Новости что такое анодирование

Гальваническое анодирование представляет собой процесс образования на поверхности различных металлов оксидной пленки путем анодного окисления в проводящей среде. Что такое анодирование и в чем заключаются преимущества анодированных металлоконструкций от не прошедших такую обработку? Анодирование представляет собой процедуру образования на поверхности различных металлов оксидной пленки путем анодного окисления.

Принцип анодирования алюминиевого корпуса-обработка алюминиевой поверхности

Подводному ружью с таким покрытием не страшна морская вода. Ружье способно служить много лет без каких либо заметных следов коррозии. И лишь при контакте с титановыми деталями может не скоро! Вот несколько моих деталей, обработанных по этому процессу: Вот такой была деталь до обработки. Как видите она приобрела приятный коричнево-золотистый цвет, и высокую прочность защитной пленки- даже если пытаться ее обработать напильником, то получится это лишь с 3-4 раза. Поначалу напильник будет просто скользить- т к твердость слоя намного выше чем твердость закаленной стали напильника. И лишь, при сильном нажиме, после того как слой растрескается он хрупок! Механическая защита такого анодного слоя- великолепна, коррозионная защита- выше всяких похвал! Безусловно, такой тип анодирования- наиболее привлекателен для покрытия подводных ружей. Единственным незначительным недостатком является невозможность окраски слоя органическими анилиновыми красителями. О причинах такой невозможности- позже.

Замечу, что цветовая окраска «холодного» слоя- естественный процесс, зависящий лишь от состава медь? Оттенки получаются в диапазоне от зеленовато-оливкового до темно серого, почти черного. Возможно ли дома? Правда, значительно удобнее и безопаснее! Несмотря на определенные сложности, связанные в первую очередь с необходимостью охлаждения електролита, это вполне реально. Я довольно долго экспериментировал, имел много неудач, но в итоге процесс вполне отработал. А поскольку я не намерен делать ноу-хау из полученного опыта, это значительно упростит ваш путь к устойчивым результатам. Наберитесь терпения, не ленитесь экспериментировать, и все у Вас получится. Пусть и не с первой попытки. Потенциальная опасность процесса!

У процесса есть несколько опасных для здоровья и жизни моментов! Перечислю их по порядку: Кислота- очень едкая штука. Пусть она и присутствует у нас в сильно разбавленном виде, но все таки… При попадании на кожу она лишь вызовет слабый зуд, но вот при попадании в глаза- может привести к серьезнейшим травмам! Потому очень рекомендуется работать в защитных очках и иметь под рукой ведро с водой, а лучше- слабым содовым раствором. Ну и- быть очень осторожным! Во время процесса анодирования происходит выделение кислорода на аноде, и водорода на катоде. Когда эти газы смешиваются, они образуют так называемый гремучий газ. В принципе, это- тот же динамит. Таким образом, при анодировании в закрытом и невентилируемом помещении вы наверняка погибнете от первой искры. А без искр дело тут не обходится… В общем, я вас предупредил.

Почему я это делаю дома а не на заводе? Потому что в огромном, 4-х миллионном городе так и не смог найти нормального, непьющего гальваника- анодировщика. Несмотря на то что в Киеве — не меньше десятка производств, где он должен был бы быть. Прям по Салтыкову-Шедрину излагаю… «мужик везде должен быть! Анодирование- процесс тонкий, требующий постоянного надзора за деталью. А людям выпить надо, побазарить… Вот и жгут они каждую вторую- третью деталь. И воевать с ними абсолютно бесполезно. В ответ всегда одно мычание… Соответственно, взял да и научился сам. И не жалею. С этого места подробнее, пожалуйста!

Химия и физика процесса. Как вы думаете, для чего железо ржавеет? Именно, не «почему» а «для чего»? Детский, казалось бы вопрос. Ответ вам покажется не менее странным: для того чтобы не ржаветь дальше! Дело в том, что скорость коррозии железа или стали, находящейся в агрессивной среде, очень сильно зависит от толщины слоя окисла. В начале процесса скорость очень высока, но по мере роста слоя ржавчины скорость «разъедания» металла падает в десятки и сотни раз. Потому то и стоят всевозможные морские сооружения десятилетиями, ржавые сверху донизу. Металл, ржавея, сам пытается заботиться о себе:-. Причем это правило справедливо не только для железа, но и для других металлов.

Чем толще окисной слой на поверхности металла, тем медленнее развивается коррозия. Правда не всем металлам повезло так же, как и железу: некоторые из них не умеют наращивать по настоящему толстый слой. По разным причинам, которые мы сейчас не будем обсуждать. Такими недостатками обладает и алюминий. С одной стороны, окисная пленка вырастает на его поверхности просто моментально, гораздо быстрее чем на железе. Именно поэтому алюминий так трудно паять! Но с другой стороны- эта пленка никогда не бывает толстой. Из за малой своей толщины она непрочна и неустойчива. По сути, она постоянно разрушается снаружи, и постоянно же нарастает внутри в процессе коррозии. Увы, за счет потери массы основной детали.

Надо также заметить, что не только толщина окисной пленки влияет на коррозионностойкость металла. Но также и ее структура, плотность. Плотная, твердая пленка лучше защищает металл чем мягкая и рыхлая. Таким образом, если научиться создавать на поверхности металла толстую и плотную окисную пленку, этого может оказаться вполне достаточно для полного торможения дальнейшей коррозии окисления. Именно это и получается в процессе анодирования алюминия. Причем, самые толстые и механически прочные пленки получаются именно при низкотемпературном тонкослойном анодировании. Которое мы и будем пытаться воспроизвести. Как это выглядит? В процессе анодирования на поверхности металла выделяется кислород и нарастает слой оксида алюминия Al2O3. Между прочим, это- корунд!

Тот самый, который приклеивают на наждачную бумагу. Это к вопросу о твердости… Когда его толщина становится достаточной, деталь заметно меняет окраску, приобретая выраженный темный оттенок. Это и служит сигналом к окончанию процесса. Вблизи качественный «холодный» анодный слой выглядит вот так: А если подобраться еще ближе с помощью микроскопа то можно рассмотреть слой и совсем близко. Вид на излом анодного слоя сбоку: Фото качественного слоя сверху: Как видите, все это подозрительно напоминает пчелиные соты. Так оно и есть. Хороший, твердый и качественный слой на микроуровне напоминает множество вертикальных трубочек, сросшихся друг с другом стенками. При этом сверху трубочки открыты- это важная их особенность. Диаметр трубочек крайне мал- 100-300 ангстрем. Толщина стенки- тоже около 100-200 ангстрем.

Кстати диаметр «трубочек»сильно зависит от температуры анодирования: чем холоднее, тем он меньше. А чем тоньше «трубочки», тем прочнее пленка, из них состоящая!. Но не всегда пленка имеет такой вид. Если анодный слой у нас получился рыхлый, непрочный, в основном, из за завышенной температуры процесса то и смотрится он совсем по другому. Вот так простым трезвым глазом. Царапины сделаны ногтем- настолько мала прочность анодного слоя: а так сверху под микроскопом: Как вы видите, именно в упорядоченности микроструктуры «пчелиных сот» кроется залог прочности анодного слоя! Точность выдерживания техпроцесса анодирования прежде всего- температуры! А значит- и высокой прочности анодного слоя! Два процесса, две большие разницы. Есть два основных, отличающихся друг от друга процесса анодирования.

Коренным образом их отличает лишь температура процесса. Хотя она, эта температура, влияет настолько сильно, что в итоге получаются очень разные результаты. В случае «теплого» процесса размеры «трубочек»велики, что ведет к двум следствиям: во первых анодный слой получается не очень прочным и твердым- это минус. Но во вторых- в «трубочки» большого диаметра легко ввести краситель , мельчайшие частицы которого еще проходят в эти «ворота». И таким образом- окрасить слой в любой цвет. Причем, что интересно: в качестве красителя применяются самые обычные анилиновые красители. Те, которыми красят джинсы и пасхальные яйца! К тому же существует очень простой способ обеспечить водостойкость подобного окрашивания. Достаточно лишь просто поварить окрашенную деталь в том же красителе, или после окраски обработать паром. При этом верхушки «трубочек» закупориваются, оставляя краситель запертым внутри.

После этого- вода уже не в силах вымыть краситель из анодного слоя. Несмотря на то что сам по себе краситель- водорастворим. Ну и что еще надо отметить- относительная «крупнотрубочность» слоя — это прекрасная основа для сцепления с краской или клеем. Такие детали можно красить нитро- или даже эпоксидными красками. Результат получается очень эстетичный и надежный в плане защиты от коррозии. Краска держится очень прочно. Теперь об особенностях «холодного» процесса. Как я уже упоминал, размер диаметр «трубочек» получается значительно меньше, чем в «теплых» условиях. Опять же из этого следуют две вещи: во первых прочность и твердость такого слоя гораздо выше! Выше настолько, что ее смело можно пилить напильником- лишь при сильном нажиме, после растрескивания анодного слоя, напильник доберется до металла!

Механическая износостойкость такого покрытия- бешеная! А что же вы хотели- это ведь корунд! Ну и во вторых- есть все же и минус. Хотя это как посмотреть. Дело в том, что опять же из за крайне малого диаметра «трубочек», частицы красителя попросту не могут в них протиснуться! Потому окрасить такой анодный слой с помощью анилиновых красителей невозможно. С другой стороны, анодный слой сам в процессе роста способен приобретать окраску. Ее оттенок зависит от состава алюминиевого сплава, и бывает от коричнево-зеленого до темно серого. Единственное что следует заметить, цвет у слоя появляется не при любой плотности тока процесса, а лишь начиная с некоторого значения примерно 1,5 ампера на кв дм. При низких плотностях тока, анодный слой хоть и прочен, но бесцветен.

Лично меня весьма устраивает способность анодного слоя «самоокрашиваться»- это экономит мои усилия по окраске. Тем более, что получающиеся оттенки- имхо, вполне подходят для подводных ружей. Алгоритмы процесса анодирования. Если делать это долго- пункт д не нужен. Обработка на пару в течении получаса. Холодный процесс: а обезжиривание детали, надежное закрепление ее в подвеске. Варка в дистиллированной воде или выдержка на пару. Пол часа. Немного об необходимости закрепления слоя. В случае «теплого» процесса необходимость закрепления уплотнения слоя очевидна.

Если этого не сделать- то при попадании детали в воду краска из незакупоренных «трубочек» попросту вымоется. И деталь станет обесцвеченной. Такой результат не устроит никого. Тут все просто. Но не только в эстетике дело. Дело в том, что разрез слоя с незакупоренными «трубочками» выглядит следующим образом: Механическую защиту он обеспечивает вполне достаточную- высота слоя ведь вполне приличная. А вот химическую- не так чтобы очень… Ведь «трубочки» открыты, и в них свободно заходит вода. И реальная толщина защитного слоя получается очень малой- это лишь «донышко» каждой из «трубочек». А такой тонкий защитный слой все же не способен хорошо защитить металл от коррозии.

Ее можно сделать более толстой путем анодирования, поместив алюминиевую деталь раствор поваренной соли и соды и проложив к алюминевой детали отрицательное напряжение. Анодирование алюминия не имеет ничего общего с анодированием золотом. Это принципиально разные процессы. Есть похожий процесс по анодированию титана карбидом титана - получаестся золотая на вид сверхпрочная пленка из карбида титана.

Защищенное покрытие способно удерживать слой краски продолжительное время. Для этого осуществляется соединение органического покрытия с хромовым анодным. Даже если слой краски повредится, его легко восстановить, а самому изделию не грозит коррозия и прочее. Данная технология эффективна при нанесении органических красок. Защита от коррозии. Эта защита способна справляться с воздействием даже соленой воды. В дизайне. Использование специальных красителей можно придавать алюминию абсолютно разные цвета. Благодаря этому изделиям можно придавать красивый внешний вид. Чистые руки. Нередко алюминий используется для создания перил, рукояток, поручней и прочее. Если он будет без анодного покрытия, то на руках могут оставаться следы. Чтобы это исключить все эти детали анодируют, что позволяет держать руки в чистоте. Для достижения таких результатов поры анодного покрытия наполняются. Отражение в проекторах. Технология сернокислого анодирования используется для защиты отражателей прожекторов. Это отражение будет сохраняться годами. А если необходимо почистить его поверхность, то для этого нет никаких проблем. В тепловых отражателях. Используется анодированный алюминий в нагревательных рефлекторах. Поверхность легка к любому очищения. Может использовать в помещениях с повышенной влажностью. Толщина покрытия составляет 1 микрон. Эффективная борьба с износом и трением. За счет более твердого покрытия значительно снижается износ. В этом случае анодное покрытие может достигать до 60 микрон. Электрический изолятор. В некоторых типах трансформаторов сегодня принято использовать алюминиевую ленту, в обязательном порядке анодированную. Такое покрытие прекрасно сопротивляется воздействию тепловой энергии. Теплое анодирование Выполняется эта работа при комнатной температуре от 15 до 20 градусов по Цельсию. Процедура известна как легкоповторяемая. При простых манипуляциях можно получить красивый результат. Однако, данный способ не позволяет достигать прекрасной антикоррозийной защиты. При контакте материала с агрессивной средой, коррозия может проявиться. Также заготовка не будет отличаться хорошей механической защитой. Например, покрытый материал легко поцарапать даже иголкой, а иногда можно стереть и рукой. Но с другой стороны, это покрытие служит прекрасным основанием для дальнейшей обработки материала. Процесс анодирования проходит в такой последовательности: Заготовка обезжиривается. В ванне необходимо анодировать заготовку до молочно-мутного оттенка. После в холодной воде осуществляется процесс промывки. Далее происходит процесс окраски заготовки. Для этого используется горячий раствор анилинового красителя. На протяжении 30 минут происходит заключительный этап — закрепление всех слоев. Благодаря этому можно достичь намного лучшего качества, твердости и прочности анодного покрытия. Холодный процесс прекрасно демонстрирует небольшую скорость растворения внешней пленки. Как следствие, образуется толстый слой. Совсем обратная ситуация при теплом процессе. Итак, для достижения таких результатов необходимо создать условия принудительного охлаждения. Без этого создать красивое и износоустойчивое покрытие создать будет невозможно. Если говорить о минусе этой технологии, то она заключается в следующем: поверхность нельзя окрасить органическими красителями. Технологический процесс того, как происходит холодное анодирование алюминия выглядит так: Поверхность тщательно обезжиривается. В ванне происходит процесс анодирования до образования плотного оттенка. Осуществляется промывка в холодной и горячей воде. Далее происходит процесс варки заготовки в дистиллированной воде. Также изделие выдерживается на пару. Эти действия позволяют закрепить все образовавшиеся слоя. Характеристики анодирования Анодирование представляет собой процедуру образования на поверхности различных металлов оксидной пленки путем анодного окисления. Наращивание оксидной пленки осуществляется в проводящей среде. На поверхности металла такая пленка держится достаточно хорошо. Наращивание оксидной пленки может осуществлять и благодаря методу повышения температурного режима. Однако при этом она получается низкой по прочности и не держится длительное время. Благодаря электрохимическому способу образования оксидной пленки она получается оптимальной толщины и отлично держится на поверхности материала. Анодированию можно подвергать разные виды металлов. Основным требованием является то, что они должны иметь возможность образовывать только один оксид. Он должен обладать максимальным уровнем устойчивости. Если металл обладает способностью образовывать сразу несколько оксидов, это может привести к тому, что пленка просто начнет трескаться и не появится защитного эффекта. Именно по этой причине только на редких промышленных объектах встречаются случаи анодирования железа или меди. Кроме того оксидная пленка на поверхности металлов должна обладать пористой структурой. Это необходимо для того, чтобы электролиты лучше в нее проникали. В результате получается, что лишь небольшая часть всех имеющихся на земле металлов способны удовлетворять данным параметрам. К ним относятся алюминий, тантал, титан. В промышленной и бытовой сфере чаще всего встречается обработка при помощи анодирования алюминиевого материала. Меры предосторожности и технические советы Для получения анодной пленки самостоятельно важно соблюдать некоторые меры безопасности, которые помогут сохранить здоровье и осуществить процедуру правильно: При работе используйте индивидуальные средства защиты кожи — перчатки, маску. Закрывайте глаза защитными очками при необходимости: в процессе получения анодированного металла происходит большая отдача тепла, и раствор может брызгать, попадая на тело. Подбирайте контейнер для обработки правильно: это может быть пластиковая емкость или старая эмалированная ванна без сколов. После травления изделия, поместите его в чистую воду для того, чтоб успеть подготовиться к следующему этапу. Используйте алюминиевые токопроводы для работы: серебро, сталь или детали из меди необходимо подвешивать на специальную планку для того, чтоб вынимать изделия было легче. Толщина кабеля должна соответствовать силе тока. Если показатели были подобраны неправильно, твердая вариация процедуры пройдет безуспешно, вследствие чего металл просто растворится. Для достижения чёрного цвета стали используют нитрат натрия, детали в растворе выдерживают при температуре от 100 до 140 градусов.

Теплый метод Данная технология считается самой простой. Она применяется в качестве подготовительных работ перед покраской. Пористая структура обеспечивает высокую адгезию, благодаря чему краска надежно держится на поверхности. Недостатками покрытия являются низкая прочность и устойчивость к коррозии. При нарушении технологии слой можно стереть, проведя по нему рукой. По этой причине теплое анодирование применяется в качестве промежуточной стадии перед дальнейшей обработкой. Благодаря своей простоте метод можно применять в домашних условиях без потери качества результата. Холодный метод Холодное анодирование характеризуется скоростью образования окисной пленки: она гораздо выше, чем скорость растворения металла с внешней стороны. Отличается высоким качеством защитного слоя. Кроме того, раствор теплее в центре ванной, поэтому необходимо обеспечить его непрерывную циркуляцию. Единственный недостаток — невозможно использовать краски органического происхождения. Технология твердого анодирования Твердое анодирование — лучший способ получить сверхпрочное покрытие на поверхности стали. Метод активно применяется для защиты элементов авиационной и космической промышленности. Особенность — использование одновременно нескольких электролитов в определенном соотношении, при котором их свойства будут усиливаться. Подавляющее большинство составов, а также методика их применения защищены патентами.

Анодирование алюминия

Гальваническое анодирование представляет собой процесс образования на поверхности различных металлов оксидной пленки путем анодного окисления в проводящей среде. Анодирование алюминия кроме прочности, долговечности и простоты в уходе, придаёт изделиям эстетику и декоративный внешний вид. Важным преимуществом импульсного наноструктурного анодирования является тот факт, что чередование режимов способствует лучшему рассеиванию тепла с поверхности заготовок. Анодирование образует защитную пленку за счет воздействия на металл электролиза. Важным преимуществом импульсного наноструктурного анодирования является тот факт, что чередование режимов способствует лучшему рассеиванию тепла с поверхности заготовок. Анодирование в компании Галарс-СПб, технология процесса, преимущества анодирования.

Анодирование: что это такое, применение, процесс

Его использование настолько широко, что вполне вероятно, что вы столкнетесь с анодированной металлической деталью в течение дня. Некоторые отрасли промышленности, которые регулярно используют анодирование, — это аэрокосмическая промышленность, автомобилестроение, архитектура, производство потребительских товаров и товаров для дома. И хотя невозможно перечислить все конкретные области применения анодированного алюминия, вот некоторые из них: кухонное оборудование, кожухи воздуховодов, осветительные приборы, продукты для приготовления пищи, фотооборудование, радиооборудование, электронные корпуса и многое другое. Как определить успешность анодирования? Есть способы узнать, подверглась ли деталь анодированию. Во-первых, обычно по матовому покрытию можно сказать, что создает анодирование. Кроме того, вы можете использовать простой скретч-тест. Поцарапайте монету по поверхности алюминиевой детали: если видна царапина, скорее всего, деталь только что отполирована, а не анодирована. Анодированная деталь будет полностью устойчивой к царапинам. Хорошее анодирование приведет к однородной поверхности с равномерным распределением цвета. Дефекты анодирования, на которые следует обратить внимание на готовом продукте, включают ожоги от анодирования, которые вызваны высокой плотностью тока и недостаточным перемешиванием в процессе анодирования.

Заключение В RapidDirect анодирование является одним из наших неотъемлемых решений отделки металлических деталей, наряду с дробеструйной очисткой, щеткой, полировкой, гальваникой, порошковой окраской и покраской. Наша команда экспертов хорошо разбирается в процессе анодирования и гарантирует нашим клиентам высококачественные алюминиевые детали. Чтобы узнать, является ли анодирование лучшим решением для финишной обработки вашей детали или продукта, или чтобы узнать ценовое предложение, просто свяжитесь с членом команды RapidDirect. Мы к вашим услугам! FAQ Сколько стоит анодирование? Одна из причин, по которой анодирование является популярным процессом отделки, заключается в его высокой рентабельности. Стоимость процесса зависит от нескольких факторов, включая количество деталей, размер и форму детали, тип анодирования то есть толщину покрытия и цвет. Короче говоря, анодирование сложной детали, которую необходимо покрасить, будет стоить дороже, чем простая деталь без цветного покрытия. Свяжитесь с нами в RapidDirect, чтобы получить расценки на анодирование для конкретных клиентов. Анодирование стирается?

Как долго он может храниться? В процессе анодирования на поверхности алюминиевых деталей создается барьерный слой, который склеивается на молекулярном уровне. Это означает, что он не может отслаиваться или отслаиваться, в отличие от лакокрасочного покрытия. Правильно анодированная деталь не должна изнашиваться в течение многих десятилетий. Точно так же окрашенные анодированные детали, которые должным образом герметизированы, не должны выгорать по крайней мере пять лет, а часто и больше. Также следует отметить, что чем толще анодированный слой тип III — самый толстый , тем меньше будет износ детали. Поделиться в социальных сетях … Анодирование алюминия При анодировании красители впитываются в пористую структуру слоя оксида алюминия. Анодирование, электрохимическое окисление алюминия, широко используется во всем мире для различных функциональных и декоративных применений. При анодировании тонкая пленка оксида алюминия образуется на поверхности алюминиевой детали и действует как барьер против дальнейшего естественного окисления или коррозии. Перед тем, как анодировать, алюминий обрабатывают в различных химических ваннах, чтобы получить яркую, полужирную или матовую поверхность.

Затем подготовленная поверхность алюминия попадает в ванну для анодирования, где присутствует сернокислый электролит с зарядом постоянного тока низкого напряжения, что приводит к электролитической реакции и образованию оксидного слоя. Эта пленка впоследствии может быть окрашена водными красителями, а затем окончательно запечатана в кипящей деионизированной воде. В результате получается декоративная и прочная отделка. Анодирование устойчиво к царапинам, не отслаивается, не отслаивается и не выцветает, и подходит для высокоскоростной подачи чаши. В течение некоторого времени анодирование называли «зеленой» или экологически чистой обработкой металлов. В процессе этого процесса в окружающую среду выделяется мало токсинов, почти не используются тяжелые металлы, а также используются химические вещества и металлы, которые легко перерабатываются. Готовые изделия из анодированного алюминия нетоксичны и безопасны для использования во многих упаковках для потребительских товаров, включая косметику и напитки. За последние несколько десятилетий производители контейнеров для косметики значительно сократили использование полированной и лакированной отделки, которые производят выбросы растворителей в качестве побочного продукта, или покрытий, которые используют тяжелые металлы и имеют остаточные опасные отходы, и перешли на анодированные алюминиевые покрытия. Почти все основные производители упаковки для косметики обычно используют анодированную отделку для металлических упаковок. Anomatic Corp.

Компоненты из анодированного алюминия, которые она разрабатывает и производит, предназначены для упаковки насосов для ароматизаторов и лосьонов, колпачков и укупорочных средств для ухода, туши для ресниц, губных помад и карандашей для подводки глаз, и это лишь некоторые из них. Основная философия компании заключается в том, что производство продукции за счет нанесения ущерба окружающей среде недопустимо. В соответствии с этой философией компания взяла на себя долгосрочное обязательство по защите окружающей среды с помощью современных процессов обработки и переработки отходов. Выбор алюминия Производство компонентов из анодированного алюминия в Anomatic начинается с выбора основного металла и сплава. Алюминий — самый коммерчески пригодный для вторичной переработки металл, используемый сегодня. Поскольку переработанный алюминий уже находится в металлическом состоянии, вся энергия, затрачиваемая на очистку руды и превращение ее в металл, сохраняется при ее переработке. Простое плавление алюминия снова делает его пригодным для использования. Все отходы на предприятии Anomatic бракованные из-за несоответствия визуальным или габаритным характеристикам отправляются на местные предприятия по переработке. Кроме того, алюминиевая отделка, которая снимается после штамповки, также отправляется на переработку. В то время как большая часть продукции, производимой компанией, производится из обычных базовых сплавов, таких как 5657 и 9020, некоторые производители косметической упаковки начали указывать переработанные алюминиевые сплавы, такие как 3004.

Anomatic участвует в этой инициативе. Необходимо соблюдать осторожность, поскольку переработанный алюминий может содержать тяжелые металлы, особенно свинец и кадмий. Тяжелые металлы вызывают беспокойство, потому что этапы предварительной анодирования влекут за собой удаление металла, поэтому эти металлы могут попадать в сточные воды. Многие из переработанных сплавов имеют более высокие концентрации перечисленных металлов в результате плохой изоляции источников тяжелых металлов от алюминиевого лома. Однако при соблюдении надлежащих критериев выбора переработанный сплав может использоваться в соответствии с ограничениями CONEG. Штамповка и обезжиривание Этап изготовления включает в себя глубокую вытяжку алюминиевой рулонной заготовки различных форм и размеров с использованием высокоскоростных трансферных прессов. Масла для штамповки легко захватываются и используются повторно. Масляный лом пропускается через центробежный отжим для стружки, а затем чистый лом отправляется на переработку, а масло повторно используется в прессах. Штампованные изделия проходят обезжиривание на водной основе, где масла улавливаются через ультрафильтрацию и коалесцирующие фильтры, а затем отправляются на программу смешивания топлива. Поскольку при обезжиривании не используются какие-либо растворители, захваченные штамповочные масла не опасны и легко смешиваются с жидким топливом.

Процессы штамповки и обезжиривания не производят выбросов или вредных отходов. Анодирование В процессе анодирования используется несколько неорганических кислот азотная, серная и фосфорная. Кислоты смывают алюминиевые детали между этапами процесса, чтобы предотвратить загрязнение ванны. В этих кислотных ваннах растворяется металлический алюминий. Твердые вещества удаляют с помощью обычного осаждения гидроксидом с последующим осветлением и фильтрацией. Фильтр-пресс производит твердый осадок гидроксида алюминия, который является неопасным отходом и отправляется на свалку. Осветленная промывочная вода нейтрализуется и отправляется в канализацию. Все сточные воды, покидающие предприятие, контролируются с помощью устройства для непрерывного отбора проб, которое работает 24 часа в сутки, 365 дней в году. Аттестованная EPA химическая лаборатория на месте, в которой используется оборудование для влажного химического анализа и испытания металлов, укомплектована обученными специалистами в рабочее время.

С увеличением числа мононов они превращаются в полиионы - волокнистые палочкообразные мицеллы коллоидной степени дисперсности, которые образуют скелет ориентированного геля оксида алюминия. В него внедряются анионы электролита, теряя частично при этом свою гидратную оболочку. Адсорбция анионов и воды, осуществляемая по межмицеллярным порам, обуславливает отрицательный заряд монон и мицелл, заставляя их плотно прижиматься к аноду и сращиваться с металлом, препятствуя слиянию мицелл в беспористый слой. Поры при таком рассмотрении представляют собой естественное межмицеллярное пространство. Наряду с процессами образования мицеллярных слоев с участием анионов протекают сопряженные процессы растворения образующегося оксида. Рисунок 10 — Иллюстрация теории Богоявленского. Интересно отметить, что размеры ячеек Келлера близки размерам мицелл геля Al OH 3. Толкование механизма роста анодной пленки с позиций коллоидной химии позволяет объяснить внедрение в ее структуру анионов и катионов электролита и отдельных составляющих оксидируемого сплава. При этом сопряжение процессов образования оксида и его растворения в электролите также учитывается коллоидной теорией. Теперь следует заметить, что структура анодированного алюминия, на самом деле, может быть весьма далека от идеальной, описанной в теории. В частности теория говорит о правильных гексагональных ячейках, в центре которых находится одна пора. На самом деле, получить такую структуру можно только специальными методами, например, многостадийным анодированием в определенных режимах. Примеры таких "правильных" покрытий приведены на рисунке 11. Более глубокое описание наноструктурированного аноднооксидного будет приведено ниже. Рисунок 11 — Примеры идеальных и близких к идеалу ячеек пористого слоя в аноднооксидном покрытии на алюминии. Чаще же можно наблюдать более "грязные" варианты. Примеры их были показаны в начале статьи. Кроме этого, теории не предполагают возможности ветвления пор, что наблюдается в действительности. Рисунок 12 — Пример ветвления пор 4. Особенности роста оксида алюминия при анодировании. Формирование оксидного слоя протекает на дне пор, где препятствием для прохождения электрического тока служит только тонкий барьерный слой, толщина которого практически не меняется в процессе обработки. С этой точки зрения можно наращивать толщину оксидного слоя без существенного увеличения напряжения на ванне. Образующиеся поры имеют форму конуса, расширяющегося к внешней стороне покрытия, поскольку эта часть дольше подвергается агрессивному воздействию электролита. Необходимо отметить, что формирование пористой структуры является необходимым условием роста оксидного слоя. Оксид алюминия является плохим проводником электричества, а поры, хотя и заполнены электролитом, имеют весьма малый диаметр, поэтому сопротивление анода во много раз выше сопротивления на катоде и сопротивления электролита. Изменение потенциалов самих электродов вследствие поляризации незначительно по сравнению с прикладываемым напряжением, поэтому изменение напряжения во времени при постоянной плотности тока определяется изменением омического сопротивления анода. Если проводить процесс при постоянной плотности тока, то есть при постоянной скорости формирования оксида, то рост пленки будет тормозиться возрастающим сопротивлением электролита в порах. Для дальнейшего роста требуется либо увеличение прилагаемого напряжения, либо растравливание пор. На практике преобладает второй фактор. Этому способствует значительное выделение теплоты в процессе анодного окисления, причем основная часть тепла выделяется в барьерном слое на дне пор. Поэтому рост оксидной пленки при постоянной плотности тока сопровождается непрерывным увеличением скорости растворения оксида. Предельная толщина пленки достигается тогда, когда скорость ее образования под действием электрического тока станет равна скорости химического растворения электролитом. Чрезмерный перегрев электролита у основания пор и местное повышение его агрессивности может привести к растравливанию оксидного слоя и получению некачественных покрытий с повышенной пористостью и слабой адгезии к металлу.

Толстые плёнки 50—300 мкм применяются для защиты поверхности от износа и истирания. Анодная плёнка состоит из примыкающего к металлу тонкого барьерного слоя, и пористого наружного слоя. Толщина барьерного слоя определяется напряжением процесса, и при этом не зависит от плотности тока, слабо уменьшается с температурой, и несколько меняется при переходе от одного электролита к другому. Наибольшее распространение для анодирования алюминиевых деталей получил сернокислый процесс. Оксидная плёнка при повышенных температурах бесцветная, тонкая и рыхлая, что позволяет окрашивать её практически любыми красителями.

Данную процедуру могут применять и в декоративных целях. Перед тем как проводить анодирование постоянным током, деталь предварительно обезжиривают ацетоном и раствором едкого натра. Для проведения процесса анодирования алюминия нужно приготовить два насыщенных раствора — поваренной соли и питьевой соды. Делают их в течение не менее получаса, иногда помешивая получившийся раствор. После этого растворы отстаиваются в течение пятнадцати минут и фильтруют. Затем нужно приготовить электролит, смешав девять объемных частей питьевой соды с одной объемной частью раствора соли. Перед тем как проводить анодирование деталей, нужно тщательно зачистить наждачной бумагой или напильником, а потом обезжирить. После этого нужно провести химическое полирование. Для этого алюминиевая деталь помещается на десять минут в состав из 75 объемных долей ортофосфорной кислоты и 25 серной кислоты.

Чем отличается анодированный алюминий от обычного

Чем выше плотность тока и ниже температура, тем твёрже получается оксидная плёнка. При высокой температуре получается мягкое и пористое покрытие, которое хорошо поддаётся окрашиванию. Рассмотрим технологии подробнее. Твердое анодирование Твердое анодирование — это способ обработки, при котором в роли электролита выступает не только раствор серной кислоты H2SO4, а сразу несколько кислот. Возможно применение щавелевой, уксусной, борной или ортофосфорной кислоты, триоксида хрома, различных органических соединений. Эта технология используется в современной промышленности чаще всего. Она позволяет получить на поверхности заготовки очень тонкий, но при этом прочный оксидный слой.

Алюминий обрабатывают до получения светло-молочной плёнки, а затем промывают струёй холодной воды и окрашивают составами на основе анилина. Таким способом можно получить привлекательную поверхность изделия. Но они не подходят для эксплуатации в тяжелых условиях, поскольку хуже защищены от коррозии, воздействия агрессивных сред и механических повреждений. Однако, высокая адгезивность поверхности отлично подходит для нанесения лакокрасочного покрытия. Их подвергают долгому принудительному охлаждению, формируя плотное покрытие, а затем закрепляют плёнку паром или горячей дистиллированной водой. Такой метод позволяет получить качественное, прочное покрытие большой толщины.

Преимущества анодирования алюминия Анодированный алюминий отличается множеством преимуществ, за счёт которых он востребован в строительстве и разных сферах промышленности. Среди преимуществ: Увеличение долговечности Оксидный слой обеспечивает надёжную защиту от коррозии, ультрафиолета и механических повреждений, поэтому изделия могут выдерживать экстремальные условия эксплуатации: осадки, высокую влажность, жару. Защитная плёнка значительно продлевает срок службы изделий из алюминия. Простота ухода и обслуживания Защитный слой прочно связан с поверхностью, поэтому он не может потрескаться или отслоиться. Поверхность устойчива к влаге и царапинам, её можно очищать различными моющими средствами без риска потери качества или внешнего вида.

Она более плотная и прочная, чем та, что получается естественным путем; природная модификация оксида — корунд, минерал, уступающий по твердости только алмазу. Чтобы получить защитный слой, металл погружают в раствор кислого электролита и пропускают через систему постоянный ток. Процесс называется анодированием по-другому, анодным оксидированием или анодным окислением так как алюминий выступает в роли анода. Покрытие выравнивает царапины, вмятины и другие незначительные дефекты металлической поверхности История анодирования Анодирование металлов впервые было использовано в промышленном масштабе в 1923 году. Первоначально оно было создано для защиты от коррозии деталей из дюралюминия в кораблестроительной промышленности. Очевидно, эта обработка использовалась, поскольку части морских транспортных судов требовали жесткого защитного покрытия, невосприимчивого к соленому, бурному морю. Этот процесс все еще используется сегодня, несмотря на устаревшие требования сложного цикла напряжения, которые теперь считаются ненужными. К 1927 году этот процесс получил развитие, и был запатентован новый процесс анодирования в серной кислоте.

Это принципиально разные процессы. Есть похожий процесс по анодированию титана карбидом титана - получаестся золотая на вид сверхпрочная пленка из карбида титана. Так что само по себе выражение "анодирование" может к золоту ни какого отношения не иметь. Остальные ответы.

У ювелиров, работающих с титаном, есть свои секреты по созданию металла разных цветов. Стойкость покрытия зависит от сплава и места ношения. Если оно предназначено для ношения в полости рта, то срок службы составит не более трех лет. В ушах прослужит немного дольше. Сплав, который содержит слишком много примесей, после анодирования не блестит, непригоден для использования Плюсы и минусы Титан является самым популярным из металлов, поддающихся анодированию. Он применяется в ювелирной промышленности около двадцати лет. Главное достоинство анодированных украшений — их богатая цветовая палитра. Изготовленные из титана и ниобия, они еще и гипоаллергенны, подходят для того, чтобы использовать для свежих проколов. В их пользу говорит и небольшой вес изделий.

Анодирование алюминия: что это за процесс?

Для чего необходимо анодирование Если вас интересует Узнайте, что такое анодирование и анодированное покрытие. Анодирование в обобщенном смысле – это электрохимический процесс образования стабильных оксидных покрытий на поверхности металлов. Анодирование производится посредством процесса электролитической диссоциации, когда покрываемую деталь присоединяют к электроду и погружают ее в электролит. Анодирование — процесс создания оксидной плёнки на поверхности некоторых металлов и сплавов путём их анодной поляризации в проводящей среде. Анодирование (анодирование, анодирование) представляет собой процесс электролитической пассивации, при котором тонкий слой оксида алюминия формируется на внешней стороне алюминиевых деталей, обработанных на станках с ЧПУ.

Как анодировать металл в домашних условиях?

В сегодняшней статье мы рассмотрим, что такое анодированный алюминиевый профиль, в чём его преимущества и где он используется. Анодирование алюминия разными методами: описание технологии оксидирования и цветного анодного окисления. Home»НОВОСТИ»СОВРЕМЕННЫЕ ТЕХНОЛОГИИ»Что такое анодирование и зачем его применяют. Процесс анодирования Процесс, в результате которого, происходит образование на поверхности металла высокопористых оксидных слоев алюминия, этот процесс является электрохимическим. По своей сути анодирование является востребованным процессом для металлов из-за его впечатляющей способности повышать коррозионную стойкость.

Похожие новости:

Оцените статью
Добавить комментарий