Водородные и атомные бомбы относятся к атомной энергетике. Водородные и атомные бомбы относятся к атомной энергетике.
Принцип работы
- Немного о терминологии и принципах работы в картинках
- Водородная бомба и ядерная бомба отличия
- Термоядерный заряд. Отличие водородной бомбы от атомной: список различий, история создания
- Чем водородная бомба отличается от атомной?
- Самая мощная бомба в мире. Какая бомба сильнее: вакуумная или термоядерная?
Мощнейшее смертоносное оружие: как устроена водородная бомба и чем она отличается от атомной
Атомная, водородная, термоядерная и нейтронная бомбы — в чем фактическая разница между этими видами ядерного оружия? Советский термоядерный проект стартовал позже – в 1949 г., когда готовилось первое испытание обычной ядерной бомбы. Действие водородной бомбы основано на использовании энергии, выделяющейся при реакции термоядерного синтеза лёгких ядер.
Водородная против атомной. Что нужно знать о ядерном оружии
Использование водородной бомбы или ядерного оружия имеет катастрофические последствия для окружающей среды, живых организмов и социально-экономической сферы. Эти типы оружия обладают огромной разрушительной силой и способны нанести смертельный ущерб на огромные территории. Разрушение и радиация Одно из основных последствий использования водородной бомбы или ядерного оружия — это мгновенное разрушение инфраструктуры. Взрыв такой мощной бомбы вызывает волну ударной силы, способную снести здания и инфраструктуру на большом расстоянии от центра взрыва. Пожары, вызванные взрывом, также вносят свой вклад в разрушение городов и населенных пунктов. Однако, самое опасное последствие использования ядерного оружия — это радиация.
Взрыв ядерного устройства вызывает высвобождение огромного количества радиоактивных частиц. Эти частицы могут загрязнить почву, воду и воздух, что приводит к длительному облучению окружающей среды и людей. Человеческие потери и гуманитарные последствия Использование водородной бомбы и ядерного оружия ведет к огромному количеству человеческих потерь. Взрывы этих бомб вызывают множество смертей и травмированных людей. Помимо того, что многие люди погибают от взрыва и радиации, они также могут столкнуться с долгосрочными заболеваниями и мутациями на генетическом уровне.
Гуманитарные последствия такого использования оружия также включают эвакуацию и вынужденное перемещение населения, разрушение медицинских и экологических систем, а также потерю доступа к пище и воде. Все это приводит к глубокому гуманитарному кризису и длительному восстановлению после конфликта. Последствия использования водородной бомбы и ядерного оружия Разрушение инфраструктуры Разрушение городов и населенных пунктов Высвобождение радиоактивных частиц и загрязнение окружающей среды Человеческие потери и травмированные люди Долгосрочные заболевания и мутации на генетическом уровне Эвакуация и вынужденное перемещение населения Разрушение медицинских и экологических систем Потеря доступа к пище и воде Гуманитарный кризис и длительное восстановление Международные соглашения и договоры, регулирующие распространение и применение водородной бомбы и ядерного оружия Развитие ядерного оружия и его потенциальная опасность привели к необходимости создания международных соглашений и договоров, направленных на регулирование распространения и применения ядерного оружия, включая водородные бомбы. Наиболее важные из этих международных документов включают в себя следующие: Договор о нераспространении ядерного оружия НДЯО Договор о нераспространении ядерного оружия был подписан в 1968 году и вступил в силу в 1970 году. Основной целью данного договора является предотвращение распространения ядерного оружия и стимулирование ядерного разоружения.
Договор содержит обязательства для государств-участников в отношении нераспространения ядерного оружия, применения ядерной энергии только в мирных целях и содействия ядерному разоружению. Договор об общем запрещении ядерных испытаний ДОЗЯИ Договор об общем запрещении ядерных испытаний был подписан в 1996 году, но до сих пор не вступил в силу. Он предусматривает полный запрет на ядерные испытания, включая взрывы ядерных бомб, в любых условиях. Данный договор направлен на предотвращение развития новых видов ядерного оружия и принципиального ограничения его распространения.
Плутониевое ядерное устройство, установленное на стальной башне, было успешно взорвано 16 июля 1945. Энергия взрыва приблизительно соответствовала 20 кт тротила. При взрыве образовалось грибовидное облако, башня обратилась в пар, а характерный для пустыни грунт под ней расплавился, превратившись в сильно радиоактивное стеклообразное вещество. Через 16 лет после взрыва уровень радиоактивности в этом месте все еще был выше нормы. Информация об удачном опытном взрыве сохранялась в тайне от общественности, но была передана президенту Г. Трумэну , который в то время находился в Потсдаме на переговорах о послевоенном устройстве Германии. Проинформированы были также У. Черчилль и И. Чтобы обойтись без вторжения и избежать связанных с ним потерь — сотен тысяч жизней военнослужащих союзных войск, — 26 июля 1945 президент Трумэн из Потсдама предъявил ультиматум Японии: либо безоговорочная капитуляция, либо «быстрое и полное уничтожение». Японское правительство не ответило на ультиматум, и президент отдал приказ сбросить атомные бомбы. Большой город состоял в основном из легких деревянных построек, но в нем было много и железобетонных зданий. Бомба, взорвавшаяся на высоте 560 м, опустошила зону площадью ок. Были разрушены практически все деревянные строения и многие даже самые прочные дома. Пожары нанесли городу непоправимый ущерб. Было убито и ранено 140 тыс. Японское правительство и после этого не сделало недвусмысленного заявления о капитуляции, и поэтому 9 августа была сброшена вторая бомба — на этот раз на Нагасаки. Людские потери, хотя и не такие, как в Хиросиме, были тем не менее огромны. Вторая бомба убедила японцев в невозможности сопротивления, и император Хирохито предпринял шаги в направлении капитуляции Японии. В октябре 1945 президент Трумэн законодательным порядком передал ядерные исследования под гражданский контроль. Законопроектом, принятым в августе 1946, была учреждена комиссия по атомной энергии из пяти членов, назначаемых президентом США. Эта комиссия прекратила свою деятельность 11 октября 1974, когда президент Дж. Форд создал комиссию по ядерной регламентации и управление по энергетическим исследованиям и разработкам, причем на последнее возлагалась ответственность за дальнейшие разработки ядерного оружия. В 1977 было создано министерство энергетики США, которое должно было контролировать научные исследования и разработки в области ядерного оружия. В 1970, когда был заключен договор о нераспространении ядерного оружия, МАГАТЭ взяло на себя дополнительную важную функцию — контролировать выполнение названного договора его участниками, не входящими в число ядерных держав. Примерно треть ресурсов МАГАТЭ идет на деятельность, связанную с таким контролем, а другие две трети — на помощь и кооперацию в разработках и обеспечении безопасности энергетики, а также на другие мирные ядерные программы. В 1958 было создано Европейское сообщество по атомной энергии Евратом , тоже для контроля за применением ядерной энергии в мирных целях. Бомба, взорванная над Хиросимой, была изготовлена из урана-235, а по конструкции относилась к т. В бомбах такого типа делящийся материал состоит из двух частей, расположенных в противоположных концах орудийного ствола. Масса каждой из этих двух половин — докритическая.
Такая бомба предлагалась для превращения территорий в недоступные например, на советско-корейской границе во время войны в Корее , но ни использована, ни даже испытана на полигоне она не была. Нейтронная бомба - это маломощная термоядерная бомба с увеличенным нейтронным выходом по некоторым сведениям - на дейтерии и тритии, а не на дейтриде лития и без плутониевого стержня. При обычном атомном взрыве этой же мощности аналогичное расстояние будет равняться 360 м. Опасный для жизни уровень в 600 рад достигается на дистанции 1100 м и 700 м соответственно для бронированных целей и 1350 и 900 м для незащищенных людей. Впрочем, достаточно быстро была создана защищающая от нейтронов броня.
Меньше чем за секунду сотни миллиардов новообразованных распадов не только освобождают огромное количество энергии, но и становятся источниками сильнейшей радиации. Этот радиоактивный дождь покрывает толстым слоем землю, поля, растения и все живое. Если говорить о бедствиях в Хиросиме, то можно заметить, что 1 грамм взрывчатого вещества стал причиной гибели 200 тысяч человек. Принцип работы и преимущества вакуумной бомбы Считается, что вакуумная бомба, созданная по новейшим технологиям, может конкурировать с ядерной. Дело в том, что вместо тротила здесь используется газовое вещество, которое мощнее в несколько десятков раз. Авиационная бомба повышенной мощности - самая мощная вакуумная бомба в мире, которая не относится к ядерному оружию. Она может уничтожить противника, но при этом не пострадают дома и техника, а продуктов распада не будет. Каков принцип ее работы? Сразу после сбрасывания с бомбардировщика срабатывает детонатор на некотором расстоянии от земли. Корпус разрушается и распыляется огромнейшее облако. При смешивании с кислородом оно начинает проникать куда угодно - в дома, бункеры, убежища. Выгорание кислорода образует везде вакуум. При сбрасывании этой бомбы получается сверхзвуковая волна и образуется очень высокая температура. Отличие вакуумной бомбы американской от российской Различия состоят в том, что последняя может уничтожать противника, находящегося даже в бункере, при помощи соответствующей боеголовки. Во время взрыва в воздухе боеголовка падает и сильно ударяется об землю, зарываясь на глубину до 30 метров. После взрыва образуется облако, которое, увеличиваясь в размерах, может проникать в убежища и уже там взрываться. Американские же боеголовки начиняются обыкновенным тротилом, поэтому разрушают здания. Вакуумная бомба уничтожает определенный объект, так как обладает меньшим радиусом. Неважно, какая бомба самая мощная - любая из них наносит не сопоставимый ни с чем разрушительный удар, поражающий все живое. Водородная бомба Водородная бомба - еще одно страшное ядерное оружие. Соединение урана и плутония порождает не только энергию, но и температуру, которая повышается до миллиона градусов. Изотопы водорода соединяются в гелиевые ядра, что создает источник колоссальной энергии.
Чем отличается атомная бомба от ядерной?
Для сравнения, водородная бомба той же мощности создает долговременное радиоактивное загрязнение в радиусе семи километров. Все эти соблазнительные для военных факторы отлились в детском стишке: "... Город стоит, а в нем - никого". Однако практические испытания показали, что для применения "по земле" нейтронное оружие мало подходит. Нейтронный поток эффективно рассеивается и поглощается земной атмосферой - в особенности водяным паром, - бетоном и некоторыми другими материалами, так что зона поражения новой бомбы сократилась до сотен метров.
В 70-е годы Китай, СССР и США выпустили некоторое количество тактических нейтронных боеприпасов - в частности, самые большие в мире минометы "Тюльпан" имеют в арсенале нейтронные мины "Смола" и "Фата", - а на танках и другой бронетехнике появились дополнительные экраны для нейтрализации нейтронного потока. Золотая ракета Гораздо большие перспективы для нового оружия открылись в противоракетной обороне.
Атомные бомбы, также известные как бомбы деления, были первым ядерным оружием, разработанным людьми. Они работают по принципу ядерного деления, то есть процесса расщепления тяжелых атомных ядер на более легкие путем бомбардировки их нейтронами. Когда критическая масса делящегося материала, такого как уран-235 или плутоний-239, собирается вместе, начинается цепная реакция, высвобождающая огромное количество энергии в виде тепла, взрыва и излучения. Энергия, выделяемая атомной бомбой, эквивалентна тысячам тонн тротила, этого достаточно, чтобы сровнять с землей целые города и убить миллионы людей. Первая атомная бомба была взорвана 16 июля 1945 года в Аламогордо, штат Нью-Мексико, Соединенными Штатами в рамках Манхэттенского проекта. Бомба по прозвищу «Тринити» имела взрывную мощность около 20 килотонн в тротиловом эквиваленте и произвела огненный шар, который был виден за много миль.
Вторые и последние атомные бомбы, когда-либо использовавшиеся в военных действиях, были сброшены Соединенными Штатами над японскими городами Хиросима и Нагасаки 6 и 9 августа 1945 года соответственно, в результате чего мгновенно погибло около 200 000 человек, а из-за радиации возникли долгосрочные последствия для здоровья. Водородные бомбы, также известные как термоядерные бомбы, намного мощнее атомных бомб и основаны на другом типе ядерной реакции, называемой синтезом. Слияние происходит, когда два легких атомных ядра, таких как изотопы водорода дейтерий и тритий, сливаются вместе, образуя более тяжелое ядро, высвобождая при этом огромное количество энергии. Энергия, выделяемая водородной бомбой, эквивалентна миллионам тонн тротила, что делает ее самым разрушительным оружием, когда-либо созданным людьми.
При этом сила ударной волны - и вызванных ею разрушений, - оказывается сравнительно невелика. А остаточная радиация быстро исчезает, поскольку нейтроны порождают короткоживущие изотопы. Нейтронные мины По расчетам, воздушный подрыв нейтронной бомбы мощностью в одну килотонну вызывает разрушения на расстоянии 300 метров от эпицентра, зато все живое будет уничтожено в радиусе 2,5 километра. Опасная для жизни радиация исчезает через 12 часов, поскольку нейтронный поток порождает изотопы с коротким периодом распада. Для сравнения, водородная бомба той же мощности создает долговременное радиоактивное загрязнение в радиусе семи километров. Все эти соблазнительные для военных факторы отлились в детском стишке: "... Город стоит, а в нем - никого".
В 1954 году США испытали устройство на его основе на атолле Бикини, а в 1955 году на Семипалатинском полигоне была испытана новая советская термоядерная бомба. В 1957 году испытания водородной бомбы провели в Великобритании. В октябре 1961 года в СССР на Новой Земле была взорвана термоядерная бомба мощностью 58 мегатонн — самая мощная бомба из когда-либо испытанных человечеством, вошедшая в историю под названием «Царь-бомба». Дальнейшее развитие было направлено на уменьшение размеров конструкции водородных бомб, чтобы обеспечить их доставку к цели баллистическими ракетами. Уже в 60-е годы массу устройств удалось уменьшить до нескольких сотен килограммов, а к 70-м годам баллистические ракеты могли нести свыше 10 боеголовок одновременно — это ракеты с разделяющимися головными частями, каждая из частей может поражать свою собственную цель. На сегодняшний день термоядерным арсеналом обладают США, Россия и Великобритания, испытания термоядерных зарядов были проведены также в Китае в 1967 году и во Франции в 1968 году. Принцип действия водородной бомбы Действие водородной бомбы основано на использовании энергии, выделяющейся при реакции термоядерного синтеза лёгких ядер. Именно эта реакция протекает в недрах звёзд, где под действием сверхвысоких температур и гигантского давления ядра водорода сталкиваются и сливаются в более тяжёлые ядра гелия. Во время реакции часть массы ядер водорода превращается в большое количество энергии — благодаря этому звёзды и выделяют огромное количество энергии постоянно. Учёные скопировали эту реакцию с использованием изотопов водорода — дейтерия и трития, что и дало название «водородная бомба». Изначально для производства зарядов использовались жидкие изотопы водорода, а впоследствии стал использоваться дейтерид лития-6, твёрдое вещество, соединение дейтерия и изотопа лития. Дейтерид лития-6 является основным компонентом водородной бомбы, термоядерным горючим. В нём уже хранится дейтерий, а изотоп лития служит сырьём для образования трития. Для начала реакции термоядерного синтеза требуется создать высокие температуру и давление, а также выделить из лития-6 тритий. Эти условия обеспечивают следующим образом. Оболочку контейнера для термоядерного горючего делают из урана-238 и пластика, рядом с контейнером размещают обычный ядерный заряд мощностью несколько килотонн — его называют триггером, или зарядом-инициатором водородной бомбы. Во время взрыва плутониевого заряда-инициатора под действием мощного рентгеновского излучения оболочка контейнера превращается в плазму, сжимаясь в тысячи раз, что создаёт необходимое высокое давление и огромную температуру. Одновременно с этим нейтроны, испускаемые плутонием, взаимодействуют с литием-6, образуя тритий. Ядра дейтерия и трития взаимодействуют под действием сверхвысоких температуры и давления, что и приводит к термоядерному взрыву. Если сделать несколько слоёв урана-238 и дейтерида лития-6, то каждый из них добавит свою мощность ко взрыву бомбы — т. Благодаря этому водородную бомбу можно сделать почти любой мощности, причём она будет гораздо дешевле обычной ядерной бомбы такой же мощности. Наша статья посвящена истории создания и общим принципам синтеза такого устройства, как иногда называемой водородной. Вместо выделения энергии взрыва при расщеплении ядер тяжелых элементов, вроде урана, она генерирует даже большее ее количество путем слияния ядер легких элементов например, изотопов водорода в один тяжелый например, гелий. Почему предпочтительнее слияние ядер? При термоядерной реакции, заключающейся в слиянии ядер участвующих в ней химических элементов, генерируется значительно больше энергии на единицу массы физического устройства, чем в чистой атомной бомбе, реализующей ядерную реакцию деления. В атомной бомбе делящееся ядерное топливо быстро, под действием энергии подрыва обычных взрывчатых веществ объединяется в небольшом сферическом объеме, где создается его так называемая критическая масса, и начинается реакция деления. При этом многие нейтроны, освобождающиеся из делящихся ядер, будут вызывать деление других ядер в массе топлива, которые также выделяют дополнительные нейтроны, что приводит к цепной реакции. Слияние или синтез ядер охватывает всю массу заряда бомбы и длится, пока нейтроны могут находить еще не вступившее в реакцию термоядерное горючее. Поэтому масса и взрывная мощность такой бомбы теоретически неограниченны. Такое слияние может продолжаться теоретически бесконечно. Действительно, термоядерная бомба является одним из потенциальных устройств конца света, которое может уничтожить всю человеческую жизнь. Что такое реакция слияния ядер? Топливом для реакции термоядерного синтеза служат изотопы водорода дейтерий или тритий. Первый отличается от обычного водорода тем, что в его ядре, кроме одного протона содержится еще и нейтрон, а в ядре трития уже два нейтрона. В природной воде один атом дейтерия приходится на 7000 атомов водорода, но из его количества. На встрече в 1946 году с политиками, отец американской водородной бомбы Эдвард Теллер подчеркнул, что дейтерий дает больше энергии на грамм веса, чем уран или плутоний, однако стоит двадцать центов за грамм в сравнении с несколькими сотнями долларов за грамм топлива для ядерного деления. Схематически эта реакция показана на рисунке ниже. Много это или мало? Как известно, все познается в сравнении. Так вот, энергия в 1 МэВ примерно в 2,3 миллиона раз больше, чем выделяется при сгорании 1 кг нефти. А ведь речь идет только о двух атомах. Можете представить, как высоки были ставки во второй половине 40-х годов прошлого века, когда в США и СССР развернулись работы, результатом которых стала термоядерная бомба. Как все начиналось Еще летом 1942 г. В США сторонником этого подхода, и даже, можно сказать, его апологетом, был уже упомянутый выше Эдвард Теллер. Для Теллера его увлечение термоядерным синтезом в годы создания атомной бомбы сыграло скорее медвежью услугу. Будучи участником Манхэтенского проекта, он настойчивые призывал к перенаправлению средств на реализацию собственных идей, целью которых была водородная и термоядерная бомба, что не понравилось руководству и вызвало напряженность в отношениях. Поскольку в то время термоядерное направление исследований не было поддержано, то после создания атомной бомбы Теллер покинул проект и занялся преподавательской деятельностью, а также исследованиями элементарных частиц. Однако начавшаяся холодная война, а больше всего создание и успешное испытание советской атомной бомбы в 1949 г. Он возвращается в Лос-Аламосскую лабораторию, где создавалась атомная бомба, и совместно со Станиславом Уламом и Корнелиусом Эвереттом приступает к расчетам. Принцип термоядерной бомбы Для того чтобы началась реакция слияния ядер, нужно мгновенно нагреть заряд бомбы до температуры в 50 миллионов градусов. Схема термоядерной бомбы, предложенная Теллером, использует для этого взрыв небольшой атомной бомы, которая находится внутри корпуса водородной. Можно утверждать, что было три поколения в развитии ее проекта в 40-х годах прошлого века: вариант Теллера, известный как "классический супер"; более сложные, но и более реальные конструкции из нескольких концентрических сфер; окончательный вариант конструкции Теллера-Улама, которая является основой всех работающих поныне систем термоядерного оружия. Он, по-видимому, вполне самостоятельно и независимо от американцев чего нельзя сказать о советской атомной бомбе, созданной совместными усилиями ученых и разведчиков, работавших в США прошел все вышеперечисленные этапы проектирования. Первые два поколения обладали тем свойством, что они имели последовательность сцепленных "слоев", каждый из которых усиливал некоторый аспект предыдущего, и в некоторых случаях устанавливалась обратная связь. Там не было четкого разделения между первичной атомной бомбой и вторичной термоядерной. В отличие от этого, схема термоядерной бомбы разработки Теллера-Улама резко различает первичный взрыв, вторичный, и при необходимости, дополнительный. Устройство термоядерной бомбы по принципу Теллера-Улама Многие его детали по-прежнему остаются засекреченными, но есть достаточная уверенность, что все имеющееся ныне термоядерное оружие использует в качестве прототипа устройство, созданное Эдвардом Теллерос и Станиславом Уламом, в котором атомная бомба т. Андрей Сахаров в Советском Союзе, по-видимому, независимо придумал аналогичную концепцию, которую он назвал "третьей идеей". Схематически устройство термоядерной бомбы в этом варианте показано на рисунке ниже. Она имела цилиндрическую форму, с примерно сферической первичной атомной бомбой на одном конце. Вторичный термоядерный заряд в первых, еще непромышленных образцах, был из жидкого дейтерия, несколько позднее он стал твердым из химического соединения под названием дейтерид лития. Дело в том, что в промышленности давно используется гидрид лития LiH для безбалонной транспортировки водорода. Разработчики бомбы эта идея сначала была использована в СССР просто предложили брать вместо обычного водорода его изотоп дейтерий и соединять с литием, поскольку с твердым термоядерным зарядом выполнить бомбу гораздо проще. По форме вторичный заряд представлял собой цилиндр, помещенный в контейнер со свинцовой или урановой оболочкой. Между зарядами находится щит нейтронной защиты. Пространство, между стенками контейнера с термоядерным топливом и корпусом бомбы заполнено специальным пластиком, как правило, пенополистиролом. Сам корпус бомбы выполнен из стали или алюминия. Эти формы изменились в последних конструкциях, таких как показанная на рисунке ниже. В ней первичный заряд сплюснут, как арбуз или мяч в американском футболе, а вторичный заряд - сферический. Такие формы гораздо более эффективно вписываются во внутренний объем конических ракетных боеголовок. Последовательность термоядерного взрыва Когда первичная атомная бомба детонирует, то в первые мгновения этого процесса генерируется мощное рентгеновское излучение поток нейтронов , которое частично блокируется щитом нейтронной защиты, и отражается от внутренней облицовки корпуса, окружающего вторичный заряд, так что рентгеновские лучи симметрично падают на него по всей его длине. На начальных этапах термоядерной реакции нейтроны от атомного взрыва поглощаются пластиковым заполнителем, чтобы не допустить чересчур быстрого разогрева топлива. Рентгеновские лучи вызвают появление вначале плотной пластиковой пены, заполняющей пространство между корпусом и вторичным зарядом, которая быстро переходит в состояние плазмы, нагревающей и сжимающей вторичный заряд.
Что такое атомная бомба?
- История создания оружия
- Радиоактивные осадки
- Чем ядерный взрыв отличается от термоядерного?
- Атомная и водородная бомба: отличия
- Ядерный взрыв — есть ли защита от атомной бомбы?
Никого нет: что показали испытания советской нейтронной бомбы
Действие водородной бомбы основано на использовании энергии, выделяющейся при реакции термоядерного синтеза лёгких ядер. Какие ядерные испытания проводились в России и СССР Советским атомным проектом, будут ли они проводиться еще в 2023 году и чем известны бомбы РДС-1, РДС-6с, Кузькина мать и Царь-бомба, разбирается ФедералПресс. Но не все понимают, чем отличаются ядерная бомба от термоядерной, атомная от водородной. В водородной бомбе водорода нет вовсе, а принцип действия атомной бомбы связан не с атомами, а с ядрами. B-53 — американская термоядерная бомба, наиболее старое и мощное ядерное оружие находившееся в арсенале стратегических ядерных сил США вплоть до 1997 года.
«Ничего подобного у США не было»: какую роль в истории СССР сыграло появление водородного оружия
Ключевая разница: Основное различие между водородной бомбой и атомной бомбой состоит в том, что атомная бомба использовала ядерное деление для создания энергетического взрыва, тогда как водородная бомба использует ядерный синтез. Как сообщают ученые, водородная бомба в несколько тысяч раз мощнее атомной,и отличается от нее своим строением. Отличие водородной бомбы от атомной: список различий, история создания. Водородная бомба, также называемая термоядерной бомбой, использует термоядерный синтез, или объединение атомных ядер, для производства взрывной энергии. Хотя, как справедливо пишет автор, термоядерная составляющая взрыва этой бомбы была существенно меньше половины мощности, но, тем не менее, ее посчитали все-таки первой советской водородной (термоядерной) бомбой. Ключевая разница: Основное различие между водородной бомбой и атомной бомбой состоит в том, что атомная бомба использовала ядерное деление для создания энергетического взрыва, тогда как водородная бомба использует ядерный синтез.