Новости реактор на быстрых нейтронах в россии

«Прорыв» предусматривает создание ядерных энергетических технологий нового поколения на базе замкнутого топливного цикла с использованием реакторов на быстрых нейтронах. С моей точки зрения именно реактор на быстрых нейтронах это самое значимое, что создала Россия после перестройки.

Россия сделала шаг к энергетике будущего

В ходе ППР специалисты также выполнили эксплуатационный контроль металла и сварных соединений трубопроводов, испытали системы контроля герметичности оболочек с использованием метрологической сборки. Это именно та веха, ради которой изначально проектировался БН-800, строился уникальный атомной энергоблок и автоматизированное производство топлива на ГХК», — сказал он. Его применение в десятки раз увеличит топливную базу атомной энергетики.

В его основе два ключевых компонента — обеднённый уран и плутоний, извлекаемый из облучённого ядерного топлива. Производство и внедрение такого топлива позволит увеличить ресурс атомных электростанций, утилизировать накопленные запасы обеднённого урана, перерабатывать облучённые элементы для производства свежего топлива вместо их хранения, а также радикально сократить образование ядерных отходов и их активность.

Институт выполняет функции научного руководителя всех российских натриевых реакторов. В ГНЦ РФ - ФЭИ проводятся экспериментальные исследования в области ядерно-лазерной физики и физики плазмы, радиационного материаловедения, радиохимии и новых наукоемких технологий, включая нанотехнологии, технологии водородной энергетики и ядерной медицины.

Перед российской промышленностью стоит цель в кратчайшие сроки обеспечить технологический суверенитет и переход на новейшие технологии. Государство и крупные отечественные компании направляют ресурсы на ускоренное развитие отечественной исследовательской, инфраструктурной, научно-технологической базы. Внедрение инноваций и нового высокотехнологичного оборудования позволяет Росатому и его предприятиям занимать новые ниши на рынке, повышая конкурентоспособность атомной отрасли и всей российской промышленности в целом.

Белоярская АЭС. Фото с сайта wikipedia. Пока во всех действующих установках используется расплавленный натрий, который активно взаимодействует с водой. Металл всплывает на ее поверхности и плавится, попутно выделяется водород, который может воспламениться. Полностью от воды в реакторе не избавиться: пар нужен, чтобы крутить турбину. Поэтому сейчас в России проектируют и строят реакторы со свинцовым теплоносителем — они менее активно взаимодействуют с водой.

В мире есть только два энергетических реактора на быстрых нейтронах — БН-600 и БН-800. Они находятся в России на территории Белоярской атомной электростанции. Еще два отечественных реактора научно-исследовательские. Также есть по одному исследовательскому реактору в Индии и Китае. Замкнутый ядерно-топливный цикл Главный плюс реактора на быстрых нейтронах — возможность организовать замкнутый цикл использования ядерного топлива: из отработанного топлива можно достать «недогоревшие» атомы, сделать из них новую порцию топлива и снова дать ему поработать в реакторе — и так несколько раз. По мнению ученых, это повысит эффективность использования природных запасов урана и уменьшает количество отходов. Дмитрий Рудик ведущий инженер научного исследовательского ядерного университета МИФИ На специальных радиохимических заводах из отработанного ядерного топлива выделяют уран 238U, которого очень много после «работы» в «медленном» реакторе, а также остатки 235U и плутония. По словам эксперта, реактор на быстрых нейтронах позволит повторно использовать отработанное топливо, что потенциально может обеспечить человечество электроэнергией на тысячи лет. К тому же замкнутый топливный цикл поможет избавляться от долгоживущих радиоактивных ядер, которые в противном случае пришлось бы где-то хранить.

Российские ученые: Реактор БН-800 полностью переведен на МОКС-топливо

— лидерство России в мире по реакторам на быстрых нейтронах с натриевым теплоносителем. В России учёные-атомщики вывели реактор БН-800 на номинальную мощность с полной загрузкой инновационным, так называемым МОХ-топливом. Россия продолжила работу с реакторами на быстрых нейтронах единственная в мире. Так, без обновления парка высокопоточных реакторов с достаточным потоком быстрых нейтронов в течение пары десятилетий ядерная наука может начать ощущать серьезную нехватку инструментария.

Уральскую АЭС переводят на отработавшее топливо. Физик-ядерщик объяснил минусы такого подхода

Россия запустила модель Реактора будущего или «Секрет» поставок урана в США На Белоярской АЭС после планово-предупредительного ремонта (ППР) включили в сеть энергоблок № 4 с реактором на быстрых нейтронах БН-800.
Реакторы на быстрых нейтронах: ядерная энергетика в деталях Так реактор на быстрых нейтронах, использующий отработанное топливо, уже вовсю работает на Белоярской АЭС.
Ядерный спор: Ученый и "Росатом" разошлись в вопросе о развитии отрасли Исследуем, как работают реакторы на быстрых нейтронах и в чем заключается их преимущество в ядерной энергетике.

В России появился «вечный» ядерный реактор

В чем радиоэкологические преимущества реакторов на быстрых нейтронах и почему проблема замыкания ядерного топливного цикла касается каждого? Четвертый энергоблок Белоярской АЭС с реактором на быстрых нейтронах был впервые полностью переведен на инновационное МОКС-топливо. Интерфакс: Реактор на быстрых нейтронах БРЕСТ-300 в Томской области может быть введен в 2028-2029 гг., сообщил глава госкорпорации "Росатом" Алексей Лихачев в интервью телеканалу "Россия-24". Реактор на быстрых нейтронах БН-800 Белоярской АЭС был полностью переведен на уран-плутониевое МОКС-топливо.

«Сделали то, что не успели в СССР». В России запущен вечный ядерный реактор

Росатом делает значительный шаг вперед в трансмутации отходов уранового топлива важный этап в развитии технологий реакторов на быстрых нейтронах и замыкания ядерного топливного цикла в России.
Российские учёные вывели реактор Белоярской АЭС на номинальную мощность В итоге, на сегодняшний день в Обнинске уже собрали модель активной зоны перспективного реактора на быстрых нейтронах с натриевым теплоносителем БН-1200М.

Search form

  • Первыми довели до ума
  • Что дадут "быстрые нейтроны" в ближайшей перспективе?
  • Что даст программа "Росатома" в ближайшей перспективе?
  • Реакторы на быстрых нейтронах: как Россия оказалась впереди планеты всей
  • Новое топливо

Навигация по записям

  • Радиационные явления в реакторных материалах обсудили в Обнинске
  • Реактор БН-800 проработал год на топливе из отработавшего ядерного топлива
  • Россия сделала шаг к энергетике будущего — Фонд стратегической культуры
  • Заявка успешно отправлена!!

Россия запустила модель Реактора будущего или «Секрет» поставок урана в США

Энергетика является основой поступательного социально-экономического развития страны, снабжения промышленности и граждан. Отечественный топливно-энергетический комплекс работает на повышение конкурентоспособности национальной экономики, способствует развитию и благоустройству регионов страны, городов, посёлков, на улучшение качества жизни граждан.

Владельцы АЭС США — в основном частные компании, они не видят коммерческих преимуществ в быстрых реакторах по сравнению с обычными «тепловыми». Да и тема обеспечения человечества практически вечной энергетической базой американцам не близка. Не вышло у американцев и с военным использованием натриевых быстрых реакторов. Натрий бурно реагирует с водой и горит на воздухе, что усложняет любую аварию с утечкой теплоносителя. Поэтому после трехлетней эксплуатации единственной американской подлодки с натриевым теплоносителем USS Seawolf были сделаны отрицательные выводы о применимости такого типа реакторов в подводном флоте, на самой подлодке реактор был заменен на обычный водо-водяной, и эксперименты с использованием быстрых реакторов Пентагон прекратил. Однако из-за нескольких аварий его неоднократно останавливали, запускали снова, потом снова останавливали и окончательно заглушили в феврале 2010 года, так и не выведя на проектную мощность. В Японии быстрым реакторам не повезло: в 1995 году на реакторе «Мондзю» через четыре месяца после пуска произошла крупная утечка натрия.

Потом 15 лет на АЭС шел ремонт, но при перезапуске снова произошла авария. С тех пор реактор не работает. Индия имеет исследовательский быстрый реактор FTBR, но с пуском демонстрационного реактора PFBR-500 у индийцев не ладится уже много лет по причине отсутствия опыта и специалистов. Многочисленные отказы экспериментального оборудования ставят под вопрос реализацию этого проекта. Единственными серьезными конкурентами России в этой области сейчас являются китайцы, которые, однако, используют российское топливо с обогащенным ураном: они запустили экспериментальный реактор на быстрых нейтронах CEFR в 2011 году, а сейчас строят демонстрационный блок, который должен заработать в ближайшие годы. Первый китайский опытный реактор CEFR мощностью 65 мегаватт проектировался в 90-х годах в России, но строился китайцами самостоятельно.

При выстраивании двухкомпонентной атомной энергетики с замыканием ядерного топливного цикла то, что не знали куда деть, становится ценнейшим сырьем — реакторы на быстрых нейтронах «питаются» тем, что остается после работы обычных реакторов. Если вам нужна «зеленая энергетика» - то вот она.

Зеленее не бывает.

То есть в процессе работы реактора плутоний тратится, но при этом нарабатывается из второго компонента — урана. Подарок будущим поколениям — Получается, что для производства МОКС-топлива у нас компонентов намного больше, чем для работы реакторов на тепловых нейтронах? Для тепловых реакторов нужно постоянно добывать уран из-под земли, обогащать его, а потом этот драгоценный изотоп уран-235 выгорает. А в случае уранплутониевого топлива получается так: мы берём обеднённый уран и плутоний, кладём в реактор, там плутоний одновременно и выгорает, и нарабатывается. И дальше уже вопрос баланса. Козёл, МОХ и жёлтый кек: как хорошо вы понимаете язык атомщиков Есть так называемый коэффициент воспроизводства, то есть соотношение между тем, сколько плутония мы запихнули в реактор, и тем, сколько выгрузили после того, как сборка отработает. Если он меньше единицы, значит, выработалось меньше, чем сгорело. На тепловых реакторах коэффициент воспроизводства топлива гораздо меньше единицы. Для справки Идею быстрых реакторов предложил ещё в 30-е годы XX века лауреат Нобелевской премии по физике Энрико Ферми, «папа» первого в мире ядерного реактора.

Он доказал, что быстрые реакторы способны создавать делящиеся материалы и поэтому в них можно попробовать максимально использовать возможности урана. Эту идею тут же подхватили в СССР. Первый быстрый реактор, БН-1, построили в нашей стране в 1955 году. Он обладал низкой мощностью, зато проведённые на нём исследования доказали: в быстрых реакторах действительно можно воспроизводить топливо. Эксперименты продолжились. Начиная с 1969 года в НИИ атомных реакторов в Димитровграде работает БОР-60 — в нём исследуют топливо и материалы для быстрых реакторов. Затем был БН-600, который запустили в 1980-м, — он, кстати, также действует до сих пор. В январе 1997 года получил лицензию на производство проект реактора БН-800, в декабре 2015-го блок с этим реактором заработал на Белоярской АЭС. Мы берём ядерные отходы, делаем из них МОКС-топливо, кидаем его в реактор, оно там выделяет энергию, производит плутоний — и так до бесконечности? Если говорить простым языком, из отработанного МОКС-топлива сначала удаляются вредные и ненужные продукты ядерной реакции — осколки деления.

А уран и плутоний остаются. Мы «подливаем» в них недостающие элементы — и вот тогда снова отправляем работать в реактор. У МОКС-топлива есть ещё одно преимущество, как подарок будущим поколениям, — замыкание топливного цикла с точки зрения утилизации америция и нептуния. Это два очень вредных продукта деления ядерной реакции в любом реакторе. И реактор на быстрых нейтронах немного уменьшает их количество.

Россия запустила модель Реактора будущего или «Секрет» поставок урана в США

Реакторы на быстрых нейтронах способны нарабатывать плутоний, которого хватит, чтобы обеспечить собственную работу и при необходимости другие реакторы новым топливом. Против продаж реакторов на быстрых нейтронах резко выступает США. В чем радиоэкологические преимущества реакторов на быстрых нейтронах и почему проблема замыкания ядерного топливного цикла касается каждого?

Первыми довели до ума

  • К «Прорыву» добавляется реактор
  • АО "ТВЭЛ" представило инновационные решения для замыкания ядерного топливного цикла
  • АО "ТВЭЛ" представило инновационные решения для замыкания ядерного топливного цикла
  • Россия на пороге создания нового реактора на быстрых нейтронах

Росатом делает значительный шаг вперед в трансмутации отходов уранового топлива

Успешное испытание подобного реактора подтверждает возможность практически безотходного производства в ядерной энергетике с доступом к урану-238 — элементу, которого должно хватить на миллионы лет. Ранее ядерные реакторы в России, работающие на быстрых нейтронах, загружались обычным урановым топливом, поскольку работали по обыкновенным натриевым технологиям, сообщает newsnn. По информации специалистов, успешный опыт Белоярской АЭС не был замечен широкой аудиторией.

В перспективе КПД может вырасти еще больше, если вместо паровой турбины к реактору будет подключена газовая турбина с замкнутым циклом. В-третьих, реакторы на быстрых турбинах, благодаря особенностям своей конструкции, сами воспроизводят ядерное топливо.

Внутри БРЕСТ уран-238 будет поглощать свободные нейтроны и превращаться в изотоп другого химического элемента — в плутоний-239. А это, к слову, начинка для ядерного оружия. При оптимальных условиях при делении одного ядра урана-235 можно будет получить 1,25 ядра нового оружейного плутония-239 из урана-238. Звучит фантастически.

Заметим, что Российская Федерация в области подобных передовых энергетических технологий реально находится впереди планеты всей. Ни США, ни Франция, ни Япония, начав эксперименты с жидким натрием в качестве носителя в реакторах на быстрых нейтронах, так и не смогли добиться их устойчивой работы. Срок его эксплуатации продлен до 2025 года. Реактор следующего поколения БН-600 был запущен в Свердловской области в 1980 году, и он по-прежнему функционирует.

Очень приятно отметить работы по материаловедению, особенно систематизированные данные исследований по радиационному распуханию. Это послужит дальнейшему развитию реакторов на быстрых нейтронах и пониманию, что происходит в радиационных полях с различными материалами». Участники заседания также рассмотрели возможности практического применения накопленных знаний при разработке новых реакторных установок, рассказывали о своей причастности к пуску БН-350 и поделились впечатлениями. Отработанная технология позволила осуществить пуски реакторов БН-600, БН-800. Сегодня ведутся работы по созданию более крупного коммерческого ректора на быстрых нейтронах — БН-1200. Все это непосредственно связано с событиями 50-летней давности, когда учёные сформировали основные технологические решения и многие научные достижения в этой области. Для справки: БН-350 — энергетический реактор на быстрых нейтронах с натриевым теплоносителем, пущенный в эксплуатацию 16 июля 1973 года на первой советской АЭС с реактором на быстрых нейтронах в г. Шевченко, Казахская ССР.

При вводе МБИР в активную эксплуатацию старый реактор остановят. Целью сооружения МБИР является создание высокопоточного исследовательского реактора на быстрых нейтронах с уникальными потребительскими свойствами для реализации следующих задач: проведение реакторных и послереакторных исследований, производство электроэнергии и тепла, отработка новых технологий производства радиоизотопов и модифицированных материалов. Основным предназначением МБИР является проведение массовых реакторных испытаний инновационных материалов и макетов элементов активных зон для ядерно-энергетических систем четвертого поколения, включая реакторы на быстрых нейтронах с замыканием топливного цикла, а также и тепловые реакторы малой и средней мощности. На сайте могут быть использованы материалы интернет-ресурсов Facebook и Instagram, владельцем которых является компания Meta Platforms Inc. Какое достижение науки в 2021 году вы считаете самым важным?

Росатом получил лицензию на производство ядерного топлива для «реактора будущего»

разработка, испытание реакторов на быстрых нейтронах (быстрых реакторов). Так, без обновления парка высокопоточных реакторов с достаточным потоком быстрых нейтронов в течение пары десятилетий ядерная наука может начать ощущать серьезную нехватку инструментария. В Северске началось капитальное строительство линий электропередачи (ЛЭП) для реализации схемы выдачи мощности будущего энергоблока с инновационным реактором на быстрых нейтронах со свинцовым теплоносителем БРЕСТ-ОД-300. При выстраивании двухкомпонентной атомной энергетики с замыканием ядерного топливного цикла то, что не знали куда деть, становится ценнейшим сырьем – реакторы на быстрых нейтронах «питаются» тем, что остается после работы обычных реакторов. Реакторы на быстрых нейтронах способны нарабатывать плутоний, которого хватит, чтобы обеспечить собственную работу и при необходимости другие реакторы новым топливом.

«Росатом» начал строить первый в мире атомный энергоблок с безотходным циклом

Реактор на быстрых нейтронах БН-800 Белоярской АЭС был полностью переведен на уран-плутониевое МОКС-топливо. важный этап в развитии технологий реакторов на быстрых нейтронах и замыкания ядерного топливного цикла в России. В итоге, на сегодняшний день в Обнинске уже собрали модель активной зоны перспективного реактора на быстрых нейтронах с натриевым теплоносителем БН-1200М. Многоцелевой научно-исследовательский реактор на быстрых нейтронах четвертого поколения поможет изучению технологий двухкомпонентной ядерной энергетики и другим научным целям. Фактически реактор на быстрых нейтронах превратится в «перпетуум мобиле».

Похожие новости:

Оцените статью
Добавить комментарий