Минус на минус даёт плюс. Ведь здесь, если не приложить усилий и не избавиться от «минусов», никакие законы математики не помогут — сколько ни складывай, ни перемножай, а недочеты и упущения по-прежнему останутся таковыми. Требуется доказать, что (-a)(-b)=ab. Чтобы ответить на этот вопрос, мы будем действовать в рамках аксиоматики действительных чисел. Для начала докажем, чт. и даже минус на минус дает плюс.
Почему минус на минус - плюс? - на - будет +? Откуда? Чтобы что? Как?
Желая подчеркнуть, что важна именно структура, которая возникает после введения аксиом, математики говорят: кольцо целых чисел, кольцо многочленов и т. Отталкиваясь от аксиом, можно выводить другие свойства колец. Мы сформулируем аксиомы кольца которые, естественно, похожи на правила действий с целыми числами , а затем докажем, что в любом кольце при умножении минуса на минус получается плюс. Кольцом называется множество с двумя бинарными операциями т. Заметим, что кольца, в самой общей конструкции, не требуют ни перестановочности умножения, ни его обратимости т. Если вводить эти аксиомы, то получаются другие алгебраические структуры, но в них будут верны все теоремы, доказанные для колец.
Для этого нам потребуется установить некоторые факты. Сперва докажем, что у каждого элемента может быть только один противоположный. В самом деле, пусть у элемента A есть два противоположных: B и С. Заметим теперь, что и A, и — —A являются противоположными к одному и тому же элементу —A , поэтому они должны быть равны. Значит, это произведение равно нулю.
А то, что в кольце ровно один ноль ведь в аксиомах сказано, что такой элемент существует, но ничего не сказано про его единственность!
Поэтому то, что сейчас отрицательные ставки играют роль регуляторов, никого не удивляет. Эффективность такого регулятора спорна. Безусловно, ввод отрицательных процентных ставок оказывает прямое воздействие на финансовые рынки. Для них эффект отрицательной доходности выглядит бессмысленным.
Консервативные инвесторы пытаются найти новую доходность за пределами привычных инструментов, принимая дополнительные риски, которые не всегда могут контролировать. Если рассмотреть мировые центробанки, которые ввели отрицательные ставки, то можно заметить, что рынкам нужно было время, чтобы перестроиться. Говоря о краткосрочных долговых обязательствах, двухлетние бумаги достаточно быстро вышли в отрицательную область, где и остались. Рынку потребовалось чуть больше времени, для того чтобы осознать эту новую реальность и перейти в отрицательную область», — уточнил эксперт. На фоне ухода в отрицательную область процентных ставок по государственным бумагам резко снижается доходность по корпоративным бумагам. Премия за кредитный риск, которую получают инвесторы, вкладывая деньги в корпоративные бумаги, постоянно сокращается, что не соответствует действительному изменению кредитного риска.
Происходит перемещение кредитного риска на баланс консервативных инвесторов, которые не всегда могут его правильно оценить. Касательно рынков акций, здесь наблюдается рост, однако он скорее технологический. Консервативные инвесторы в условиях отрицательных ставок пытаются найти новую доходность за пределами привычных инструментов «Известно, что в области отрицательных процентных ставок банки работают довольно плохо, зарабатывают мало. При этом, как любые финансовые инвесторы, вынуждены брать больший риск, который, по сути, не компенсируется получением более высокой маржи. В результате возникает потенциальное давление на капитал, что отрицательно отражается на оценке рынка этих акций европейских банков», — полагает Александр Кудрин. Также эксперт отметил, что если Россия перейдет в область отрицательных ставок, то для российского банковского сектора это будет катастрофа.
С точки зрения достаточности капитала в России дела идут не очень хорошо. Однако если будет давление на капитал со стороны основного бизнеса банков, то это станет потенциальной дополнительной нагрузкой на бюджет. По его мнению, политика отрицательных ставок неоднозначна, как и сам мировой опыт.
Умножение чисел с одинаковыми знаками Чтобы перемножить два отрицательных числа, надо перемножить их модули. Пример 1. Умножение чисел с разными знаками Чтобы перемножить два числа с разными знаками, надо: 1 перемножить модули этих чисел; 2 перед полученным числом поставить знак минус. Пример 2. Пример 3. Деление чисел с одинаковыми знаками Действует тожк правило, что при умножении положительных или отрицательных чисел.
Как понять, почему ";плюс"; на ";минус"; дает ";минус"; 27. Они по-разному взаимодействую с собой, поэтому при выполнении каких-либо действий с числами, например, деление, умножение, вычитание, сложение и т. Без этих правил вы никогда не сможете решить даже самую простую алгебраическую или геометрическую задачу. Без знания этих правил, вы не сможете изучить не только математику, но и физику, химию, биологию, и даже географию. Рассмотрим подробней основные правила знаков.
Если мы делим «плюс» на «минус», то получаем всегда «минус». Если мы делим «минус» на «плюс», то получаем всегда также «минус». Если мы делим «плюс» на «плюс», то получаем «плюс». Если же мы делим «минус» на «минус», то получим, как ни странно, также «плюс». Если мы умножаем «минус» на «плюс», то получаем всегда «минус».
Если мы умножаем «плюс» на «минус», то получаем всегда также «минус». Если мы умножаем «плюс» на «плюс», то получаем положительно число, то есть «плюс». Тоже самое касается и двух отрицательных чисел. Если мы умножаем «минус» на «минус», то получим «плюс». Вычитание и сложение.
Они базируются уже на других принципах. Если отрицательное число будет больше по модулю, чем наше положительное, то результат, конечно же, будет отрицательный. Наверняка, вам интересно, что же такое модуль и зачем он тут вообще. Все очень просто. Модуль — это значение числа, но без знака.
Например -7 и 3. По модулю -7 будет просто 7 , а 3 так и останется 3. В итоге мы видим, что 7 больше, то есть выходит, что наше отрицательное число больше. Можно сделать еще проще. Вычитание действуют полностью по такому же принципу.
Минус на минус даёт плюс — это правило, которые мы выучили в школе и применяем всю жизнь. А кто из нас интересовался почему? Конечно, проще без лишних вопросов запомнить данное утверждение и глубоко не вникать в суть вопроса. Сейчас и без того достаточно информации, которую необходимо «переварить». Но для тех, кого всё же заинтересует этот вопрос, постараемся дать объяснение этому математическому явлению.
С древних времён люди пользуются положительными натуральными числами : 1, 2, 3, 4, 5,… С помощью чисел считали скот, урожай, врагов и т. При сложении и умножении двух положительных чисел получали всегда положительное число, при делении одних величин на другие не всегда получали натуральные числа — так появились дробные числа. Что же с вычитанием? С детских лет мы знаем, что лучше к большему прибавить меньшее и из большего вычесть меньшее, при этом мы опять же не используем отрицательные числа. Получается, если у меня есть 10 яблок, я могу отдать кому-то только меньше 10 или 10.
Я никак не смогу отдать 13 яблок, потому что у меня их нет. Нужды в отрицательных числах не было долгое время. Только с VII века н. При решении этого уравнения нам даже не встретились отрицательные числа. Что мы видим?
Действия с использованием отрицательных чисел должны привести нас к такому же ответу, что и действия только с положительными числами. Мы можем больше не думать о практической непригодности и осмысленности действий — они помогают нам решить задачу гораздо быстрее, не приводя уравнение к виду только с положительными числами. В нашем примере мы не использовали сложных вычислений , но при большом количестве слагаемых вычисления с отрицательными числами могут облегчить нам работу. Со временем, после проведения длительных опытов и вычислений удалось выявить правила, которым подчиняются все числа и действия над ними в математике они называются аксиомами. Отсюда и появилась аксиома, которая утверждает, что при умножении двух отрицательных чисел получаем положительное.
Слушая учителя математики, большинство учеников воспринимают материал как аксиому. При этом мало кто пытается добраться до сути и разобраться, почему «минус» на «плюс» дает знак «минус», а при умножении двух отрицательных чисел выходит положительное. Законы математики Большинство взрослых не в силах объяснить ни себе, ни своим детям, почему так получается. Они твердо усвоили этот материал в школе, но при этом даже не попытались выяснить, откуда взялись такие правила. А зря.
Зачастую современные дети не столь доверчивы, им необходимо докопаться до самой сути и понять, скажем, почему «плюс» на «минус» дает «минус». А иногда сорванцы специально задают каверзные вопросы, дабы насладиться моментом, когда взрослые не могут дать вразумительного ответа. И совсем уж беда, если впросак попадает молодой учитель... Кстати, следует отметить, что упомянутое выше правило действенно как для умножения, так и для деления. Произведение отрицательного и положительного числа даст лишь «минус.
Если речь идет о двух цифрах со знаком «-», то в результате получится положительное число.
Минус на минус даёт нам плюс...
Вспоминая о переместительных законах и о свойствах числа 0, можно рассмотреть сумму всех трех чисел: C, V и D. Попробуем выяснить значение V. Для того чтобы понять, почему все же «плюс» на «минус» дает «минус», необходимо разобраться со следующим. Так, для элемента -C противоположными являются C и - -C , то есть между собой они равны. А это значит, что прибавление произведения 0 х V никак не меняет установленную сумму. Ведь это произведение равняется нулю. Зная все эти аксиомы, можно вывести не только, сколько «плюс» на «минус» дает, но и что получается при умножении отрицательных чисел. Умножение и деление двух чисел со знаком «-» Если не углубляться в математические нюансы, то можно попробовать более простым способом объяснить правила действий с отрицательными числами. Этот пример объясняет, почему в выражении, где идут два «минуса» подряд, упомянутые знаки следует поменять на «плюс». Теперь разберемся с умножением. Аналогично можно доказать, что и в результате деления двух отрицательных чисел выйдет положительное.
Общие математические правила Конечно, такое объяснение не подойдет для школьников младших классов, которые только начинают учить абстрактные отрицательные числа.
Несмотря на идейную простоту формальный подход требует множества долгих и скучных выкладок, а его доказательства вряд ли сделают доказываемое более понятным, поэтому мы не будем использовать формальный подход и пойдем другим путем. Давайте попробуем поискать среди реальных или вымышленных предметов такие, что: о каждом из них мы бы могли бы сказать, что он играет роль обозначает определенное целое число: положительное, отрицательное или ноль; эти предметы можно было бы естественным образом между собой складывать, причем по тем же правилам, что и обозначаемые ими целые числа; эти предметы можно было бы естественным образом друг на друга умножать, причем перемножение происходило бы по тем же правилам, что и перемножение обозначаемых ими целых чисел. На языке математической логики множество таких объектов называлось бы моделью для арифметики целых чисел с операциями сложения и умножения.
Отыскать модель целых, в которой операция умножения была бы совершенно естественной и наглядной, не так-то просто. Много лет назад мне повезло наткнуться на такую. Она потрясла меня своей логической красотой и я хотел бы показать ее вам. Арифметика футуристических картин 2.
Так или иначе, но долгое время после изобретения отрицательных чисел речь шла только об их сложении и вычитании: перемножать отрицательные числа, насколько мне известно, изначально никто не собирался. Чтобы понять, почему сама возможность умножения отрицательных совсем не очевидна, будет полезно пройти историческим путем и разработать какую-нибудь простую модель целых с естественными операциями сложения и вычитания.
Их применяли для учета долгов или в промежуточных вычислениях для упрощения решения уравнений — это был лишь инструмент для получения положительного ответа. Тот факт, что отрицательные числа, в отличие от положительных, не выражают наличие какой-либо сущности, вызывал сильное недоверие. Люди в прямом смысле слова избегали отрицательных чисел: если у задачи получался отрицательный ответ, считали, что ответа нет вовсе.
Это недоверие сохранялось очень долго, и даже Декарт — один из «основателей» современной математики — называл их «ложными» в XVII веке! Рассмотрим для примера уравнение. Его можно решать так: перенести члены с неизвестным в левую часть, а остальные — в правую, получится , ,. При таком решении нам даже не встретились отрицательные числа. Но можно было случайно сделать и по-другому: перенести слагаемые с неизвестным в правую часть и получить ,.
Чтобы найти неизвестное, нужно разделить одно отрицательное число на другое:. Но правильный ответ известен, и остается заключить, что. Что демонстрирует этот нехитрый пример? Во-первых, становится понятна логика, которой определялись правила действий над отрицательными числами: результаты этих действий должны совпадать с ответами, которые получаются другим путем, без отрицательных чисел. Во-вторых, допуская использование отрицательных чисел, мы избавляемся от утомительного если уравнение окажется посложнее, с большим числом слагаемых поиска того пути решения, при котором все действия производятся только над натуральными числами.
Основные определения Вспомним, как отличить положительное число от отрицательного, что такое умножение и какие у него свойства. Начнем с того, что проведем прямую и отметим на ней начало отсчета — точку нуль 0. А теперь укажем направление движения по прямой вправо от начала координат. В этом нам поможет красивая стрелка: Два главных определения: Положительные числа — это точки координатной прямой, которые лежат правее начала отсчета нуля. Положительные числа — это те, что больше нуля, а отрицательные — меньшие. Отрицательные числа — это точки координатной прямой, которые лежат левее начала отсчета нуля.
Математика плюс на плюс: Минус на плюс что дает?
Сложение и вычитание отрицательных чисел – правила (6 класс, математика) | Нужны ОБЪЯСНЕНИЯ, ПОЧЕМУ минус умножить на минус получается плюс. |
Почему минус на минус дает плюс? | Ведь здесь, если не приложить усилий и не избавиться от «минусов», никакие законы математики не помогут — сколько ни складывай, ни перемножай, а недочеты и упущения по-прежнему останутся таковыми. |
.МИНУС на МИНУС даёт ПЛЮС | Плюс на минус даёт правило. |
Минус На Минус Дает Плюс! слушать и скачать музыку в mp3 на телефон – LightAudio | Смарт бритва Huawei Dynacare с HiLink, минус на минус плюс не даёт, буду бородатымПодробнее. |
Когда плюс на минус дает плюс
минус на минус даёт плюс — gvozd' beats prod. “Плюс” на “плюс” всегда дает положительный ответ. То же самое и с двумя минусами: как при умножении, так и при делении двух чисел со знаком “-” получается положительное число. Минус на мину даёт плюс. Обдумай данную ситуацию и в спокойной обстановке прими решение. 7.1M visualizaciones. Descubre videos de TikTok relacionados con «Минус На Минус Даёт Плюс». Mira más videos sobre «Araña Gritona Ojos Verdes, El Ritual Del Café Con Azúcar Sirve Para Encontrar Trabajo, Año Nuevo Valparaíso 2024 Camping, Plato Con Ritual Para El Año Nuevo, How.
Минус на плюс что дает?
Шутка: Минус на минус дает плюс только в математике. Во всех остальных случаях | Иначе говоря, чтобы умножение было осмысленным, "минус на плюс" должен давать "минус". |
Когда минус дает плюс | Бережливое производство 6sigma Топ-Менеджмент Консалт Новости Lean. В 1904 году на Всемирной ярмарке в Сент-Луисе с торговцем вафлями Эрнестом Хамви случилась настоящая беда! |
Минус На Минус Дает Плюс! | «Минус» на «минус» дает «плюс» – об этом знают все без исключения. |
.МИНУС на МИНУС даёт ПЛЮС – смотреть видео онлайн в Моем Мире | СТРАНА ГЛУХИХ | Нужны ОБЪЯСНЕНИЯ, ПОЧЕМУ минус умножить на минус получается плюс. |
Плюс на минус дает... плюс | 1) Почему минус один умножить на минус один равно плюс один? |
Свежие записи
- Telegram: Contact @matematikandrei
- Законы математики
- «Минус на минус» дает плюс
- Календарь вебинаров
- Черчесов Есть два маленьких минуса. Но минус на минус дает плюс
- Минус на плюс что дает?
Причина, по которой минус на минус дает плюс
- Публикации
- Отрицательные числа
- Почему минус на минус дает плюс?
- Сложение и вычитание отрицательных и положительных чисел. Решение примеров.
- Математика плюс на плюс: Минус на плюс что дает?
«Минус» на «Минус» дает плюс?
Дошло уже до того, что синус угла у нас - это проекция точки единичной окружности на ось Y. А разделить на единицу единичный радиус забыли? Разве математика не точная наука. Если результат не меняется от того, что мы не записываем единицу, ноль или Рад, это не значит, что единицу, ноль или рад не нужно записывать. От этого меняется смысл, пропадает смысл, блокируется понимание элементарных вещей школьниками.
Традиция не писать "рад" после Пи доводит до того, что многие думают, что Пи - это 180 градусов! Но Пи - это число 3,14, а не 180 градусов. Есть проблемы и с тригонометрическим кругом, который навязывает косвенно, что существуют синусы для острых углов. Но таковых не существует.
Синус и косинус определяется только для вписанных в окружность углов... И так далее в том же духе. Объяснение темы синусов и косинусов запрятано подальше теорема синусов , чтобы не портить понимание главного инструмента - тригонометрического круга.
Азбука и грамматика Действия с минусом. Почему минус на минус дает плюс Минус и плюс — это признаки отрицательных и положительных чисел в математике.
Они по-разному взаимодействую с собой, поэтому при выполнении каких-либо действий с числами, например, деление, умножение, вычитание, сложение и т. Без этих правил вы никогда не сможете решить даже самую простую алгебраическую или геометрическую задачу. Без знания этих правил, вы не сможете изучить не только математику, но и физику, химию, биологию, и даже географию. Рассмотрим подробней основные правила знаков. Если мы делим «плюс» на «минус», то получаем всегда «минус».
Если мы делим «минус» на «плюс», то получаем всегда также «минус». Если мы делим «плюс» на «плюс», то получаем «плюс». Если же мы делим «минус» на «минус», то получим, как ни странно, также «плюс». Если мы умножаем «минус» на «плюс», то получаем всегда «минус». Если мы умножаем «плюс» на «минус», то получаем всегда также «минус».
Если мы умножаем «плюс» на «плюс», то получаем положительно число, то есть «плюс». Тоже самое касается и двух отрицательных чисел. Если мы умножаем «минус» на «минус», то получим «плюс». Вычитание и сложение. Они базируются уже на других принципах.
Если отрицательное число будет больше по модулю, чем наше положительное, то результат, конечно же, будет отрицательный. Наверняка, вам интересно, что же такое модуль и зачем он тут вообще. Все очень просто. Модуль — это значение числа, но без знака. Например -7 и 3.
По модулю -7 будет просто 7 , а 3 так и останется 3. В итоге мы видим, что 7 больше, то есть выходит, что наше отрицательное число больше.
Отрицательные числа Отрицательные числа — это всего лишь числа, которые находятся слева от точки ноль на числовой прямой. Вот и все определение. Его нетрудно запомнить, но трудно понять. Ведь в реальной жизни отрицательных чисел практически нет: нельзя себе представить — 2 яблока или — 3 ручки. Можно понять, что такое реальное число, что такое отсутствие чисел, но что такое отрицательные числа понять куда труднее. На самом деле можно представить себе любое отрицательное число, как недостаток до нуля. Например, — 3 значит, что при вычитании уменьшаемому не хватило трех единиц, чтобы выйти в ноль. Чаще всего это встречается в бухгалтерских отчетах и финансовых сводках.
Правило знаков В этой теме часто встречается понятие правила знаков, которое изучается в курсе математики 6 класса. Стоит подробнее остановится на этом вопросе.
Причем с 2015 года в Налоговый кодекс РФ внесены изменения, согласно которым каждый может получить вычет с суммы максимум 2 млн руб.
В вашем случае каждый вправе претендовать на вычет с суммы в 1 млн руб. И если в будущем вновь купите недвижимость, то сможете добрать вычет еще по одному миллиону на каждого. Обращаю внимание, что распространяется эта норма на недвижимость, которая приобретена акт приема-передачи оформлен в 2015 году и позже.
Если у объекта, к примеру, четыре собственника, то каждый из них имеет право на вычет с 500 тыс. И в случае следующей покупки претендовать на вычет уже не может. Но опять же в пределах суммы в 2 млн руб.
Плюс в том, что повзрослев такие дети право на имущественный вычет не теряют. Без срока, но с условием — Установлен ли срок, в который налогоплательщик может заявить право на получение вычета? Немаловажен и тот момент, что это право не прерывается, даже если какой-то период у гражданина нет доходов, а, следовательно, и налоговых отчислений.
Если сумма перечисленных за год налогов меньше, то имущественный вычет можно получать в течение нескольких лет до полного его погашения, ежегодно подавая декларацию.
Правила умножения и деления отрицательных чисел
Сейчас и без того достаточно информации, которую необходимо «переварить». Но для тех, кого всё же заинтересует этот вопрос, постараемся дать объяснение этому математическому явлению. С древних времён люди пользуются положительными натуральными числами: 1, 2, 3, 4, 5,… С помощью чисел считали скот, урожай, врагов и т. При сложении и умножении двух положительных чисел получали всегда положительное число, при делении одних величин на другие не всегда получали натуральные числа — так появились дробные числа.
Что же с вычитанием? С детских лет мы знаем, что лучше к большему прибавить меньшее и из большего вычесть меньшее, при этом мы опять же не используем отрицательные числа. Получается, если у меня есть 10 яблок, я могу отдать кому-то только меньше 10 или 10.
Я никак не смогу отдать 13 яблок, потому что у меня их нет. Нужды в отрицательных числах не было долгое время. Только с VII века н.
При решении этого уравнения нам даже не встретились отрицательные числа. Что мы видим? Действия с использованием отрицательных чисел должны привести нас к такому же ответу, что и действия только с положительными числами.
Мы можем больше не думать о практической непригодности и осмысленности действий — они помогают нам решить задачу гораздо быстрее, не приводя уравнение к виду только с положительными числами. В нашем примере мы не использовали сложных вычислений, но при большом количестве слагаемых вычисления с отрицательными числами могут облегчить нам работу. Со временем, после проведения длительных опытов и вычислений удалось выявить правила, которым подчиняются все числа и действия над ними в математике они называются аксиомами.
Отсюда и появилась аксиома, которая утверждает, что при умножении двух отрицательных чисел получаем положительное. Слушая учителя математики, большинство учеников воспринимают материал как аксиому. При этом мало кто пытается добраться до сути и разобраться, почему «минус» на «плюс» дает знак «минус», а при умножении двух отрицательных чисел выходит положительное.
Законы математики Большинство взрослых не в силах объяснить ни себе, ни своим детям, почему так получается. Они твердо усвоили этот материал в школе, но при этом даже не попытались выяснить, откуда взялись такие правила. А зря.
Зачастую современные дети не столь доверчивы, им необходимо докопаться до самой сути и понять, скажем, почему «плюс» на «минус» дает «минус». А иногда сорванцы специально задают каверзные вопросы , дабы насладиться моментом, когда взрослые не могут дать вразумительного ответа.
Еще одна дочка выпала из машины и осталась жива, но получила сильнейшие ожоги.
Какая судьба ждет беднягу? Когда рассказываю такие истории, анализирую причины аварий, женщины в зале просят воды, а некоторые мужчины дают зарок: «Продам машину, не буду рисковать…» — На старте программы «Минус 100» Госавтоинспекцию поддержали средства массовой информации. Вскоре в МВД заговорили о том, что движению нужна третья сила в лице местной власти, директоров предприятий.
Удалось ли ее обрести в 2008 году? Однако проблема аварийности куда шире одного ведомства. Многое зависит от хозяев на местах.
Увы, выполняются далеко не все наши предписания, которые идут в райисполкомы. К примеру, просим осветить улицы в поселке — никакой реакции. Есть в стране такие города, где вдоль центральных улиц нет тротуаров.
Тогда мы почувствуем, что в программу «Минус 100» наконец включилась эта самая третья сила. Изменится ли что-то в ПДД, увеличатся ли штрафы? Новшества касались зимней резины, детских автокресел, тонировки и парковки.
Жизнь покажет, нужно ли вписывать в ПДД новые статьи для автолюбителей, но пока такой надобности нет. А вот водителям мопедов и скутеров с объемом двигателя до 50 кубических сантиметров, а также велосипедистам придется изучать азбуку безопасности. ГАИ настаивает, чтобы эти транспортные средства регистрировались в районных обществах автомотолюбителей с присвоением регистрационного знака, а водители учились на краткосрочных курсах 10 часов и получали удостоверение.
Если наши предложения поддержат, то они будут узаконены, возможно, уже во втором полугодии.
Поэтому детям кажется логичнее, что при умножении отрицательной материи должно происходить приумножение именно отрицательной материи. Но и здесь не всё гладко, ведь для приумножения отрицательной материи достаточно чтобы только одно число было с минусом. При этом один из сомножителей, который обозначает не вещественное наполнение, а разы повторения отобранной материи всегда положительный, так как разы не могут быть отрицательными даже если повторяется отрицательная отобранная материя. А для того, чтобы знак минус воспринимался не как признак мнимого числа, то есть отрицательной материи, а как действие, взрослым нужно договориться сначала между собой, что если знак минус стоит пред числом, то он обозначает отрицательное действие с числом, которое всегда положительное, а не мнимое. Если же знак минус стоит перед другим знаком, то он обозначает отрицательное действие с первым знаком, то есть меняет его на противоположный. Тогда всё станет на свои места естественным образом. Затем надо объяснить это детям и они прекрасно поймут и усвоят такое понятное правило взрослых.
Ведь сейчас все взрослые участники обсуждения фактически пытаются объяснить необъяснимое, так как физического объяснения этому вопросу нет, это просто условность, правило. А объяснять абстракцию абстракцией же - это тавтология. Если знак минус отрицает число, то это физическое действие, но если он отрицает само действие, то это просто условное правило.
Наведите порядок в обязанностях. Быть может, самое время взять инициативу в свои руки? К тому же кризис — это не только возможность, но теперь уже и необходимость для бухгалтера оторваться от «текучки» и начать мыслить стратегически. В каждодневной работе на это так часто не хватает времени! Расширив сферу обязанностей, вы сможете проявить себя как исполнительный и надежный сотрудник. А если вы предложите руководству способы выхода из кризиса, то ваша оценка в его глазах возрастет. Для бухгалтера финансовый кризис — это... На вопрос, что для бухгалтера финансовый кризис, они ответили — это сокращение доходов. И все же будем надеяться, что на практике доходы если не повысятся, то хотя бы не уменьшатся. Лучшие времена непременно настанут. И наверняка начальство поощрит ваши былые заслуги, в том числе материально. Говоря о перспективах для сотрудников, нельзя забывать о перспективах самой организации. Но сейчас, когда конкуренты сокращают расходы на рекламу, не стоит им вторить. Конечно, это относится к тем организациям, которые могут себе позволить если не увеличивать, то хотя бы не сокращать эти расходы. Те, на кого направлена рекламная информация — в основном это покупатели товаров, работ, услуг, — обязательно заметят то, что в суровые времена ваша организация выстояла среди конкурентов. А значит, она надежная, и ей можно доверять. Здесь сработает банальный принцип — если фирма тратит деньги на рекламу, следовательно, у нее они есть в достаточном количестве. А в кризис абсолютная ликвидность особо ценится.
Сложение и вычитание отрицательных чисел. Что дает плюс на минус.
Когда плюс на минус дает плюс | Знак «минус» можно трактовать как отрицание, тогда «минус» «минус» есть подтверждение. |
Минус на минус даёт плюс. А почему? | Иначе говоря, чтобы умножение было осмысленным, "минус на плюс" должен давать "минус". |
Цитата: «Минус на минус даёт плюс» – Каспийский Груз - "Была Не Была" | Таким образом, правило минус на минус дает плюс можно объяснить с помощью основного принципа отрицательных чисел и свойств умножения. |
Правило минус на минус дает | Бережливое производство 6sigma Топ-Менеджмент Консалт Новости Lean. В 1904 году на Всемирной ярмарке в Сент-Луисе с торговцем вафлями Эрнестом Хамви случилась настоящая беда! |
Минус на минус даёт плюс или как крысы решили проблему | Конечно, проще без лишних вопросов запомнить данное утверждение и глубоко не вникать в суть вопроса. |
Минус На Минус Дает Плюс!
Отношения в прайде резко изменились, самочка стала резко недовольна пополнением, за моего дохляка участились даже драки среди самок. Жена молчала. Но когда за дохляком уже бегали самочки, а он уже не знал куда и с кем, я сказал жене: — Милая, то были твои женские мечты, а это — статистическая реальность. Мораль сей басни такова — иногда чтоб тебя уважали как мущщину достаточно и 300 рублей.
Как-то я решал сложную задачу с длинным решением. Я точно знал, какой результат должен быть. Но результат был другим. Я долго искал ошибку в расчетах, но не смог ее найти. Тогда, за несколько действий до итогового результата, я изменил одно число так, чтобы результат получился правильным. Я в расчетах соврал два раза и получил правильный результат. Математические вычисления в тот раз никто не проверял и я получил хорошую оценку.
Это очень похоже на правило «минус на минус дает плюс», не так ли? Но вернемся к нашим бочкам. Кстати, говорят, именно с бочек с вином математики срисовали знак «минус». Виноделы этим знаком обозначали пустые бочки. После наполнения бочек вином они перечеркивали знак «минус» и получался знак «плюс». По сути, знак «минус» заменял виноделам обычный ноль, ведь он обозначал отсутствие вина в бочке. Но математики ловко присобачили знак «минус» к числам и назвали их «отрицательными». Так что же не так с мёдом и дёгтем в бочках? Мои четыре примера описывают действие сложения — ведь мы прибавляем одно к другому, а математические правила мы рассматриваем для деления и умножения. Это абсолютно разные вещи, сколько бы математики не повторяли, что умножение это и есть сложение.
Сложение — это изменение количества. Умножение — это изменение качества. При добавлении ложки дёгтя в бочку мёда, мёд не превращается в дёготь. Мы просто получаем бочку испорченного мёда. Точно так же и дёготь, добавленный в бочку дёгтя, не превращает всё в мёд. При сложении и вычитании положительных и отрицательных чисел действуют совсем другие правила знаков. В чем же отличие качественных изменений от количественных? В единицах измерения, которые в математике предпочитают игнорировать.
Заметили мы, что 2 мальчика периодически дерутся между собой, девочка такая наглая стоит посредине, а 2 самца мочатся у неё на глазах. Один мальчик большой, другой поменьше, размер имеет значение, мелкий дохляк в результате горевал в углу аквариума, а победитель охаживал довольную самочку. Так вот жена моя взяла наглость каждый раз при их битвах тыкать мне о законах природы и мужской конкуренции в отношениях. Мне стало жалко горемыку-дохляка, пошёл я в тот же магазин и купил 2-х самочек, не иначе.
Со временем, после проведения длительных опытов и вычислений удалось выявить правила, которым подчиняются все числа и действия над ними в математике они называются аксиомами. Отсюда и появилась аксиома, которая утверждает, что при умножении двух отрицательных чисел получаем положительное. Слушая учителя математики, большинство учеников воспринимают материал как аксиому. При этом мало кто пытается добраться до сути и разобраться, почему «минус» на «плюс» дает знак «минус», а при умножении двух отрицательных чисел выходит положительное. Законы математики Большинство взрослых не в силах объяснить ни себе, ни своим детям, почему так получается. Они твердо усвоили этот материал в школе, но при этом даже не попытались выяснить, откуда взялись такие правила. А зря. Зачастую современные дети не столь доверчивы, им необходимо докопаться до самой сути и понять, скажем, почему «плюс» на «минус» дает «минус». А иногда сорванцы специально задают каверзные вопросы, дабы насладиться моментом, когда взрослые не могут дать вразумительного ответа. И совсем уж беда, если впросак попадает молодой учитель... Кстати, следует отметить, что упомянутое выше правило действенно как для умножения, так и для деления. Произведение отрицательного и положительного числа даст лишь «минус. Если речь идет о двух цифрах со знаком «-», то в результате получится положительное число. То же касается и деления. Если одно из чисел будет отрицательным, то частное тоже будет со знаком «-». Для объяснения правильности этого закона математики, необходимо сформулировать аксиомы кольца. Но для начала следует понять, что это такое. В математике кольцом принято называть множество, в котором задействованы две операции с двумя элементами. Но разбираться с этим лучше на примере. Кроме того, для каждого C есть противоположный элемент, который можно обозначить, как -C. Выведение аксиом для отрицательных чисел Приняв приведенные выше утверждения, можно ответить на вопрос: «"Плюс" на "минус" дает какой знак? Для этого придется вначале доказать, что у каждого из элементов существует лишь один ему противоположный «собрат». Рассмотрим следующий пример доказательства. Давайте попробуем представить, что для C противоположными являются два числа - V и D. Вспоминая о переместительных законах и о свойствах числа 0, можно рассмотреть сумму всех трех чисел: C, V и D. Попробуем выяснить значение V. Для того чтобы понять, почему все же «плюс» на «минус» дает «минус», необходимо разобраться со следующим. Так, для элемента -C противоположными являются C и - -C , то есть между собой они равны. А это значит, что прибавление произведения 0 х V никак не меняет установленную сумму. Ведь это произведение равняется нулю. Зная все эти аксиомы, можно вывести не только, сколько «плюс» на «минус» дает, но и что получается при умножении отрицательных чисел. Умножение и деление двух чисел со знаком «-» Если не углубляться в математические нюансы, то можно попробовать более простым способом объяснить правила действий с отрицательными числами. Этот пример объясняет, почему в выражении, где идут два «минуса» подряд, упомянутые знаки следует поменять на «плюс». Теперь разберемся с умножением. Аналогично можно доказать, что и в результате деления двух отрицательных чисел выйдет положительное. Общие математические правила Конечно, такое объяснение не подойдет для школьников младших классов, которые только начинают учить абстрактные отрицательные числа. Им лучше объяснять на видимых предметах, манипулируя знакомым им термином зазеркалья. Например, придуманные, но не существующие игрушки находятся именно там. Их и можно отобразить со знаком «-». Умножение двух зазеркальных объектов переносит их в еще один мир, который приравнивается к настоящему, то есть в результате мы имеем положительные числа. А вот умножение абстрактного отрицательного числа на положительное лишь дает знакомый всем результат. Ведь «плюс» умножить на «минус» дает «минус». Правда, в дети не слишком-то пытаются вникнуть во все математические нюансы. Хотя, если смотреть правде в глаза, для многих людей даже с высшим образованием так и остаются загадкой многие правила. Все принимают как данность то, что преподают им учителя, не затрудняясь вникать во все сложности, которые таит в себе математика. Это верно как для целых, так и для дробных чисел. Действительно, а почему? Проще всего ответить: «Потому что таковы правила действий над отрицательными числами». Правила, которые мы учим в школе и применяем всю жизнь. Однако учебники не объясняют, почему правила именно такие. Мы запомнили - что вот именно так и больше не задаемся вопросом. А давайте зададимся... Давным-давно людям были известны только натуральные числа: 1, 2, 3,... Их использовали для подсчета утвари, добычи, врагов и т. Но числа сами по себе довольно бесполезны — нужно уметь с ними обращаться. Сложение наглядно и понятно, к тому же сумма двух натуральных чисел — тоже натуральное число математик сказал бы, что множество натуральных чисел замкнуто относительно операции сложения.
Минус на минус дает плюс
В итоге, зная правильный ответ, мы сами понимаем, что минус на минус ДОЛЖЕН давать плюс. Готовься к ОГЭ и ЕГЭ по математике вместе со мной: мне, чтобы задать вопрос или записаться на курсы подготовки. С просьбой объяснить все «плюсы» и «минусы» майских платежек редактор портала обратился к бухгалтеру центра расчетов с потребителями Алевтине Мальцевой. Таким образом, правило минус на минус дает плюс можно объяснить с помощью основного принципа отрицательных чисел и свойств умножения. Например, 2 * (-3) = -6. В этом случае, «плюс» на «минус» дает «минус», потому что один множитель положительный, а другой отрицательный. Конечно, проще без лишних вопросов запомнить данное утверждение и глубоко не вникать в суть вопроса.
Войти на сайт
При вычитания двух чисел, в которых оба отрицательные, следует знать правило: минус на минус дает плюс. «Враг моего врага — мой друг». Рисунок © Е.В. Проще всего ответить: «Потому что таковы правила действий над отрицательными числами». Правила, которые мы учим в школе и применяем всю жизнь. Однако учебники не объясняют, почему правила именно такие. Отрицательные числа — это числа со знаком «минус».