6. Из некоторой точки к плоскости проведены две наклонные, каждая из которых равна 4 см. Найдите расстояние между основаниями этих наклонных, если угол между их проекциями равен 120, а угол, который каждая наклонная образует с плоскостью, равен 30. Одна из наклонных равна 16 см и образует с данной плоскостью угол 30 градусов. Через точку А, удаленную от плоскости α на 4 см, проходит прямая, пересекающая п.
Акція для всіх передплатників кейс-уроків 7W!
Из некоторой точки проведены к плоскости - 90 фото | Из точки В к плоскости проведены две наклонные, которые образуют со своими проекциями на плоскость углы в 30°. Угол между наклонными равен 60°. Найдите расстояние между основаниями наклонных, если расстояние от точки В до плоскости равно √6. |
Из точки к плоскости проведены две наклонные. Одна из наклонных равна 16 см и образует с данной … | наклонная с углом в 45˚ c плоскостью α. Проекция BH AH. |
Задача с 24 точками - фото сборник | Из двух наклонных, проведенных из одной точки, большую проекцию имеет большая наклонная. |
Редактирование задачи | 1 ответ - 0 раз оказано помощи. Дано: АВ=х см. - наклоннаяАС=х+26 см. - наклонная АН - высотаНВ=12 см. проекция АВНС=40 см. проекция АСНайти: АВ и. |
Презентация к уроку _Перпендикулярность прямой и плоскости_ 10 класс
Задание МЭШ | Из гаража одновременно в противоположных направлениях выехали две машины. |
Перпендикуляр и наклонные к плоскости | Из точки А, отстоящей от плоскости а на расстоянии 4 см, проведены две наклонные АС и АВ, образующие с плоскостью а угол 30°, а между со. |
Задача с 24 точками - фотоподборка | Вопрос по геометрии: из точки к плоскости проведены две наклонные,длины которых относятся,как 5:е расстояние от точки до плоскости,если длины соответствующих проекций наклонных на плоскость равны 4 см и 3корня3 см. |
Наклонная ав | Пусть из точки В проведены две наклонные: ВА=20 см и ВС =15 см ; опустим из точки В к плоскости перпендикуляр им отрезками точки А и Н; точки С и ли два прямоугольных треугольника. |
Из точки а к плоскости альфа | Из точки р удаленной от плоскости в на 10 см проведены две наклонные. |
Два решения одной задачи. Геометрия 10 класс, подготовка к ЕГЭ
если две стороны во и вс равны, значит со=вс=во. (только у меня получилось, угол вос=180 град, но по факту 60 град). 6. Из некоторой точки к плоскости проведены две наклонные, каждая из которых равна 4 см. Найдите расстояние между основаниями этих наклонных, если угол между их проекциями равен 120, а угол, который каждая наклонная образует с плоскостью, равен 30. Из Точки А К Плоскости Α Проведены Две Наклонные, Одна Длиннее Другой На 1 См. Проекция Наклонных Равны 5 См И 2 См. Найти Расстояние От Точки А До Плоскости Α. От 30 Марта 2016. 1 ответ - 0 раз оказано помощи. Дано: АВ=х см. - наклоннаяАС=х+26 см. - наклонная АН - высотаНВ=12 см. проекция АВНС=40 см. проекция АСНайти: АВ и. б) Из двух наклонных, проведенных из одной и той же точки к данной плоскости, большая имеет большую проекцию на эту плоскость и наоборот.
Презентация к уроку _Перпендикулярность прямой и плоскости_ 10 класс
Акція для всіх передплатників кейс-уроків 7W! | Из некоторой точки проведены к данной плоскости перпендикуляр и наклонная, угол между которыми равен. |
Задача с 24 точками - фотоподборка | 1 ответ - 0 раз оказано помощи. Дано: АВ=х см. - наклоннаяАС=х+26 см. - наклонная АН - высотаНВ=12 см. проекция АВНС=40 см. проекция АСНайти: АВ и. |
Перпендикуляр и наклонные к плоскости
Стороны треугольника относятся как10:17:21, а его площадь равна 84. Из вершины большего угла этого треугольника проведен перпендикуляр к его плоскости, равный 15. Найдите расстояние от его концов до большей стороны. Вариант 8 1. Найдите: АВ 2.
Найти длину перпендикуляра АМ. Вариант 9 1. Из концов отрезка АВ, параллельного плоскости проведены наклонные АС и BD, перпендикулярные отрезку АВ, проекции которых на плоскость соответственно равны 3 см и 9 см и лежат по разные стороны от проекции отрезка АВ. Найдите боковые ребра.
Вариант 10 1. Найти расстояние между прямой АВ и CD, если они удалены от прямой EF соответственно на 17 см и 25 см, а их проекции от той же прямой — на 15 см. Найдите диагонали.
Стороны треугольника относятся как10:17:21, а его площадь равна 84. Из вершины большего угла этого треугольника проведен перпендикуляр к его плоскости, равный 15. Найдите расстояние от его концов до большей стороны. Вариант 8 1. Найдите: АВ 2.
Найти длину перпендикуляра АМ. Вариант 9 1. Из концов отрезка АВ, параллельного плоскости проведены наклонные АС и BD, перпендикулярные отрезку АВ, проекции которых на плоскость соответственно равны 3 см и 9 см и лежат по разные стороны от проекции отрезка АВ. Найдите боковые ребра. Вариант 10 1. Найти расстояние между прямой АВ и CD, если они удалены от прямой EF соответственно на 17 см и 25 см, а их проекции от той же прямой — на 15 см. Найдите диагонали.
Найдите длину проекции наклонной на эту плоскость, если она длиннее перпендикуляра на 2.
На этой странице находится вопрос Из точки к плоскости проведены две наклонные? По уровню сложности данный вопрос соответствует знаниям учащихся 10 - 11 классов. Здесь вы найдете правильный ответ, сможете обсудить и сверить свой вариант ответа с мнениями пользователями сайта. С помощью автоматического поиска на этой же странице можно найти похожие вопросы и ответы на них в категории Геометрия. Если ответы вызывают сомнение, сформулируйте вопрос иначе. Для этого нажмите кнопку вверху.
Ответ подготовленный экспертами Учись. Ru Для того чтобы дать полноценный ответ, был привлечен специалист, который хорошо разбирается требуемой тематике "ЕГЭ школьный ". Ваш вопрос звучал следующим образом: Из точки к плоскости а проведены две наклонные. Я занимаюсь написанием студенческих работ уже более 4-х лет.
За это время, мне еще ни разу не возвращали выполненную работу на доработку! Если вы желаете заказать у меня помощь оставьте заявку на этом сайте.
Задание МЭШ
Проекцией точки на плоскость называется основание перпендикуляра, проведённого из этой точки к плоскости, если точка не лежит в плоскости, и сама точка, если она лежит в плоскости.
Концы данного отрезка, не пересекающего плоскость, удалены от нее на 0,3 м и 0,5 м. Как удалена от плоскости точка, делящая данный отрезок в отношении 3;7? Через середину отрезка проведена плоскость.
Докажите, что концы отрезка находятся на одинаковом расстоянии от этой плоскости. Через диагональ параллелограмма проведена плоскость. Докажите, что концы другой диагонали находятся на одинаковом расстоянии от этой плоскости. Найдите расстояние от середины отрезка А В до плоскости, не пересекающей этот отрезок, если расстояния от точек А и В до плоскости равны: 1 3,2 см и 5,3 см; 2 7,4 см и 6,1 см; 3 а и b.
Решите предыдущую задачу, считая, что отрезок АВ пересекает плоскость. Отрезок длины 1 м пересекает плоскость, концы его удалены от плоскости на 0,5 м и 0,3 м. Найдите длину проекции отрезка на плоскость. Через основание трапеции проведена плоскость, отстоящая от другого основания на расстояние а.
Найдите расстояние от точки пересечения диагоналей трапеции до этой плоскости, если основания трапеции относятся как m:n рис. Через сторону параллелограмма проведена плоскость на расстоянии а от противолежащей стороны. Найдите расстояние от точки пересечения диагоналей параллелограмма до этой плоскости. Из вершины квадрата восставлен перпендикуляр к его плоскости.
Найдите длину перпендикуляра и сторону квадрата рис. Из вершины прямоугольника восставлен перпендикуляр к его плоскости. Найдите длину перпендикуляра и стороны прямоугольника. Из данной точки к плоскости проведены две равные наклонные длиной 2 м.
Из точки, отстоящей от плоскости на расстояние 1 м, проведены две равные наклонные. Через центр вписанной в треугольник окружности проведена прямая, перпендикулярная плоскости треугольника. Докажите, что каждая точка этой прямой равноудалена от сторон треугольника. К плоскости треугольника из центра, вписанной в него окружности радиуса 0,7 м восставлен перпендикуляр длиной 2,4 м.
Найдите расстояние от конца этого перпендикуляра до сторон треугольника. Расстояние от данной точки до плоскости треугольника равно 1,1 м, а до каждой из его сторон — 6,1 м. Найдите радиус окружности, вписанной в этот треугольник.
Если прямая, проведенная на плоскости через основание наклонной, перпендикулярна ее проекции, то она перпендикулярна и самой наклонной. Обратная теорема. Если прямая на плоскости перпендикулярна наклонной, то она перпендикулярна и проекции наклонной. Расстояние от точки до плоскости есть перпендикуляр, опущенный на эту плоскость, то есть расстояние от точки А до плоскости a, есть длина перпендикуляра АВ. Если прямая параллельна плоскости, то расстояние от произвольной точки прямой до плоскости называется расстоянием между прямой и параллельной ей плоскостью.
Если две плоскости параллельны, то расстояние от произвольной точки одной из плоскостей до другой называется расстоянием между данными плоскостями. Если две прямые скрещиваются, то расстояние между одной из этих прямых и плоскостью, проведенной через другую прямую параллельно первой, называется расстоянием между скрещивающимися прямыми. Меньшая диагональ параллелепипеда равна большей диагонали основания.
Точки в разных плоскостях. Точка а принадлежит плоскости Альфа. Прямая ab пересекает плоскость. Прямая АВ пересекает плоскость Альфа в точке. Прямая АВ пересекает плоскость а. А пересекает плоскость Альфа. Стереометрия 10 класс перпендикуляр и Наклонная. Перпендикуляр и Наклонная угол между прямой и плоскостью. Перпендикуляр и наклонные угол между прямой и плоскостью. Прямая параллельна плоскости если. Если прямая параллельна плоскости то. Расстояние от точки до плоскости замечания. Если две плоскости параллельны то. Пересечение луча и плоскости. Прямая m пересекает плоскость. Точки пересечения плоскостей лежат на одной прямой. Пересечение луча и прямой. Аа1 перпендикулярно к плоскости Альфа. Аа1 перпендикуляр к плоскости. Аа1 перпендикуляр к плоскости Альфа. Прямые пересекают параллельные плоскости Альфа и бета. А принадлежит Альфа. Изобразите плоскость Альфа. Изобразите две пересекающиеся плоскости Альфа и бета. Задачи по геометрии 10 класс перпендикуляр к плоскости. Геометрия 10 класс Атанасян гдз номер 138. Вершины треугольника АВС. Вершина а треугольника АВС лежит в плоскости. Вершины b и c треугольника ABC лежат в плоскости Альфа. Отрезок принадлежит к плоскости Альфа. Отрезок ab принадлежит плоскости Альфа. Через конец а отрезка АВ проведена плоскость Альфа через точку м. Как найти длину проекции. Как найти длину наклонной. Найдите длину наклонной. Наклонная в прямоугольном треугольнике. Перпендикуляр опущенный на плоскость. Наклонная плоскость. Аксиомы 3 точки на плоскости 3 Аксиомы. Через любые три точки не лежащие на одной прямой проходит плоскость. Через прямую и точку проходит плоскость и притом только. Аксиома прямой и плоскости. Прямая параллельная прямой в плоскости. Плоскости а и в параллельны а пересекает прямую. Прямые пересекающие плоскость. Плоскость параллельная прямой. Через сторону квадрата проведена плоскость.
Акція для всіх передплатників кейс-уроків 7W!
По теореме Пифагора, квадрат катета можно найти, как разницу квадратов гипотенузы и второго катета.
Определи по рисунку по рис. Из точки С к плоскости проведены перпендикуляр и наклонная.
Перпендикуляр равен 9, наклонная 15. Найти проекцию рис. Найдите длину проекции и перпендикуляра.
Из точки, не принадлежащей данной плоскости, проведены к ней две наклонные, равные 10см и 18см. Сумма длин их проекций на плоскость равна 16см.
Ответ подготовленный экспертами Учись. Ru Для того чтобы дать полноценный ответ, был привлечен специалист, который хорошо разбирается требуемой тематике "ЕГЭ школьный ". Ваш вопрос звучал следующим образом: Из точки к плоскости а проведены две наклонные.
Я занимаюсь написанием студенческих работ уже более 4-х лет. За это время, мне еще ни разу не возвращали выполненную работу на доработку! Если вы желаете заказать у меня помощь оставьте заявку на этом сайте.
Ответ или решение 1 Абдельмалек Расстояние от точки до плоскости - это перпендикуляр, проведенный из данной точки к плоскости. Следовательно, имеем два прямоугольных треугольника, в которых наклонные - гипотенузы, проекции наклонных - катеты, а отрезок h, проведенный из точки к плоскости - это общий для двух треугольников катет.
Перпендикуляр и наклонные к плоскости
Найдите расстояние между основаниями этих наклонных на плоскости. Вариант 2. Длина наклонной равна 15 см, длина проекции наклонной на эту плоскость равна 9 см. Найдите длину перпендикуляра. Задача 2. Найдите CK Задача 4. Найдите а длину проекции наклонной; б длину наклонной. Длина одной наклонной равна 24, длина другой наклонной равна 52.
Из точки взятой вне плоскости. Расстояние от прямой до плоскости. Угол между скрещивающимися плоскостями. Угол пересечения плоскостей. Ортогональные проекции в одной плоскости. Наклонная и проекция равны. Две наклонные и их проекции. Плоскость Альфа параллельна плоскости бета. Даны 2 параллельные плоскости Альфа 1 и Альфа 2 и точка а. Плоскости а и б параллельны. Луч пересекает параллельные плоскости. Прямая пересекает плоскость в точке. Прямая МР пересекает плоскость. Прямая в пересекает эту плоскость в точке т. Плоскости пересекаются по прямой. Две плоскости пересекаются по прямой. Плоскость пересекает по прямой. Отрезок пересекает плоскость. Плоскость пересекате плоскость в точек. Отрезок АВ пересекает плоскость. Отрезок пересекает плоскость в точке о. Точка о не лежащая между параллельными плоскостями. Через точку о расположенную между параллельными плоскостями. Проекция трапеции на плоскость. Чертеж трапеции в плоскости. Сторона вс параллельна плоскости Альфа. Эскиз трапеции в плоскости. Параллельные и пересекающиеся плоскости. Параллельные прямые в пересекающихся плоскостях. Параллельные пересекающиеся и скрещивающиеся прямые. Прямые пересекаются в точке. Точки е и ф лежат в плоскости бета. Точки e и f лежат в плоскости b а точка m в плоскости a. Плоскости Альфа и бета перпендикуляярны. L линия пересечения. Прямые принадлежат плоскости. Прямая а лежит в плоскости бета. Точка принадлежит плоскости. Плоскость Альфа на белом фоне. Угол между плоскостями а и б равен 60. Угол между плоскостями Альфа и бета равен 60 расстояние от точки а. Как нарисовать прямоугольный треугольник на плоскости. Если прямая параллельна проекции прямой на плоскость. Через точку проведена плоскость. Проведение плоскости через пересекающиеся прямые. Через прямую можно провести параллельную плоскость. Через точку провести плоскость параллельную данной. Провести плоскость параллельную плоскости. Две плоскости параллельны между собой. Две плоскости параллельны между собой из точки м не лежащей. Две плоскости параллельны между собой из точки м. Точка к лежит между параллельными плоскостями.
Если наклонные расположены по одну сторону от перпендикуляра, чтобы найти расстояние между основаниями наклонных, надо найти разность между длинами их проекций. Если наклонные расположены по разные стороны от перпендикуляра, расстояние между основаниями наклонных равно сумме длин проекций этих наклонных. В следующий раз рассмотрим свойства наклонных.
Из точки а к плоскости Альфа проведены перпендикуляр и Наклонная. Из точки а к плоскости а проведены наклонные. Из точки а к плоскости Альфа проведены. Из точки а к плоскости Альфа проведены две наклонные. Проекция наклонной ab к плоскости Альфа. Как найти длину проекции наклонной. Расстояние проекции наклонных. Угол между проекциями 60. Наклоны АВ, АС. Ab перпендикуляр к плоскости Альфа ad и AC наклонные к a. От точки а к плоскости проведены наклонные АВ. Точка удалена от плоскости. Плоскость удалена от плоскости. Угол между проекциями наклонных. Из точки к плоскости проведены 2 наклонные. Перпендикуляр и Наклонная теорема о трех перпендикулярах. Две наклонные на плоскости. Теорема о двух перпендикулярах к плоскости. Во перпендикуляр к плоскости Альфа. А H перпендикулярно а АВ Наклонная. Задачи на перпендикуляр и наклонную. Перпендикуляр и Наклонная задачи. Из точки проведена плоскость. Задачи по теме перпендикуляр и Наклонная. Расстояние от прямой до плоскости перпендикулярной. Расстояние от прямой к плоскости. Прямая проведенная из точки перпендикулярно к плоскости. Прямая проходит через перпендикуляр к плоскости. Наклонные к плоскости. Перпендикуляр и Наклонная. Две наклонные. Что такое угол 90 между наклонной и плоскостью. Угол между наклонными. Угол между наклонными плоскостями. Из точки к плоскости проведены две наклонные. Две наклонные проведенные к плоскости. Из точки м к плоскости проведены перпендикуляр и Наклонная. Из точки d к плоскости ABC проведены перпендикуляр и Наклонная. Из точки м к плоскость проведена Наклонная. Из точки а не принадлежащей плоскости Альфа проведены к этой. Из точко а к плоскости проведен наклонные аб и АС. Из точки а не принадлежащей плоскости а проведены к этой. Перпендикуляр Наклонная проекция задачи. Перпендикуляр и наклонные к плоскости. Наклонная проведенная к плоскости. Перпендикуляр и Наклонная к плоскости. Наклонная проекция.
Найти расстояние от точки А до плоскости α
Из точки а к плоскости Альфа проведены наклонные АВ И АС длинной 15 и 20. Из точки к плоскости проведены две наклонные, равные 10 см и 17 см. Разность проекций этих наклонных равна 9 см. Найдите проекции. Из некоторой точки к плоскости проведены две наклонные, каждая из которых равна 4.
Задание МЭШ
Найдите длины наклонных,если одна из них на 26 см больше другой,а проекции наклонных равны 12 см и 40 см Ответы: Наклонные АВ и ВС из одной точки'. 1. Из точки, отстоящей от плоскости на расстоянии 5 см, проведены две наклонные под углом 30o к плоскости, причём их проекции образуют угол 120o. Из точки А, отстоящей от плоскости а на расстоянии 4 см, проведены две наклонные АС и АВ, образующие с плоскостью а угол 30°, а между со. Через точку А, удаленную от плоскости α на 4 см, проходит прямая, пересекающая п. Определить расстояние от этой точки до плоскости. Геометрия Из точки к прямой проведены две наклонные, проекции которых на прямую равны 15 см и 6 см.
Наклонная ав
Следовательно, имеем два прямоугольных треугольника, в которых наклонные - гипотенузы, проекции наклонных - катеты, а отрезок h, проведенный из точки к плоскости - это общий для двух треугольников катет. Проекции наклонных относятся как 5:2, значит их длины можно обозначить, как 5 х и 2 х.
Чтобы оставить ответ, войдите или зарегистрируйтесь. Ответ или решение 1 Абдельмалек Расстояние от точки до плоскости - это перпендикуляр, проведенный из данной точки к плоскости.
Вариант 3 1.
Найдите: АВ 3. Найти длину отрезка DE, если расстояние между перпендикулярами равно 28 см. Найдите расстояние от данной точки до плоскости. Вариант 4 1.
Найдите угол между каждой наклонной и ее В проекцией. A Вариант 5 1. Равнобедренная трапеция расположена на плоскости так, что основания ее параллельны плоскости. В равнобедренном треугольнике основание и высота равны по 4.
Данная точка находится на расстоянии 6 от плоскости треугольника и на равном расстоянии от его вершин. Найдите это расстояние. D Вариант 6 1.
Разность проекций этих наклонных равна 9см. Найдите проекции наклонных. Решение задачи: пусть sa и sb - данные диагонали.