авторы теоретически рассмотрели задачу, в которой две стороны условно именуемые Алиса и Боб имеют доступ к двум подсистемам каждый — к своей подсистеме запутанного квантового состояния и обладают большим числом идентичных копий этого состояния. При этом Алиса и Боб стремятся преобразовать исходный набор состояний в набор из как можно большего числа копий заранее оговоренного конечного состояния вообще говоря, с погрешностью — отклонением реально получившихся конечных состояний от оговоренного образца, но с условием, чтобы в пределе бесконечного числа исходных состояний реально получившиеся конечные состояния не отличались от желаемых. Кроме того, исследователи потребовали, чтобы при преобразованиях в системе не генерировалась новая запутанность вдобавок к уже имеющейся по аналогии с тем, как в адиабатических переходах в термодинамике в систему извне не поступает теплота — для этого они рассмотрели только такие операторы преобразований, которые копии исходных сепарабельных то есть не запутанных, состоящих из двух полностью независимых подсистем состояний превращают только в другие сепарабельные. В качестве меры качества преобразования копий исходного состояния в копии желаемого ученые, следуя предыдущим работам, ввели коэффициент трансформации — отношение количества полученных асимптотически идеальных копий желаемого состояния к количеству исходных копий в пределе бесконечно большого числа исходных копий. Критерий обратимости преобразования начального состояния в конечное, таким образом, сводится к тому, что произведение коэффициентов трансформации прямого и обратного преобразования равно единице. Более того, оказалось, что для этой пары состояний обратимость нарушается, даже если рассматривать более широкий класс операций — разрешить операторам преобразовывать исходно не запутанные состояния в ограниченно запутанные так, чтобы с ростом числа копий исходных систем мера запутанности набора конечных состояний росла не быстрее, чем экспоненциально.
Противоречит ли Кант Эйнштейну, а квантовая теория — теории относительности? Что такое пространство и время? На эти и многие другие вопросы постарались ответить в ходе научной сессии «Фундаментальная важность Канта для физики XXI века» на Международном Кантовском конгрессе в Калининграде. Канта» С одноименным докладом выступил доктор Эккарт Штайн из Германии. Он отметил, что философия великого мыслителя не играла большой роли в физике XX века. Более того, существовало противопоставление постулатов Эйнштейна и Канта. Многие ученые утверждают, что взгляды знаменитого физика вместе с копенгагенской квантовой теорией фактически отменили труды философа. В чем суть научного противостояния? Эйнштейн говорил, что такие понятия, как правда и красота, независимы от человека и существуют как бы отдельно от него. В то же время мы можем осознать лишь то, что видим. Это коррелирует с теорией относительности.