Соответственно, поскольку мы выбираем водородную бомбу в качестве отправной точки для разработки термоядерных реакторов — включая с трудом полученные физические знания, лежащие в основе бомбы, — необходимо найти замену спусковому механизму деления. Термоядерная (водородная) бомба — также достаточно проста по конструкции. Создать водородную (термоядерную) бомбу решили участники «Манхэттенского проекта». Работать над созданием водородной бомбы начали сразу после войны в конце 1945 года. это все те же РДС-6с.
Д.т.н. И.И.Никитчук. Термоядерный прорыв. К истории создания водородной бомбы в СССР
В этот раз реакция была заинтересованной. Из Москвы через Сахалинский обком пришла команда выделить настойчивому солдату охраняемую комнату и все необходимое для подробного описания предложений. Спецработа На этом месте уместно прервать рассказ о датах и событиях и обратиться к содержанию сделанных высшей советской инстанции предложений. Как писал летом 1950 года сам автор, его работа состояла из четырех частей, а именно: Основные идеи. Опытная установка по преобразованию энергии литиево-водородных реакций в электрическую. Опытная установка по преобразованию энергии урановых и трансурановых реакций в электрическую. Литиево-водородная бомба конструкция. Далее О. Лаврентьев пишет, что подготовить части 2 и 3 в подробном виде не успел и вынужден ограничиться кратким конспектом, часть 1 тоже сыровата «написана весьма поверхностно». По сути, в предложениях рассматриваются два устройства: бомба и реактор, при этом последняя, четвертая, часть — там, где предлагается бомба, — крайне лаконична, это всего несколько фраз, смысл которых сводится к тому, что все уже разобрано в первой части.
В таком виде, «на 12 листах», предложения Ларионова в Москве попали на рецензию к А. Сахарову , тогда еще кандидату физматнаук, а главное, одному из тех людей, которые в СССР тех лет занимались вопросами термоядерной энергии, в основном подготовкой бомбы. Сахаров выделил в предложении два основных момента: осуществление термоядерной реакции лития с водородом их изотопов и конструкция реактора. В написанном, вполне благожелательном, отзыве о первом пункте говорилось кратко — это не подходит. Непростая бомба Чтобы ввести читателя в контекст, необходимо сделать краткий экскурс в реальное положение дел. В современной а, насколько можно судить по открытым источникам, базовые принципы конструкции с конца пятидесятых годов практически не изменились водородной бомбе роль термоядерной «взрывчатки» выполняет гидрид лития — твердое белое вещество, бурно реагирующее с водой с образованием гидроксида лития и водорода. Последнее свойство дает возможность широко применять гидрид там, где нужно временно связать водород. Хорошим примером является воздухоплавание, но им список, конечно, не исчерпывается. Гидрид, применяемый в водородных бомбах, отличается своим изотопным составом.
Вместо «обычного» водорода в его составе участвует дейтерий, а вместо «обычного» лития — его более легкий изотоп с тремя нейтронами. Получившийся дейтерид лития, 6LiD, содержит почти все необходимое для большой иллюминации. Чтобы инициировать процесс, достаточно всего-навсего взорвать расположенный поблизости например, вокруг или, наоборот, внутри ядерный заряд. Образовавшиеся при взрыве нейтроны поглощаются литием-6, который в результате распадается с образованием гелия и трития. Повышение давления и температуры в результате ядерного взрыва приводит к тому, что вновь появившийся тритий и дейтерий, бывший на месте событий изначально, оказываются в условиях, необходимых для начала термоядерной реакции. Ну вот и все, готово. Оба компонента термоядерной бомбы. Б Взрывчатое вещество подрывает первую ступень, сжимая ядро плутония до сверхкритического состояния и инициируя цепную реакцию расщепления. В В процессе расщепления в первой ступени происходит импульс рентгеновского излучения, который распространяется вдоль внутренней части оболочки, проникая через наполнитель из пенополистирола.
Г Вторая ступень сжимается вследствие абляции испарения под воздействием рентгеновского излучения, и плутониевый стержень внутри второй ступени переходит в сверхкритическое состояние, инициируя цепную реакцию, выделяя огромное количество тепла. Д В сжатом и разогретом дейтериде лития-6 происходит реакция слияния, испускаемый нейтронный поток является инициатором реакции расщепления тампера. Огненный шар расширяется… Этот путь не является единственным и уж тем более обязательным. Вместо дейтерида лития можно использовать готовый тритий в смеси с дейтерием. Проблема в том, что оба они — газы, которые сложно содержать и перевозить, не говоря уже о том, чтобы запихнуть в бомбу. Получающаяся конструкция вполне пригодна для взрыва на испытаниях, таковые производились. Проблема только в том, что ее невозможно доставить «адресату» — размеры сооружения исключают такую возможность напрочь. Дейтерид лития, будучи твердым веществом, позволяет элегантно обойти эту проблему. Термоядерная установка Ivy Mike незадолго до испытаний.
Атолл Эниветок, 1952 г. В 1950 году это было сверхсекретом, доступ к которому имел крайне ограниченный круг лиц. Разумеется, солдат, несущий службу на Сахалине, в этот круг не входил.
Самого по себе этого недостаточно для начала термоядерного взрыва, но его можно использовать для ускорения реакции: несколько граммов дейтерия и трития в центре делящейся активной зоны произведут большой поток нейтронов, что значительно увеличит скорость горения материал делящийся. Полученные нейтроны имеют энергию 14,1 МэВ , что достаточно, чтобы вызвать деление U-238, что приведет к реакции деления-синтеза-деления.
Другие реакции могут продолжаться только тогда, когда первичный ядерный взрыв создал необходимые условия температуры и сжатия. Для реакции деления требуется 550 нс, а для реакции синтеза - 50 нс. После воспламенения химического взрывчатого вещества срабатывает бомба деления. Взрыв вызывает появление рентгеновских лучей , которые отражаются от оболочки и ионизируют полистирол, переходящий в плазменное состояние. Рентгеновские лучи облучают буфер, сжимающий термоядерное топливо 6 LiD , и праймер из плутония, который под действием этого сжатия и нейтронов начинает трескаться.
Сжатый и доведенный до очень высоких температур дейтерид лития 6 LiD запускает реакцию синтеза. Обычно наблюдается такой тип реакции синтеза: Когда термоядерный материал плавится при температуре более ста миллионов градусов, он выделяет огромное количество энергии. При данной температуре количество реакций увеличивается как функция квадрата плотности: таким образом, более высокое сжатие в тысячу раз приводит к образованию в миллион раз большего количества реакций. Реакция синтеза производит большой поток нейтронов, который облучает буфер, и если он состоит из расщепляющихся материалов например, 238 U , произойдет реакция деления, вызывающая новое высвобождение энергии того же порядка, что и при синтезе. Последовательность взрыва водородной бомбы: A: Бомба до взрыва; верхняя стадия деления первичная , нижняя стадия плавления вторичная , все подвешены в пенополистироле.
B: Взрывчатое вещество большой мощности детонирует в первичной обмотке, сжимая плутоний в сверхкритическом режиме и инициируя реакцию деления. C: грунтовка излучает рентгеновские лучи, которые отражаются внутри корпуса и облучают поверхность прокладки пенополистирол прозрачен для рентгеновских лучей и служит только опорой. D: Рентгеновские лучи испаряют поверхность подушки, сжимая вторичную обмотку, и плутоний начинает делиться. E: Сжатый и нагретый дейтерид лития 6 запускает реакцию синтеза, а поток нейтронов начинает деление буфера. Начинает формироваться огненный шар...
Мощность и эффект взрыва Термоядерные бомбы имеют качественно аналогичные эффекты с другим ядерным оружием. Однако они, как правило, более мощные, чем бомбы класса А, поэтому количественные эффекты могут быть намного сильнее.
Причины — световое излучение взрыва и пожары на местности. Разрушение зданий и сооружений включая подземные , вызванные ударной волной термоядерного взрыва. Большое количество пострадавших с травмами различного характера и степени тяжести переломы костей, множественные порезы, контузии и разрывы внутренних органов , полученными, как от непосредственного воздействия ударной волны, так и от вторичных факторов удары обломков зданий, битого стекла, металлической арматуры и т. Наличие пострадавших, которые подверглись воздействию проникающей радиации гамма-излучения и потока нейтронов. Люди, оказавшиеся на расстоянии 2-3 км от эпицентра взрыва, вне защитных сооружений, мгновенно получат значительные дозы облучения во многих случаях смертельные. Радиоактивное заражение местности продуктами деления ядерного заряда, элементами ядерного заряда не вступившими в реакцию и радиоактивными изотопами, образовавшимися в различных материалах и окружающем или выброшенном грунте в результате воздействия нейтронного излучения наведенная радиация. Выход из строя большинства электронных приборов и значительной части электрических приборов вследствие воздействия электромагнитного импульса, возникающего при взрыве. Косвенные — они зависят от мощности взорвавшейся бомбы и высоты её подрыва: Практически полный выход из строя систем центрального водоснабжения, что приведет значительным людским потерям из-за невозможности вести борьбу с пожарами, а также употребления воды заражённой радионуклидами и не прошедшей необходимой дезинфекции от возбудителей различных болезней.
Потеря большей части продовольственного запаса под завалами, вследствие радиоактивного заражения, из-за нарушений правил хранения и воздействия факторов окружающей среды. Полный выход из строя почти всей сложной электроники без возможности восстановления и большей части электроприборов за исключением наиболее простых бытового назначения под воздействием электромагнитного импульса. Как следствие — невозможность вести эффективные спасательные работы, а также сколь-нибудь значимую хозяйственную деятельность. Итоги применения водородной бомбы, рекомендации для тех, кто выжил Итоги применения: Невозможность использования большей части зданий и сооружений вследствие их сильного или полного разрушения. Невозможность восстановления большей части поврежденных зданий ввиду разрушения всех коммуникаций, отсутствия необходимого количества работоспособной тяжёлой техники, строительных материалов.
Следы трития находят в верхних слоях атмосферы Земли: именно там, под действием космических лучей молекулы газов, образующие воздух, претерпевают подобные изменения. Получение трития возможно также и в ядерном реакторе путём облучения изотопа литий-6 мощным потоком нейтронов. Разработка и первые испытания водородной бомбы В результате тщательного теоретического анализа, специалисты из СССР и США пришли к выводу, что смесь дейтерия и трития позволяет легче всего запускать реакцию термоядерного синтеза. Вооружившись этими знаниями, учёные из США в 50-х годах прошлого века принялись за создание водородной бомбы. И уже весной 1951 года, на полигоне Эниветок атолл в Тихом океане было проведено тестовое испытание, однако тогда удалось добиться лишь частичного термоядерного синтеза. Прошло ещё чуть более года, и в ноябре 1952 года было проведено второе испытание водородной бомбы мощностью порядка 10 Мт в тротиловом эквиваленте. Однако тот взрыв трудно назвать взрывом термоядерной бомбы в современном понимании: по сути, устройство представляло собой крупную ёмкость размером с трёхэтажный дом , наполненную жидким дейтерием. В России тоже взялись за усовершенствование атомного оружия, и первая водородная бомба проекта А. Сахарова была испытана на Семипалатинском полигоне 12 августа 1953 года. РДС-6 данный тип оружия массового поражения прозвали «слойкой» Сахарова, так как его схема подразумевала последовательное размещение слоёв дейтерия, окружающих заряд-инициатор имела мощность 10 Мт.
Опасная «слойка»: как советская водородная бомба потрясла мир
Эксперты называют В61-12 одной из наиболее точных термоядерных бомб, а сама она использует корректировку при помощи GPS, где для повышения точности задействуются хвостовые рули. Идея создания термоядерной («водородной») бомбы принадлежит американским ученым, участникам «Манхэттенского проекта», создавшим и испытавшим в 1945 г. в Аламогордо первую в мире атомную бомбу. Гидрид, применяемый в водородных бомбах, отличается своим изотопным составом. Водородная (термоядерная) бомба: испытания оружия массового поражения. как действует водородная бомба и каковы последствия взрыва. Водородная бомба (термоядерное оружие) — вид ядерного оружия, основанного на использовании энергии реакции ядерного синтеза легких элементов в более тяжелые. Испытание первой водородной бомбы на Семипалатинском полигоне.
Состоялось испытание первой Советской водородной бомбы
Во время американского Манхэттенского проекта создания атомной бомбы, использующей реакции ядерного деления, физик Эдвард Теллер задумал потенциально гораздо более разрушительное оружие, основанное не на делении урана, а на синтезе изотопов водорода. Его называли Super. Поскольку было ясно, что химические взрывчатые вещества не могут генерировать температуру в десятки миллионов градусов, необходимую для зажигания термоядерных реакций, единственным вариантом было использование бомбы деления. Название изобретения — «Совершенствование методов и средств использования ядерной энергии». Что и говорить, устройство не предназначалось для гражданского использования! Содержание патента фон Неймана-Фукса до сих пор официально является секретом правительства США, но его можно найти в увлекательной серии томов, опубликованных в России в 2008 году «Атомный проект СССР: Документы и материалы». Там можно найти подробный текст с расчетами и диаграммами в переводе на английский и русский языки, а также комментарии к нему ведущих советских исследователей с 1948 года.
Как такое возможно? Клаус Фукс позже признал, что был советским агентом! В конструкции фон Неймана-Фукса уже заложено то, что стало основным принципом действия водородной бомбы: «радиационная имплозия». Вместо того, чтобы оборачивать термоядерное топливо вокруг бомбы деления, как это было изначально задумано для Super, поместите топливо в отдельный контейнер и используйте интенсивный импульс излучения, генерируемый взрывом деления, чтобы нагреть, сжать и воспламенить его. Устройство, которое, наконец, использовалось в успешном испытании 1952 года, основывалось на этом радиационном взрыве в более продвинутой форме, разработанном Эдвардом Теллером и Станиславом Уламом. Это знаменитая двухступенчатая «конфигурация Теллера-Улама», проиллюстрированная на прилагаемой диаграмме.
Он стал своего рода моделью для более позднего развития термоядерного синтеза с лазерным управлением. Конфигурация Теллера-Улама слева. Первое испытание водородной бомбы «Айви Майк» Избавляемся от триггера деления Учитывая успех водородной бомбы в высвобождении большого количества термоядерной энергии, естественно спросить, в какой степени термоядерные взрывы можно уменьшить до такой степени, что они могут быть использованы для коммерческого производства электроэнергии. Сам процесс термоядерного синтеза не создает внутренних препятствий для миниатюризации: не существует нижнего предела количества топлива, которое может быть использовано для обеспечения «микровзрыва» термоядерного синтеза. А вот первая ступень водородной бомбы не может быть произвольно уменьшена, по крайней мере, каким-либо прямым образом, потому что самоподдерживающаяся реакция деления требует определенной минимальной критической массы, что приводит к слишком сильному взрыву. Даже если бы мы могли производить микровзрывы деления, то они все равно генерировали бы значительную радиоактивность, предотвращение которойкак раз и является главной мотивацией для достижения термоядерного синтеза.
Соответственно, поскольку мы выбираем водородную бомбу в качестве отправной точки для разработки термоядерных реакторов — включая с трудом полученные физические знания, лежащие в основе бомбы, — необходимо найти замену спусковому механизму деления. Введите лазер Одно из самых полезных свойств лазеров заключается в том, что лазерный луч может быть сфокусирован до крошечного пятна, сравнимого по размеру с длиной световой волны. Концентрация энергии луча таким образом позволяет достичь очень высоких интенсивностей.
В девятикилометровом радиусе будет уничтожено все живое, не устоят ни техника, ни постройки. Диаметр воронки, образованной взрывом, превысит два километра, а глубина ее будет колебаться около пятидесяти метров. Огненный шар Самым зрелищным после взрыва покажется наблюдателям огромный огненный шар: пылающие бури, инициированные детонацией водородной бомбы, будут поддерживать себя сами, вовлекая в воронку все больше и больше горючего материала. Радиационное заражение Но самым опасным последствием взрыва станет, конечно же, радиационное заражение. Распад тяжелых элементов в бушующем огненном вихре наполнит атмосферу мельчайшими частицами радиоактивной пыли — она настолько легка, что попадая в атмосферу, может обогнуть земной шар два-три раза и только потом выпадет в виде осадков. Таким образом, один взрыв бомбы в 100 мегатонн может иметь последствия для всей планеты. Царь-бомба 58 мегатонн — вот, сколько весила самая крупная водородная бомба, взорванная на полигоне архипелага Новая Земля.
Радиоактивная пыль, кроме самой крупной, оседает не сразу. Более мелкая пыль уносится возникшим в результате взрыва облаком и постепенно выпадает по мере движения его по ветру. Непосредственно в месте взрыва радиоактивные осадки могут быть чрезвычайно интенсивными — в основном это оседающая на землю крупная пыль. В сотнях километров от места взрыва и на более далеких расстояниях на землю выпадают мелкие, но все еще видимые глазом частицы пепла. Часто они образуют похожий на выпавший снег покров, смертельно опасный для всех, кто окажется поблизости. Еще более мелкие и невидимые частицы, прежде чем они осядут на землю, могут странствовать в атмосфере месяцами и даже годами, много раз огибая земной шар. К моменту выпадения их радиоактивность значительно ослабевает. Наиболее опасным остается излучение стронция-90 с периодом полураспада 28 лет. Его выпадение четко наблюдается повсюду в мире. Оседая на листве и траве, он попадает в пищевые цепи, включающие и человека.
Как следствие этого, в костях жителей большинства стран обнаружены заметные, хотя и не представляющие пока опасности, количества стронция-90. Накопление стронция-90 в костях человека в долгосрочной перспективе весьма опасно, так как приводит к образованию костных злокачественных опухолей. Длительное заражение местности радиоактивными осадками. В случае военных действий применение водородной бомбы приведет к немедленному радиоактивному загрязнению территории в радиусе ок. При взрыве супербомбы загрязненным окажется район в десятки тысяч квадратных километров. Столь огромная площадь поражения одной-единственной бомбой делает ее совершенно новым видом оружия. Даже если супербомба не попадет в цель, то есть не поразит объект ударно-тепловым воздействием, проникающее излучение и сопровождающие взрыв радиоактивные осадки сделают окружающее пространство непригодным для обитания. Такие осадки могут продолжаться в течение многих дней, недель и даже месяцев. В зависимости от их количества интенсивность радиации может достичь смертельно опасного уровня. Сравнительно небольшого числа супербомб достаточно, чтобы полностью покрыть крупную страну слоем смертельно опасной для всего живого радиоактивной пыли.
Таким образом, создание сверхбомбы ознаменовало начало эпохи, когда стало возможным сделать непригодными для обитания целые континенты. Даже спустя длительное время после прекращения прямого воздействия радиоактивных осадков будет сохраняться опасность, обусловленная высокой радиотоксичностью таких изотопов, как стронций-90.
Прорыв в науке, совершенный советскими учеными, которые создали первую в мире водородную бомбу, позволил избежать новых военных конфликтов. На основе исследований ученых разработка бомбы началась по двум направлениям. Первый — «слойка», представляющая собой атомный заряд, который окружен несколькими слоями легких и тяжелых элементов. Второй — «труба», в которой плутониевая бомба погружалась в жидкий лейтерий.
Впоследствии именно первую модель выбрали для дальнейших испытаний. К моменту взрыва полигон быль тщательно подготовлен: 16 самолетов, 7 танков, орудий и минометов, 1300 измерительных, регистрирующих и киносъемочных приборов, 1700 различных индикаторов. Специально для аппаратуры, регистрирующей термоядерные процессы, в 5 м от места подрыва соорудили бункер. Сам заряд установили на стальной башне, на высоте 30 м закрепили бомбу. Около 7:30 утра 12 августа 1953 года горизонт озарила вспышка света от взрыва.
Как устроена водородная бомба
это все те же РДС-6с. Мировое сообщество было разочаровано новостью о создании водородной бомбы, считает историк Клим Жуков. Водородную бомбу можно собрать таким образом, что выгорание каждого из трёх компонентов — плутония, дейтрида лития и обеднённого урана — превысит 90%. Водородную бомбу было решено взорвать на поверхности земли, несмотря на то, что конфигурация позволяла сбросить ее с самолета. «взрывает» реакция неуправляемого термоядерного синтеза. тип ядерного оружия, разрушительная сила которого Разработка водородной бомбы.
Атомная, водородная и нейтронная бомбы
Современные атомные бомбы и снаряды Радиус действия В зависимости от мощности атомного заряда атомные бомбы,снаряды делят на калибры:малый,средний и крупный. Чтобы получить энергию, равную энергии взрыва атомной бомбы малого калибра, нужно взорвать несколько тысяч тонн тротила. Тротиловый эквивалент атомной бомбы среднего калибра составляет десятки тысяч, а бомбы крупного калибра — сотни тысяч тонн тротила. Еще большей мощностью может обладать термоядерное водородное оружие, его тротиловый эквивалент может достигать миллионов и даже десятков миллионов тонн. Атомные бомбы, тротиловый эквивалент которых равен 1- 50 тыс. К тактическому оружию относят также: артиллерийские снаряды с атомным зарядом мощность 10 — 15 тыс. Атомные и водородные бомбы мощностью свыше 50 тыс. Нужно отметить,что подобная классификация атомного оружия является лишь условной, поскольку в действительности последствие применения тактического атомного оружия могут быть не меньшими, чем те, которые испытало на себе население Хиросимы и Нагасаки, а даже большими. Сейчас очевидно, что взрыв только одной водородной бомбы способен вызвать такие тяжелые последствия на огромных территориях, каких не несли с собой десятки тысяч снарядов и бомб, применявшихся в прошлых мировых войнах. А нескольких водородных бомб вполне достаточно, чтобы превратить в зону пустыни огромные территории.
Ядерное оружие подразделяется на 2 основных типа: атомное и водородное термоядерное. В атомном оружии выделение энергии происходит за счет реакции деления ядер атомов тяжелых элементов урана или плутония. В водородном оружии энергия выделяется в результате образования или синтеза ядер атомов гелия из атомов водорода. Термоядерное оружие Современное термоядерное оружие относится к стратегическому оружию, которое может применяться авиацией для разрушения в тылу противника важнейших промышленных, военных объектов, крупных городов как цивилизационных центров. Наиболее известным типом термоядерного оружия являются термоядерные водородные бомбы, которые могут доставляться к цели самолетами. Термоядерными зарядами могут начиняться также боевые части ракет различного назначения, в том числе межконтинентальных баллистических ракет. Впервые подобная ракета была испытана в СССР еще в 1957 году, в настоящее время на вооружения Ракетных Войск Стратегического Назначения состоят ракеты нескольких типов, базирующиеся на мобильных пусковых установках, в шахтных пусковых установках, на подводных лодках.
Такое оружие устрашило даже разработчиков — они пришли к выводу, что взрыв подобной конструкции вызовет чрезвычайно мощное радиационное загрязнение. В итоге конструкторский коллектив, в который входили Виктор Адамский, Андрей Сахаров, Юрий Бабаев, Юрий Смирнов и Юрий Трутнев, решил отказаться от реакции Джекила — Хайда в третьей ступени бомбы и заменить урановые компоненты на их свинцовый эквивалент. Это должно было уменьшить расчетную общую мощность взрыва почти вдвое до 51,5 мегатонны. Я решил, что это изделие будет испытываться в "чистом варианте" — с искусственно уменьшенной мощностью, но тем не менее существенно большей, чем у какого-либо испытанного ранее кем-либо изделия. Даже в этом варианте его мощность превосходила бомбу Хиросимы в несколько тысяч раз! Подготовка к испытанию "Царь-бомбы" АН602 было решено испытать в конце октября 1961 года на полигоне на Новой Земле. Супербомбу собирали в первом советском ядерном центре, родине отечественного ядерного оружия Конструкторском бюро — 11 в Арзамасе-16, прямо на специальной железнодорожной платформе. Для этого даже пришлось проложить железнодорожную ветку внутрь цеха. В двадцатых числах октября вагон с бомбой выглядевший снаружи как совершенно обычный вагон в составе литерного поезда под усиленной охраной отправился к месту своего назначения — станции Оленьей на Кольском полуострове. Тот поезд состоял из нескольких вагонов, расположенных спереди и сзади вагона с бомбой. Любые неожиданности были исключены. Маршрутные документы несколько раз менялись для того, чтобы невозможно было определить ни станцию отправления, ни пункт назначения. На станции Оленьей бомба прошла тщательный контроль и была приведена в боевое положение. Испытание "Царь-бомбы" Для испытания "Царь-бомбы" подготовили специальную парашютную систему и самолет.
Простым увеличением делящегося материала не обойтись — как только его масса достигает критической, он детонирует. Придумывались разные хитроумные схемы, например, делать бомбу не из двух частей, а из множества, отчего бомба начинала напоминать распотрошенный апельсин, а потом одним взрывом собирать ее в один кусок, но все равно при мощности свыше 100 килотонн проблемы становились непреодолимыми. Возможные последствия взрыва водородной бомбы В первую очередь водородная бомба — это оружие массового поражения. Оно способно уничтожать не только взрывной волной, как на это способны тротиловые снаряды, но и радиационными последствиями. Что происходит после взрыва термоядерного заряда: ударная волна, сметающая всё на своём пути, оставляя после себя масштабные разрушения; тепловой эффект — невероятная тепловая энергия, способна расплавить даже бетонные конструкции; радиоактивные осадки — облачная масса с каплями радиационной воды, элементами распада заряда и радионуклидами, движется по ветру и выпадает в виде осадков на любом удалении от эпицентра подрыва. Вблизи ядерных полигонов или техногенных катастроф на протяжении десятилетий наблюдается радиоактивный фон. Последствия применения водородной бомбы очень серьёзные, способные нанести вред будущим поколениям. Всем спасибо! Одно время поговаривали, что достаточно мощный термоядерный взрыв может запустить цепную реакцию и весь воздух на нашей планете выгорит. Но это миф. Не то что газообразный, но и жидкий водород недостаточно плотный, чтобы начался термоядерный синтез. Его нужно сжимать и нагревать ядерным взрывом, желательно c разных сторон, как это делается двухступенчатым запалом. В атмосфере таких условий нет, поэтому самоподдерживающиеся реакции слияния ядер там невозможны. Это не единственное заблуждение о термоядерном оружии. Часто говорят, что взрыв «чище» ядерного: мол, при слиянии ядер водорода «осколков» — опасных короткоживущих ядер атомов, дающих радиоактивное загрязнение, — получается меньше, чем при делении ядер урана. Заблуждение это основано на том, что при термоядерном взрыве большая часть энергии якобы выделяется за счет слияния ядер. Это неправда. Да, «Царь-бомба» была такой, но только потому, что ее урановую «рубашку» для испытаний заменили на свинцовую. Современные двухступенчатые запалы приводят к значительному радиоактивному загрязнению. Правда, зерно истины в мифе о «чистой» бомбе все же есть. Взять лучшую американскую термоядерную боеголовку W88. При ее взрыве на оптимальной высоте над городом площадь сильных разрушений практически совпадет с зоной радиоактивного поражения, опасного для жизни. Погибших от лучевой болезни будет исчезающе мало: люди погибнут от самого взрыва, а не радиации. Еще один миф гласит, что термоядерное оружие способно уничтожить всю человеческую цивилизацию, а то и жизнь на Земле. Это тоже практически исключено. Энергия взрыва распределена в трех измерениях, поэтому при росте мощности боеприпаса в тысячу раз радиус поражающего действия растет всего в десять раз — мегатонная боеголовка имеет радиус поражения всего в десять раз больше, чем тактическая, килотонная. Правда о термоядерном оружии не так популярна, как мифы. На сегодня она такова: термоядерные арсеналы компактных боеголовок средней мощности обеспечивают хрупкий стратегический баланс, из-за которого никто не может свободно утюжить другие страны мира атомным оружием. Боязнь термоядерного ответа — более чем достаточный сдерживающий фактор. Александр Березин Браво Обойдя русских по красоте конструкции, американцы не смогли сделать свое устройство компактным: они использовали жидкий переохлажденный дейтерий вместо порошкообразного дейтрида лития у Сахарова. В Лос-Аламосе на сахаровскую «слойку» реагировали с долей зависти: «вместо огромной коровы с ведром сырого молока русские используют пакет молока сухого». Однако утаить секреты друг от друга обеим сторонам не удалось. Первого марта 1954 года у атолла Бикини американцы испытали 15-мегатонную бомбу «Браво» на дейтриде лития, а 22 ноября 1955 года над семипалатинским полигоном рванула первая советская двухступенчатая термоядерная бомба РДС-37 мощностью 1,7 мегатонн, снеся чуть ли не полполигона. С тех пор конструкция термоядерной бомбы претерпела незначительные изменения например, появился урановый экран между инициирующей бомбой и основным зарядом и стала канонической. А в мире не осталось больше столь масштабных загадок природы, разгадать которые можно было бы столь эффектным экспериментом. Разве что рождение сверхновой звезды. Что такое реакция слияния ядер? Топливом для реакции термоядерного синтеза служат изотопы водорода дейтерий или тритий. Первый отличается от обычного водорода тем, что в его ядре, кроме одного протона содержится еще и нейтрон, а в ядре трития уже два нейтрона. В природной воде один атом дейтерия приходится на 7000 атомов водорода, но из его количества. На встрече в 1946 году с политиками, отец американской водородной бомбы Эдвард Теллер подчеркнул, что дейтерий дает больше энергии на грамм веса, чем уран или плутоний, однако стоит двадцать центов за грамм в сравнении с несколькими сотнями долларов за грамм топлива для ядерного деления. Схематически эта реакция показана на рисунке ниже. Много это или мало? Как известно, все познается в сравнении. Так вот, энергия в 1 МэВ примерно в 2,3 миллиона раз больше, чем выделяется при сгорании 1 кг нефти. А ведь речь идет только о двух атомах.
Специалисты опасались, что после взрыва может возникнуть неконтролируемая термоядерная реакция в атмосфере. Руководила испытаниями Государственная комиссия. Следом взлетел самолет-лаборатория Ту-16 для записи явлений взрыва и полетел ведомым за самолетом-носителем. Весь ход полета и сам взрыв снимались с борта Ту-95В, с сопровождавшего Ту-16 и с различных точек на Земле. Фото: www. Огненный шар при взрыве превысил радиус четыре километра, достичь поверхности земли ему помешала мощная отраженная ударная волна, отбросившая огненный шар от земли. Огромное облако, образовавшееся в результате взрыва, достигло высоты 67 километров, а диаметр купола из раскаленных продуктов — 20 километров. Взрыв был такой силы, что сейсмическая волна в земной коре, порожденная ударной волной, три раза обошла вокруг Земли. Вспышка была видна на расстоянии более 1000 километров. В брошенном поселке, расположенном на расстоянии 400 километров от эпицентра, были вырваны деревья, выбиты стекла и снесены крыши домов. Ударной волной самолет-носитель, который к тому времени находился на расстоянии 45 километров от точки сброса, скинуло до высоты 8000 метров, и в течение некоторого времени после взрыва Ту-95В был неуправляем. Экипаж получил некоторую дозу радиации. За счет ионизации, на 40 мин была потеряна связь с Ту-95В и Ту-16. Что случилось с самолетами и экипажами, все это время никто не знал. Через какое-то время оба самолета вернулись на базу, на фюзеляже Ту-95В виднелись подпалы. Фото: defence. Участники испытаний прибыли в точку, над которой произошел термоядерный взрыв, уже через два часа; уровень радиации в этом месте большой опасности не представлял. В этом сказались конструктивные особенности советской бомбы, а также то, что взрыв произошел на достаточно большом удалении от поверхности. По итогам самолетных и наземных измерений энерговыделение взрыва было оценено в 50 мегатонн тротилового эквивалента, что совпало с ожидаемым по расчетам значением. Испытание 30 октября 1961 года показало, что разработки в области ядерного оружия могут быстро перешагнуть критический предел. Основной целью, которая ставилась и была достигнута этим испытанием, стала демонстрация возможности создания СССР неограниченных по мощности термоядерных зарядов. Данное событие сыграло ключевую роль в установлении ядерного паритета в мире и предотвращении использования атомного оружия. Материал подготовлен на основе информации РИА Новости и открытых источников МОСКВА, РИА Новости 12 Оригинал Огненный шар Самым зрелищным после взрыва покажется наблюдателям огромный огненный шар: пылающие бури, инициированные детонацией водородной бомбы, будут поддерживать себя сами, вовлекая в воронку все больше и больше горючего материала. Ученый и гуманист Судьба Андрея Сахарова была исключительной: он вошел в историю дважды, как великий ученый и не менее великий политик. Обычная двухкомнатная квартира в Нижнем Новгороде, где жил в ссылке опальный академик, превращена в музей. По словам его сотрудников, посетителей много, но гостей, особенно молодых, больше интересует создание водородной бомбы, чем Сахаров-правозащитник. Советская пропаганда любила обвинять диссидентов, помимо прочего, и в том, что они-де ничтожества и неудачники, ищущие дешевой популярности. Про светило мировой физики, трижды Героя Социалистического Труда, осыпанного всеми мыслимыми благами, этого нельзя было сказать даже при сильном желании. По словам самого Сахарова, в молодости он был бесконечно далек от политики и думал только о воплощении научных идей. Правообладатель иллюстрации RIA Novosti Image caption Участие в создании водородной бомбы побудило Андрея Сахарова задуматься о мирном сосуществовании и интеллектуальной свободе Его диссидентство началось с банкета по поводу очередного испытания в Семипалатинске. Сахаров предложил тост «за то, чтобы наши «изделия» всегда успешно взрывались над полигонами и никогда над городами». Повисло неловкое молчание, словно он сморозил непристойность. Потом старший по званию из военных маршал артиллерии Митрофан Неделин рассказал анекдот: «Лежит старуха на печи, а дед молится перед образами: «Господи, укрепи и направь! Бабка подает голос: «Ты, старый, молись только об укреплении, а направить я и сама сумею!
Почему стала необходима супербомба
- 60 лет назад водородная бомба помогла СССР достичь ядерного паритета с США - Российская газета
- Уроки водородной бомбы для мирного термоядерного синтеза
- Подписи к слайдам:
- 10 стыдных вопросов о ядерном оружии: отвечает физик Дмитрий Побединский
- Самая мощная бомба в мире. Какая бомба сильнее: вакуумная или термоядерная?
Термоядерные реакции.
- Последние материалы
- 10 стыдных вопросов о ядерном оружии: отвечает физик Дмитрий Побединский
- Водородная и атомная бомбы: сравнительные характеристики
- Другие материалы
Угроза №1. История создания водородной бомбы в СССР
Первые американские "штучки": урановый "Малыш", жертвой которого 06. Фото: Соцсети Многие эксперты солидарны в том, что нарочито громкое, демонстративное заявление советского лидера в Берлине имело целью подтолкнуть американцев к переговорам и заключению обязывающих соглашений. А чтобы так ставить вопрос - о переговорах между Москвой и Вашингтоном на равных, - надо было как минимум обеспечить фактический паритет СССР и США в ядерных вооружениях. Советский Союз вступил в эту гонку на исходе тяжелейшей для себя войны и первые пятнадцать лет был в роли догоняющего. Даже после того, как в СССР провели первое испытание своей атомной бомбы 29 августа 1949 года , говорить о преодолении атомной монополии США можно было лишь условно. Согласно рассекреченным документам Атомного проекта СССР в начале 1950 года наша страна располагала только единичными экземплярами ядерных устройств. А в арсенале США уже в 1950 году насчитывалось свыше четырехсот ядерных бомб, причем производили их серийно. Американцы объявили о таком испытании почти на год раньше. Но они, по выражению их же специалистов, взорвали "дом с тритием" - громоздкий лабораторный образец. А в СССР провели испытание компактного, практически готового к применению боевого устройства: бомбу РДС-6с испытали, сбросив с самолета.
В последующие 5-7 лет этот перелом удалось закрепить. Инициативные разработки конструкторов-ядерщиков обеспечили создание в СССР новейших систем вооружения для целей обороны и стратегического сдерживания.
Советские ученые работали над собственной водородной бомбой параллельно с американцами Уже 8 августа 1953 года глава Совета министров СССР Георгий Маленков во всеуслышание объявил о том, что эти труды увенчались успехом. На Западе заявление произвело фурор, хотя и было встречено сомнениями. The New York Times даже вышла с заголовком «Маленков говорит правду? Утвердительный ответ был дан всего через четыре дня: 12 августа 1953 года на Семипалатинском полигоне испытали водородную бомбу РДС-6с. Жуткое оружие потом назовут «слойкой Сахарова» — ее конструкция предполагала чередование легких и тяжелых реактивных веществ.
Взрыв прогремел в 07:30 утра. Спустя несколько секунд в небо поднялся гриб высотой 12 километров, а пыль разлетелась на десятки километров. Близлежащий железнодорожный мост со стотонными пролетами был отброшен на 200 метров. В радиусе четырех километров были полностью разрушены все кирпичные здания. Жар от вспышки ощущался на расстоянии 25 километров. Земля содрогнулась под нами, а в лицо ударил тугой, крепкий, как удар хлыста, звук раскатистого взрыва. От толчка ударной волны трудно было устоять на ногах Владимир Комельковучастник атомного проекта «Слойка Сахарова» была значительно слабее американского образца.
Ее заряд составлял всего 400 килотонн — против 10 мегатонн «Айви Майка». Но РДС-6с была куда компактнее и легко помещалась в отсеке бомбардировщика Ту-16. Да, взрыв действительно получился куда сильнее взрыва атомной бомбы. Впечатление от него, по-видимому, превзошло какой-то психологический барьер. Следы первого взрыва атомной бомбы не внушали такого содрогающего ужаса, хотя и они были несравненно страшнее всего виденного еще недавно на прошедшей войне», — писал сотрудник Радиевого института АН СССР Николай Власов. Гарантированное уничтожение Но по-настоящему ход гонки вооружений изменила даже не водородная бомба РДС-6с, а первая межконтинентальная баллистическая ракета Р-7. Она появилась в 1957 году и была способна достичь другого конца Земли.
Перехватить ее на тот момент не могла ни одна система защиты в мире Эта же ракета чуть позже станет отправной точкой для освоения Советским Союзом космоса. Именно на ее основе создали семейство ракет-носителей, которое позволило СССР сначала отправить на орбиту искусственный спутник Земли, а затем осуществить и первый полет человека к звездам. К концу 1950-х арсеналы ядерного оружия обеих сверхдержав уже были достаточными для того, чтобы погубить все живое на планете. Причем и у СССР, и у США были проекты, которые позволяли нанести ответный удар даже в том случае, если бы их центры принятия решений были поражены. Обе страны получили гарантии взаимного уничтожения. Эта концепция предполагала, что если одна страна начнет агрессию против другой, то неминуемо будут уничтожены оба участника конфликта. Угроза апокалипсиса, в свою очередь, станет такой явной, что в реальности никто на этот опасный шаг не решится.
Такой порядок вещей, впрочем, все же не стал залогом стабильности. Терпение Политбюро лопнуло после того, как под турецким Измиром были размещены ракеты средней дальности PGM-19 «Юпитер», которые могли долететь до европейской части СССР за считаные минуты. Генштаб разработал операцию «Анадырь». На Кубу отправили 44 тысячи военнослужащих, 40 ядерных баллистических ракет Р-12 и Р-14, 80 крылатых ракет в ядерном снаряжении, 3 дивизиона тактических ядерных ракетных комплексов «Луна», а также бомбардировщики Ил-28, оснащенные атомными бомбами. Разумеется, этот шаг привел к созданию нового очага напряженности. Военные стали уговаривать президента Кеннеди вторгнуться на Кубу. Фидель Кастро тем временем убеждал Хрущева нанести по Америке превентивный ядерный удар.
Эти события вошли в историю под названием «Карибский кризис». Планета никогда еще не была так близка к апокалипсису. И в Москве, и в Вашингтоне хватало ястребов, которые призывали первыми открыть атомный ящик Пандоры, не дожидаясь, когда это сделает противник. Ситуацию решил поздний ночной звонок, во время которого два вождя обсудили происходящее напрямую. И дали заднюю. Америка, в свою очередь, согласилась вывезти ракеты «Юпитер» из Турции. Может быть, и так.
Но это могло быть похоже на детскую сказку, когда два козла встретились на перекладине перед пропастью. Они проявили козлиную мудрость, и оба упали в пропасть. Вот в чем дело», — заявил вскоре после этого события Никита Хрущев. Карибский кризис стал переломным моментом холодной войны. Именно он спровоцировал появление в США мощного антивоенного движения, которое стало еще активнее во время Вьетнамской войны. Осторожную политику избрали и в СССР. Вплоть до конца 1970-х годов сверхдержавы работали над разрядкой мировой напряженности.
Но с приходом к власти в США Рональда Рейгана и после ввода советских войск в Афганистан гонка вооружений началась с новой силой. Эксперты до сих пор спорят, были ли «Звездные войны» реальной попыткой создать космическую защиту от советского ядерного оружия. Хватает и тех, кто считает нашумевшие заявления Рейгана блефом с целью разогнать гонку вооружений и заставить Советский Союз подорвать свою экономику военными расходами. Русские играют с нами в шахматы, а мы с ними — в «Монополию». Вопрос в том, сумеют ли они поставить нам мат раньше, чем мы их обанкротим Джин Киркпатрикпредставитель США в ООН Вот только несмотря на надежды затянуть СССР как можно глубже в гонку вооружений, «Звездные войны» раскололи в первую очередь американскую элиту. Например, замминистра обороны Ричард Делойер буквально называл этот план бессмысленным. По его мнению, против того количества ядерных ракет, которым располагал Советский Союз, бессильна любая противоракетная система.
Теоретически он мог бы вырасти до поверхности земли, однако этому воспрепятствовала отраженная ударная волна, поднявшая низ шара и отбросившая его от поверхности. Ядерный гриб взрыва поднялся на высоту 67 километров для сравнения: современные пассажирские самолеты летают на высоте 8-11 километров. Ощутимая волна атмосферного давления, возникшая в результате взрыва, три раза обогнула земной шар, распространившись всего за несколько секунд, а звуковая волна докатилась до острова Диксон на расстоянии около 800 километров от эпицентра взрыва расстояние от Москвы до Санкт-Петербурга. Радиацией было заражено все на расстоянии двух-трех километров. Немного истории После того, как мир увидел разрушительную силу ядерного оружия, в августе 1945 года, СССР начало гонку, которая продолжалась до момента его распада. США первыми создали, испытали и применили ядерное оружие, первыми произвели подрыв водородной бомбы, но на счет СССР можно записать первое изготовление компактной водородной бомбы, которую можно доставить противнику на обычном Ту-16.
Первая бомба США была размером с трехэтажный дом, от водородной бомбы такого размер мало толку. Советы получили такое оружие уже в 1952, в то время как первая «адекватная» бомба Штатов была принята на вооружение лишь в 1954. Если оглянуться назад и проанализировать взрывы в Нагасаки и Хиросиме, то можно прийти к выводу, что они не были такими уж мощными. Две бомбы в сумме разрушили оба города и убили по разным данным до 220 000 человек. Ковровые бомбардировки Токио в день могли уносить жизни 150-200 000 человек и без всякого ядерного оружия. Это связано с малой мощностью первых бомб — всего несколько десятков килотонн в тротиловом эквиваленте.
Водородные же бомбы испытывали с прицелом на преодоление 1 мегатонны и более. Первая Советская бомба была испытана с заявкой на 3 Мт, но в итоге испытывали 1. Немного истории Испытания термоядерной бомбы После взрыва в Хиросиме и Нагасаки, окончания Второй Мировой Войны, началась гонка между Америкой и СССР и мировое сообщество поняло, что мощнее ядерная или водородная бомба. Разрушительная сила атомного оружия начала привлекать каждую из сторон. США первыми сделали и испытали ядерную бомбу. Но вскоре стало понятно, что она не может иметь больших размеров.
Поэтому было решено попробовать сделать термоядерную боеголовку. Тут снова же преуспела Америка. Советы решили не проигрывать в гонке и испытали компактную, но мощную ракету, которую можно перевозить даже на обычном самолете Ту-16. Тогда все поняли, чем отличается ядерная бомба от водородной. Для примера, первая американская термоядерная боеголовка была такой высокой, как трехэтажный дом. Ее нельзя было доставить небольшим транспортом.
Но потом по разработкам СССР размеры были уменьшены. Если проанализировать взрывы в Японии, можно сделать вывод, что эти ужасные разрушения были не такими уж и большими. В тротиловом эквиваленте сила удара была всего несколько десятком килотонн. Поэтому здания были уничтожены только в двух городах, а в остальной части страны услышали звук ядерной бомбы. Если это была бы водородная ракета, всю Японию бы разрушили полностью всего одной боеголовкой. Ядерная бомба со слишком сильным зарядом может взорваться непроизвольно.
Начнется цепная реакция и произойдет взрыв. Рассматривая, чем отличаются ядерная атомная и водородная бомбы, стоит отметить данный пункт. Ведь термоядерную боеголовку можно сделать какой угодно мощности, не боясь самопроизвольного подрыва. Это заинтересовало Хрущева, который приказал сделать самую мощную водородную боеголовку в мире и таким образом приблизиться к выигрышу гонки. Ему показалось оптимальным 100 мегатонн. Советские ученые поднатужились и у них получилось вложиться в 50 мегатонн.
Испытания начались на острове Новая Земля, где был военный полигон. До сих пор Царь-бомбу называют крупнейшим зарядом, взорванным на планете. В радиусе нескольких сотен километров от полигона произошла спешная эвакуация людей, так как ученые рассчитали, что разрушены, будут все без исключения дома. Но такого эффекта никто не ожидал. Взрывная волна обошла планету трижды. Полигон остался «чистым листом», на нем исчезли все возвышенности.
Здания в секунду превращались в песок. В радиусе 800 километров был слышен ужасный взрыв. Огненный шар от применения такой боеголовки, как универсальный уничтожитель руническая ядерная бомба в Японии, был виден только в городах. А вот от водородной ракеты он поднялся на 5 километров в диаметре. Гриб из пыли, радиации и сажи вырос на 67 километров. По подсчетам ученых, его шапка в диаметре составляла сотню километров.
Только представьте себе, что бы было, если бы взрыв произошел в городской черте.
Однако, чтобы запустить такой процесс, нужно достичь критической массы материала. Если в атомном заряде масса урана будет меньше критической, то никакого взрыва не произойдет.
Поэтому в атомную бомбу закладывают несколько кусочков радиоактивного материала, отделенных друг от друга. В момент взрыва детонирующие заряды сталкивают эти кусочки, достигается критическая масса и начинается взрывной процесс. В водородной бомбе вместо радиоактивного распада используется реакция ядерного синтеза.
В ходе нее ядра атомов сливаются воедино, образуя более тяжелый элемент. В качестве побочного продукта выделяется огромное количество энергии — намного больше, чем при ядерном распаде. Однако для осуществления такого слияния нужно сжать вещество так, чтобы ядра его атомов буквально «вошли» друг в друга.
В водородных бомбах для этого используются ядерные заряды.
Атомная, водородная и нейтронная бомбы
Мировое сообщество было разочаровано новостью о создании водородной бомбы, считает историк Клим Жуков. Вслед за "чистой водородной бомбой" в 58 мегатонн, которую сбросили с самолета над Новой Землей 30 октября 61-го, на том же Северном полигоне и в том же году испытали еще не менее десяти мощных термоядерных бомб и боеголовок мегатонного класса. термоядерное оружие колоссальной разрушительной силы, использующее в качестве источника энергии синтез тяжёлых ядер дейтерия и трития. Водородная или термоядерная бомба является на сегодняшний день самым мощным оружием массового поражения.
«Дитя не плачет — мать не разумеет»
- История создания
- Что такое реакция слияния ядер?
- Последствия обогащения
- Презентация по физике на тему: "Термоядерные реакции. Водородная бомба"
- «Отец» водородной бомбы
- Водородная бомба | Наука | Дзен
Как работает водородная бомба
Однако они, как правило, более мощные, чем бомбы класса А, поэтому количественные эффекты могут быть намного сильнее. А «классическое» значение энергии , выделяемое при взрыве бомбы деления составляет около 14 кт от TNT или 14000 т , одну тонны тротила развивающейся 10 9 кала , или 4. Конструктивно максимальное значение едва ли превышает 700 узлов. Для сравнения, водородные бомбы теоретически были бы по крайней мере в 1000 раз мощнее, чем « Маленький мальчик» , бомба деления, сброшенная в 1945 году на Хиросиму. Например, первая американская термоядерная бомба « Айви Майк» высвободила около 10 400 кт 10,4 Мт энергии. Самым мощным взрывом в истории был взрыв Царь-бомбового совета, который должен был послужить испытанием для бомбардировки 100 Мт : его мощность составляла 57 Мт. Это была бомба типа «FFF» деление-синтез-деление , но «сдержанная»: 3- й этаж был инертным. Хрущев объяснит, что речь шла о том, чтобы не «разбивать все зеркала Москвы». Максимальную энергию, выделяемую термоядерной бомбой, можно увеличивать до бесконечности по крайней мере, на бумаге. Другие водородные бомбы Русские бомбы В конструкции некоторых советских, а затем и российских водородных бомб используется другой подход, состоящий из слоев вместо отдельных компонентов, что позволило СССР иметь первые переносные водородные бомбы и, следовательно, пригодные для использования при бомбардировке. Первый взрыв советской водородной бомбы произошел 12 августа 1953 г.
Бомбы из других стран У англичан не было доступа к американским технологиям для создания термоядерной бомбы, и они пытались до 1957 года создать бомбу мощностью в несколько мегатонн. Из-за секретности, окружающей ядерное оружие, структура Теллера-Улама была «изобретена заново» во Франции Мишелем Карайолем. В Индии претензии, сделали то же самое, но несколько экспертов, ссылаясь на отчеты сейсмографа , оспорить этот результат. Северная Корея утверждает, что разработан и успешно испытан, то 6 января 2016 г. Американский институт геологии USGS и Южнокорейское метеорологическое агентство обнаружили землетрясение с магнитудой от 4,2 до 5,1: по мнению экспертов, оно было слишком слабым для аутентификации термоядерной бомбы. Эта страна также утверждает, что провела испытания 3 сентября 2017 г. Расчетная магнитуда этого землетрясения составила 6,3 балла. Действительно, сам по себе термоядерный синтез не производит никаких радиоактивных соединений напрямую.
Во-первых, трансуранов мало, их улавливание из атмосферного облака — дело хлопотливое и требует большой тщательности. Определённо нет, т. Во-вторых, сведения о сжатии не дают возможности сделать заключение о том, как оно достигнуто, то есть носят косвенный характер. Если бы из анализа радиоактивности последовали тогда глубокие революционные выводы, как представляет себе Г. Бете, то это носило бы характер сенсации. Информация непременно пришла бы к исполнителям в своём первичном виде, так как в самой по себе в ней не содержится для нас элементов секретности. Но тут я со всей определённостью утверждаю, что за всё время наших радиохимических поисков в атмосфере никаких необычных сведений мы не извлекли. Наконец, в-третьих. Так вот, никакого трёхлетнего интервала не было. Максимум год-полтора. Бомба подготавливалась к испытанию сразу в боевом варианте. Вроде того, что американцы богатые: нагромоздили кубометры — и шарахнули, лишь бы произвести эффект. Так всегда была настроена внутренняя наша пропаганда. Всегда говорилось именно так — и никогда по-другому. Я никого не хочу обвинять — может, в той ситуации это было оправданно и разумно. Да, её взорвали на земле, но они всё проверили и подтвердили то, что сумели сделать новую бомбу. К ней было приковано всеобщее внимание, она подготавливалась к испытаниям и была нашей национальной гордостью. В состав атомного заряда включались слои из водородонесущего материала дейтерид лития для усиления деления по схеме деление-синтез-деление. Исходно плотность лёгких и тяжёлых слоёв отличалась в десятки раз. При взрыве, когда материал разогревался и ионизировался, происходило сильное сжатие лёгких слоёв со стороны тяжёлых, что способствовало резкому возрастанию скорости термоядерных реакций. Рассуждали примерно так: есть водородная бомба, чего мы будем ещё какую-то следующую громоздить — с неизвестным исходом и огромной затратой и своих усилий, и материальных средств?! Так что с благословения Зельдовича и Франк-Каменецкого мы это дело прекратили. А уже в августе 1953 года на башне Семипалатинского полигона была успешно испытана первая советская водородная бомба. Подтвердились расчёты, полный триумф. Уже по этой причине испытанный заряд поднимал уровень ядерного оружия на новую ступень. Более того, схема этого заряда допускала создание водородной бомбы мощностью до одной мегатонны. Никто не сомневался в то время, что и дальше мы будем идти по своему, отечественному пути, развивая первый успех. Однако к концу 1953 года, в самый разгар эйфории и, казалось бы, вопреки логике, события стали стремительно развиваться совсем в другом направлении. Такой поворот был неожиданным не только для меня. По-видимому, аналогичное ощущение испытывал и А. Конечно, мне следовало отказаться: сказать, что подобные вещи не делаются с ходу и одним человеком, что необходимо осмотреться, подумать. Но у меня была идея, не слишком оригинальная и удачная, но в тот момент она казалась мне многообещающей. Посоветоваться мне было не с кем. Одно из них обязывало наше Министерство в 1954 amp;ndash;1955 гг. Существенно, что вес заряда, а следовательно, и весь масштаб ракеты был принят на основе моей докладной записки. Это предопределило работу всей огромной конструкторско-производственной организации на долгие годы. Именно эта ракета вывела на орбиту первый искусственный спутник Земли в 1957 г. Но, как теперь проясняется, они имели лишь косвенное влияние на реальное развитие последовавших вскоре событий. Что случилось за короткий промежуток времени конца 1953-го — самого начала 1954 года? Запомнилось одно не совсем обычное совещание у руководства. Скорее всего — по прихоти Я. Детали обсуждения стёрлись из памяти, но главный мотив, ради чего собрались, отчётливо запомнился. Тамма, выраженное в энергичной форме и потому хорошо запомнившееся.
Все это есть в плазме. Для физика плазма — рай или кошмар, в зависимости от того, как на это смотреть. Предсказание и управление поведением плазмы при высоких энергиях — сложная задача даже при использовании самых быстрых суперкомпьютеров. Магнитный и инерционный синтез Температура в миллион градусов создает астрономически высокое давление. Без механизмов его ограничения нагретое топливо будет взрывным образом расширяться и быстро потеряет плотность, необходимую для протекания значительного числа реакций. Попытка решить эту проблему привела к двум очень различающимся стратегиям. Первая стратегия — удержать горячую плазму в «магнитной бутылке», то есть использовать магнитные поля для противодействия её огромной силе расширения. Сегодня на сцене доминирует проект гигантского Международного термоядерного экспериментального реактора ИТЭР , который сейчас строится в Кадараше, Франция. На мой взгляд, ИТЭР ценен прежде всего как платформа для исследований плазмы, разработки технологий и как средство поддержки экосистемы ученых и инженеров, работающих в соответствующих областях. Однако с точки зрения практической реализации термоядерного синтеза в качестве коммерческого источника энергии ИТЭР выглядит тупиком. Модель реакторной камеры ИТЭР Намного более перспективными являются устройства гораздо меньшего размера, использующие сильно неравновесные импульсные режимы, такие как фокусированная плотная плазма DPF. DPF использует процессы самоорганизации в плазме для достижения чрезвычайно высокой плотности энергии. Второй основной подход, на котором я сосредоточусь в этой статье, называется термоядерным синтезом с инерционным удержанием ICF. В ICF мы не пытаемся ограничить расширение плазмы; но перед началом процесса мы сжимаем топливо до такой высокой плотности, что большое количество реакций происходит уже в первые моменты, до того как оно успевает расшириться. В этот крошечный промежуток времени энергия, выделяемая каждой реакцией, нагревает смесь еще больше; процесс горения становится самоподдерживающимся — достигается воспламенение. Получается миниатюрный термоядерный взрыв. Будущий реактор ICF будет работать в импульсном режиме, при этом крошечные топливные таблетки одна за другой сбрасываются во взрывную камеру и зажигаются лазерными импульсами. Взрывная камера NIF слева. Лазерный отсек NIF, генерирующий 192 луча Излишне говорить, что базовая физика ICF была разработана в контексте разработки ядерного оружия и до сих пор существенно пересекается с областью секретных военных исследований. Можно было бы много сказать о политике магнитного и инерционного синтеза, но это не моя тема здесь. ОтSuper-бомбы к радиационному взрыву Пока что единственной доступной технологией генерирования большого количества избыточной энергии с помощью реакций ядерного синтеза является водородная бомба, также известная как термоядерная бомба. Впервые эта технология была успешно испытана 31 октября 1952 года.
Иоффе в ЛФТИ 1925 г. На первом этапе проекта 1943-1945 гг. Для этих работ Курчатов добился демобилизации из армии нужных специалистов. После американских взрывов практические работы резко ускорились. Были построены экспериментальный реактор на основе циклотрона, перевезенного из Ленинграда и рабочий реактор для получения оружейного плутония декабрь 1946 г. Для получения изотопов урана использовалась газодиффузионная методика. На их основе в закрытой зоне «Комбинат 817» Озерск Челябинской области заработал промышленный реактор июнь 1948 г. Комбинат «Маяк» начал производство плутония по ацетатно-осадительной технологии, произвел оружейный плутоний в количестве, необходимом для первого испытания 1949 г. Одновременно были изобретены запалы для бомб на полоний-бериллиевых источниках. Правой рукой Курчатова в атомном проекте стал Ю. Под его научным руководством был построен и заработал секретный КБ-11 в закрытой зоне «Кремлев», «Арзамас-75», «Арзамас-16», Саров Нижегородской области. Игорь Васильевич Курчатов и Юлий Борисович Харитон на отдыхе в Семипалатинске Главный конструктор засекреченного КБ-11 был занят конструированием плутониевого устройства, увеличением мощности, снижением веса бомбы, скопированной с американской схемы полученной от советских разведчиков. При этом был найден ряд новых решений, позволивших вдвое улучшить исходные параметры американского образца. Третьей ключевой точкой промышленного изготовления боеприпаса стало сборочное производство, организованное под Заречным Пензенская область. На загородных закрытых территориях, которые в обиходе назывались «Второе производство», «База оборудования» до 2002 года собирались все устройства разработки Сарова и Снежинска «Челябинск-50». В Заречном, на базе ПО «Старт», работает один из трех российских музеев ядерного оружия. Два других музея открыты в Сарове и Снежинске дублер «Арзамаса-16» был построен под Челябинском в 1957 г. Испытания «РДС-1» кодовое название наземного устройства без авиационной оболочки были проведены на Семипалатинском полигоне в 1949 г. К утру 29 августа устройство было собрано. В 7 утра с пульта руководства была отдана команда на подрыв заряда в 20 килотонн. Подлинный пульт запуска ядерного устройства на первых испытаниях демонстрируется в музее Сарова На полигоне в 170 километрах от областного центра была построена сорокаметровая стальная вышка, По территории полигона концентрическими окружностями разместили несколько тысяч приборов и датчиков излучения. На десятикилометровом круге были построены военные фортификации, гражданские объекты жилые дома, бетонные производственные цеха. На позициях разместили технику — танки, самолеты, орудия. В войсковых укрытиях окопах и блиндажах были привязаны овцы и козы. На дальнем диаметре разместились вольеры с подопытными животными кроликами, свиньями, крысами. Все дома, мосты были разрушены или сгорели, так же как грузовики. Ударной волной перевернуло пушки и танки. Уцелели только монолитные каркасы зданий из железобетона. В конструкции термоядерной бомбы советские физики применили бомбардировку оболочки из урана-238 быстрыми нейтронами. Номинальная мощность трехоболочечного заряда могла составить полторы мегатонны. Но для испытаний изготовили заряд с одной оболочкой. Тем не менее, взрыв над полигоном «Сухой Нос» Новая Земля, октябрь 1961 г. Макет рекордной «Царь-бомбы» в натуральную величину Раньше об этом испытании было известно только из официальных сообщений. Теперь вы можете посмотреть видео на основе архивных киносъемок, который «Росатом» рассекретил к 75-летнему юбилею создания атомной отрасли. Бомба спускалась на 5 парашютах, чтобы бомбардировщик успел улететь до срабатывания заряда через 188 секунд на безопасное расстояние. При взрыве зафиксирован огненный шар до 5 километров в диаметре , грибовидное облако, поднявшееся на 67 км с шириной 95 км. Сейсмологи зарегистрировали пятибалльное землетрясение, ударная волна обогнула Землю трижды. Для сброса рекордного ядерного боеприпаса серийный бомбардировщик Ту-95В был модернизирован. Но машина вышла трудноуправляемой, со слишком большим взлетным весом. В серию модернизированная модель не пошла. Для новых военных доктрин использовались тактические и стратегические ракеты. Совершенствование ядерного оружия и гонка вооружений Реальные примеры создания ядерного оружия заставили технически развитые страны Европы, Азии запустить собственные атомные программы. До нынешнего времени ядерные испытания провели: Великобритания 1952 г. Следующим типом ядерного оружия стала нейтронная бомба.
Мощнейшее смертоносное оружие: как устроена водородная бомба и чем она отличается от атомной
Как теперь известно, американская водородная бомба начинает свою историю с 1946 года. Водородную бомбу было решено взорвать на поверхности земли, несмотря на то, что конфигурация позволяла сбросить ее с самолета. История создания водородной бомбы содержит в себе маленький детективный сюжет, оказавший огромное влияние на жизнь двух американских физиков — Роберта Оппенгеймера и Эдварда Теллера. Идея создания термоядерной («водородной») бомбы принадлежит американским ученым, участникам «Манхэттенского проекта», создавшим и испытавшим в 1945 г. в Аламогордо первую в мире атомную бомбу. Взрыв водородной бомбы рожден реакцией синтеза легких ядер, так называемого термоядерного синтеза. Водородная бомба (термоядерное оружие) — вид ядерного оружия, основанного на использовании энергии реакции ядерного синтеза легких элементов в более тяжелые.
Ядерная бомба — история появления ядерного оружия
Водородная бомба Термоядерное оружие (она же водородная бомба) — тип ядерного, разрушительная сила которого основана на использовании энергии реакции ядерного синтеза лёгких элементов в более тяжёлые (например. Взрыв водородной бомбы – неуправляемый термоядерный синтез, что делает его непригодным для энергетических целей, но весьма эффективным для целей разрушения. Водородная бомба является гораздо более продвинутой и технологичной, чем атомная. Популярная лекция о том, как устроено термоядерное оружие и о том какова роль математиков в его создании. В конструкции термоядерной бомбы советские физики применили бомбардировку оболочки из урана-238 быстрыми нейтронами. Водородная бомба – это термоядерный боеприпас комбинированного действия, использующий оба указанных принципа ядерных реакций.