спинного мозга выделяют полный поперечный и парциальный поперечный миелит, а на основании протяженности патологических изменений — продольно распространенный поперечный и продольно ограниченный поперечный миелит [3]. Медновости. Гипотезы и открытия. Ученых заинтересовал спинной мозг в контексте проблем с памятью после COVID-19. РИА Новости: Бойцы ВС РФ спаслись от дронов ВСУ на машине с "Волнорезом". При частичном повреждении спинной мозг может передавать некоторые сигналы в головной мозг и наоборот, поэтому такие пациенты обладают некоторой чувствительностью и даже некоторыми моторными функциями ниже пораженной области. Работа лишь одной субпопуляции нейронов спинного мозга помогла пациентам с параличом снова двигаться. Для терапии травм спинного мозга авторы статьи, использовали электростимуляцию клеток поясничного отдела.
Главный онколог «СМ-Клиника» об опухолях спинного мозга
Пациент — мужчина 38 лет, который около 10 лет назад упал с велосипеда и оказался парализованным. Пациент, который уже год испытывает на себе изобретение, сам научился ходить по дому с костылями, садиться в машину, выходить из машины. Как отмечают ученые, пока неизвестно, сможет ли новая технология помочь больным с другими видам паралича, так как у пациента был частичный паралич например, он мог короткое время самостоятельно стоять на ногах. Впрочем исследователи считают, что расширенное применение устройства — дело времени и калибровки.
Ожидается, что испытания на людях состоятся в конце 2024 или начале 2025 года в Израиле, США и Канаде. Каждый год от 250. Около 90 процентов случаев связаны с несчастным случаем, падением или насилием. Экзосомы, также известные как внеклеточные везикулы, представляют собой наночастицы, естественным образом присутствующие в организме и выделяемые клетками. Они обладают уникальной способностью транспортировать биологический «груз» к определенным клеткам и воспаленным тканям, перемещаясь во внеклеточном пространстве и проникая через клеточные мембраны.
Он учитель физкультуры с 45 летним стажем. И всегда в движении. День, когда его почти парализовало, он запомнил на всю жизнь. Аллея на спуске, разогнался и начал тормозить, тормоза отказали, и пришлось искать место куда нырнуть, отклонился в сторону и в кусты вишни. Меня в спину опрокинуло», — вспоминает Юрий Киндеров. У пациента, как уже потом выяснят врачи, был стеноз — сужение канала позвоночника. После травмы состояние ухудшилось. Шейные позвонки зажали спинной мозг.
Кроме того, у пациентов с этими заболеваниями нередко наблюдается избыток таких токсических элементов, как мышьяк, кадмий, свинец, таллий, алюминий и бериллий. Первые подтверждения перспективности такого подхода получены при анализе образцов сыворотки крови пациентов из биобанка Научно-технологического парка биомедицины Сеченовского Университета». Для оценки рисков возникновения заболевания необходимо ввести в разработанную компьютерную программу результаты анализа элементного профиля по заданным параметрам. Анализ проводится с помощью масс-спектрометрии с индуктивно-связанной плазмой. После ввода показателей анализа система, основанная на статистических моделях, просчитывает риск наличия патологического процесса и предоставляет результат. В дальнейшем в соответствии с этим результатом врач может принять решение о целесообразности проведения углубленного обследования.
Ученые восстановили разрушенный спинной мозг
Новый подход может облегчить реабилитацию пациентов и существенно снизить стоимость лечения. Подпишитесь , чтобы быть в курсе. Существующие сегодня спинальные стимуляторы имплантируются либо в дорсональную поверхность спинного мозга, либо непосредственно в ткань позвоночника. В первом случае есть риски неточного воздействия импланта на целевые нервы, а во втором операция несет риски повреждения ткани, а также проблемы биосовместимости. Ученые из Университета Джона Хопкинса решили обе проблемы, создав вводимый через шприц имплант.
Контрольная мышь получала такую же стимуляцию в то же время, но без привязки к положению ее задней лапы.
Уже через 10 минут наблюдались результаты моторного обучения, но только у подопытных мышей: их лапки оставались высоко поднятыми, избегая электрической стимуляции. Этот результат показал, что спинной мозг может ассоциировать неприятные ощущения с положением ног и адаптировать свою двигательную активность таким образом, чтобы избежать неприятных ощущений. И все это без участия мозга. Двадцать четыре часа спустя они повторили 10-минутный тест, но поменяли местами подопытных и контрольных мышей. Подопытные мыши по-прежнему не поднимали ноги, то есть в спинном мозге сохранилась память о прошлом опыте, который мешал новому обучению.
Установив таким образом, что в спинном мозге происходит как непосредственное обучение, так и формирование памяти, команда исследователей приступила к изучению нейронной цепи, которая обеспечивает эти функции. Они использовали шесть видов трансгенных мышей, у каждой из которых был отключен разный набор спинальных нейронов, и протестировали их на способность к формированию моторной памяти, а затем — к обратному обучению.
Подниматься и спускаться по пандусам или лестницам он не мог. Тогда он решил поучаствовать в новом исследовании. Сначала ученые выяснили, какие именно области коры мозга пациента больше всего вовлечены в попытки двигать ногами — это нужно было, чтобы понять, где размещать имплантаты, которые будут считывать сигналы. Имплантаты — это 2 титановых круглых корпуса диаметром 5 сантиметров, внутри которых сетка из 64 электродов. Врачи встроили их в череп пациента, присоединив электроды к твердой мозговой оболочке левого и правого полушария.
Записанные сигналы мозга ловила антенна на внешней гарнитуре ее пациент носил в рюкзаке за спиной и передавала их в режиме реального времени на процессор — тот на основе этих сигналов прогнозировал двигательные намерения. Затем эти двигательные намерения преобразовывались в новые сигналы, которые обрабатывал тот же процессор. Генератор передавал электрические импульсы на корешки спинного мозга с помощью матрицы из 16 электродов на имплантированном лопастном проводе Specify 5-6-5. Эти электроды остались в спинном мозгу пациента еще со времен прошлого исследования. Сверху — кортикальные имплантаты, посередине — носимый процессор, снизу — спинномозговой имплантат и генератор импульсов. Henri Lorach et al.
Подпишитесь , чтобы быть в курсе. Существующие сегодня спинальные стимуляторы имплантируются либо в дорсональную поверхность спинного мозга, либо непосредственно в ткань позвоночника. В первом случае есть риски неточного воздействия импланта на целевые нервы, а во втором операция несет риски повреждения ткани, а также проблемы биосовместимости. Ученые из Университета Джона Хопкинса решили обе проблемы, создав вводимый через шприц имплант. Цифровой прорыв: как искусственный интеллект меняет медийную рекламу До начала разработки импланта изначально они обнаружили новое место для стимуляции, которое располагается очень близко к важнейшим мотонейронам спинного мозга и одновременно доступно без хирургического вмешательства.
Человеческому мозгу вернули контроль над парализованными ногами
спинного мозга выделяют полный поперечный и парциальный поперечный миелит, а на основании протяженности патологических изменений — продольно распространенный поперечный и продольно ограниченный поперечный миелит [3]. Суть заключается в многоуровневой стимуляции спинного мозга в сочетании со специальными упражнениями. Спинной мозг новости восстановления.
Всего одна субпопуляция нейронов помогла пациентам начать ходить после паралича
Исследователи из Калифорнийского университета (University of California) опубликовали результаты своих экспериментов — им удалось восстановить целостность спинного мозга крыс с помощью нейронов, полученных из стволовых клеток. спинного мозга выделяют полный поперечный и парциальный поперечный миелит, а на основании протяженности патологических изменений — продольно распространенный поперечный и продольно ограниченный поперечный миелит [3]. До начала разработки импланта изначально они обнаружили новое место для стимуляции, которое располагается очень близко к важнейшим мотонейронам спинного мозга и одновременно доступно без хирургического вмешательства. При частичном повреждении спинной мозг может передавать некоторые сигналы в головной мозг и наоборот, поэтому такие пациенты обладают некоторой чувствительностью и даже некоторыми моторными функциями ниже пораженной области. По сути, был создан беспроводной интерфейс между головным и спинным мозгом, используя технологию интерфейса мозг-компьютер, которая преобразует мысли в действия.
Травматическое повреждение спинного мозга (Continuum, февраль 2024)
Травматическое повреждение спинного мозга (Continuum, февраль 2024) > MedElement | Новости науки и техники/. |
Спинной мозг подсоединили к головному и вернули человеку с травмой позвоночника подвижность | Травма спинного мозга (ТСМ) – это сложное неврологическое состояние, вызывающее физическую инвалидность, психологический стресс. |
Парализованный мужчина начал ходить с помощью "моста" между головой и спинным мозгом | 40-летний мужчина смог снова ходить благодаря "цифровому мосту", который беспроводным способом соединяет головной мозг с участком спинного мозга, сообщает Sky News. |
Открытие ученых о регенерации нейронов спинного мозга | До начала разработки импланта изначально они обнаружили новое место для стимуляции, которое располагается очень близко к важнейшим мотонейронам спинного мозга и одновременно доступно без хирургического вмешательства. |
Спинной мозг. Секреты наружного строения | Вести с полей: спинной мозг и движение. |
Прорыв в лечении поврежденного спинного мозга
Что происходит во время травмы? Теперь же с помощью цифрового моста — электродов, помещаемых между спинным мозгом и позвоночником и имитирующих сигналы, которые поступают от головного мозга — был совершен прорыв в медицине. Повреждения спинного мозга представляют собой серьезную медицинскую проблему, часто означающую паралич и необратимую функциональную потерю для пострадавших.
Спинной мозг подсоединили к головному и вернули человеку с травмой позвоночника подвижность
Sagol Center for Regenerative Biotechnology реклама Исследования проводятся под руководством профессора Тала Двира из Сагольского центра регенеративных биотехнологий Тель-Авивского университета. Его команда приступила к работе, взяв небольшие образцы жировой ткани из брюшной полости трех человек, после чего отделила соматические клетки внутри этой ткани от окружающего их материала внеклеточного матрикса. С помощью генной инженерии клетки были перепрограммированы, превратившись в так называемые индуцированные плюрипотентные стволовые клетки. Интерстициальный матрикс, тем временем, был преобразован в гидрогель. Поскольку гель был изготовлен из собственных тканей каждого человека, это исключало возможность его отторжения иммунной системой при имплантации в организм. Некоторые образцы жировой ткани живота, использованные в исследовании. Sagol Center for Regenerative Biotechnology После этого стволовые клетки были введены в гидрогель с помощью " технологии, имитирующей эмбриональное развитие спинного мозга". Через 30 дней была получена партия трехмерных имплантатов спинного мозга, каждый из которых состоял из нейронных сетей, содержащих двигательные нейроны.
Они надеются, что однажды технология может быть использована для восстановления функций рук и кистей, сообщает Zakon.
Мост состоит из двух электронных имплантатов, по одному в головном и спинном мозге. Первый размещен над областью мозга, отвечающей за управление движениями ног, и может декодировать электрические сигналы, возникающие, когда мы думаем о ходьбе. Аналогичным образом второй имплантат размещается над частью спинного мозга, которая управляет ногами. Ученые заявили, что революционная технология "превращает мысли в действия", восстанавливая нарушенную связь между головным мозгом и областью спинного мозга, контролирующей движения. Первым пациентом стал 40-летний голландец, инженер Герт-Ян Оскам, который получил травму спинного мозга после аварии на велосипеде во время работы в Китае в 2011 году. Он остался парализованным, но уже через несколько дней после того, как хирурги откалибровали имплантаты, он заметил улучшения.
Он также вновь открыл для себя походы с друзьями в бар. Имплантаты оставались эффективными и через год, в том числе и тогда, когда Оскам находился дома без присмотра врачей. Его лечением занимались неврологи и нейрохирурги из швейцарской Университетской больницы Лозанны, Университета Лозанны и Швейцарского федерального технологического института Лозанны. Сами имплантаты разработала Французская комиссия по атомной энергии. Как работает технология? Руководитель проекта в комиссии Гийом Шарве рассказал, что имплантаты используют "адаптивный искусственный интеллект" для декодирования намерений мозга о движении в режиме реального времени. После того как ИИ идентифицирует сигналы, они преобразуются в последовательности электрической стимуляции спинного мозга, которые активируют мышцы ног и вызывают желаемое движение.
Этот препарат призван помочь в лечении травм спинного мозга, устраняя воспалительный процесс и способствуя более эффективной реабилитации, пишет ТАСС. Он подчеркнул, что подобные серийные препараты пока не представлены на рынке, и они планируют запустить клинические испытания уже в 2024 году.
Нейроинтерфейс между спинным и головным мозгом позволил ходить паценту с травмой позвоночника
Science: Ученые заставили мышей пойти после повреждения спинного мозга - Вести Московского региона | Травма спинного мозга (ТСМ) – это сложное неврологическое состояние, вызывающее физическую инвалидность, психологический стресс. |
Ученые КФУ разработали новый метод восстановления спинного мозга | Травма спинного мозга (ТСМ) – это сложное неврологическое состояние, вызывающее физическую инвалидность, психологический стресс. |
Спинной мозг. Секреты наружного строения | «Естественная ходьба после травмы спинного мозга с использованием интерфейса мозг-позвоночник» представляет ситуацию Герта-Яна, 40 лет, который получил травму спинного мозга после велосипедной аварии, в результате которой он был парализован. |