Действие водородной бомбы основано на использовании энергии, выделяющейся при реакции термоядерного синтеза лёгких ядер. Возможность использования в качестве детонатора водородной бомбы ядерного заряда обсуждалась ещё физиками работающими в рамках Манхеттенского проекта.
История создания оружия
- Водородная бомба и ядерная бомба отличия
- Термоядерное оружие: Как устроена водородная бомба
- Что такое реакция слияния ядер?
- Водородная бомба и ядерная бомба отличия
- Что еще почитать
- Термоядерные реакции.
Атомная бомба
- ВОДОРОДНАЯ БОМБА | это... Что такое ВОДОРОДНАЯ БОМБА?
- Как работает водородная бомба » Вестник К
- Термоядерное оружие: Как устроена водородная бомба
- Водородная бомба и ядерная бомба отличия
Принцип действия термоядерного синтеза
Популярная лекция о том, как устроено термоядерное оружие и о том какова роль математиков в его создании. СССР начал разрабатывать термоядерную бомбу позднее — первая схема была предложена советскими разработчиками лишь в 1949 году. Принцип работы Действие водородной бомбы основано на использовании энергии, выделяющейся при реакции термоядерного синтеза лёгких ядер. Информация о работах американцев над термоядерной бомбой и ее испытании поступала в Советский Союз очень оперативно: над ее добычей работал специальный отдел научно-технической разведки в структуре внешней разведки НКВД. Что это Водородная бомба, известная также как Hydrogen Bomb или HB — оружие невероятной разрушительной силы, чья мощность исчисляется мегатоннами в тротиловом эквиваленте.
Изотопы водорода
- Поражающие факторы взрыва водородной бомбы. Водородная бомба
- Истинное происхождение советской водородной бомбы
- Принцип действия
- История создания первой водородной бомбы: последствия термоядерного взрыва
Водородная (термоядерная) бомба: испытания оружия массового поражения
Статья И.И. Никитчука в газете «Правда» к 60-летию создания водородной бомбы в СССР. 2015.11.20 Новости ЦК КПРФ. В водородной бомбе водорода нет вовсе, а принцип действия атомной бомбы связан не с атомами, а с ядрами. Лаврентьев описал принцип действия водородной бомбы, где в качестве горючего использовался твердый дейтерид лития. Как было сказано ранее, принцип действия водородной бомбы основан на реакции синтеза.
Принцип действия термоядерного синтеза
У участников совещания появилась надежда. К концу второго дня у «всех присутствующих появилось ощущение, что впервые мы что-то имеем хотя бы в области идей». Уныние сменилось энтузиазмом, и у всех создалось впечатление, что, наконец, «мы можем на что-то надеяться в будущем». С этого дня работы по созданию водородной бомбы пошли полным ходом. Через четыре дня Комиссия по атомной энергии приняла обязательство построить новый завод, хотя в то время у нее, как заявил Дин, не было на это средств.
Через год, в июне, мы были в состоянии, говоря словами Дина, «завершить работу над этим устройством». Устройство перевели на атолл Эниветок и взорвали 1 ноября 1952 г. Мощность взрыва составляла пять мегатонн пять миллионов тонн тротила. Затем в марте и в апреле 1954 г.
С тех пор было испытано много других конструкций бомб. Хотя открытие, которое совершило переворот в науке и сделало возможным создание водородной бомбы, все еще является секретом, легко отгадать основные принципы ее устройства. Казалось совершенно нелепым, что до осуществления реакции между веществами при температуре 50 млн. Единственным путем устранить такое невозможное требование был отказ от превращения водорода в жидкое состояние.
Надо было соединить газообразный водород с каким- то веществом так, чтобы водород стал частью твердого соединения, способного сохраняться при обычной комнатной температуре. Существуют различные твердые соединения, содержащие водород. Одно из них кажется наиболее подходящим и фактически единственным соединением, которое может служить основной составной частью водородной бомбы. Это специально созданное новое вещество, известное под названием дейтерид лития-6, представляет собой соединение редкого легкого изотопа металлического лития, состоящего из трех протонов и трех нейтронов, с дейтерием, или тяжелым водородом, ядро которого состоит из одного протона и одного нейтрона.
Соединение лития и дейтерия при комнатной температуре является твердым веществом. Один атом лития-6 в этом соединении связан с одним атомом дейтерия водород-2 , поэтому общий молекулярный вес соединения равен 8. Другими словами, в восьми килограммах соединения содержится шесть килограммов легкого лития-6. Литий-6 не встречается в природе в чистом виде.
Как и расщепляющийся элемент уран-235, литий существует в смеси двух своих разновидностей: одного — с атомным весом 6 и другого — с атомным весом 7. Так как различные виды одного и того же элемента невозможно разделить химическим путем, необходимо было построить специальный завод по разделению изотопов для получения чистого лития-6. Этот завод и являлся тем «новым заводом», контракт на строительство которого, как сообщил Дин, был подписан через четыре дня после заседания Комиссии в июне 1951 г. Дейтерид лития-6 очень важен по двум причинам.
Он не только обеспечивает возможность хранения дейтерия при комнатной температуре и, таким образом, исключает необходимость превращения его в жидкое состояние при температуре, близкой к абсолютному нулю. Он также делает возможным получение трития — второго элемента, необходимого для создания водородной бомбы в конечной стадии — в самый момент ее взрыва. Дело в том, что в дейтериде лития содержится в виде твердого вещества не только водород-2, но потенциально имеется и водород-3. Это чудо совершают нейтроны, выделяемые детонатором — атомным «снарядом».
Нейтрон, попадающий в ядро атома лития-6, образует составной элемент из трех протонов и четырех нейтронов. При попадании нейтрона большой энергии составное ядро становится крайне неустойчивым и немедленно распадается на две части: водород-3 тритий с ядром из одного протона и двух нейтронов и гелий с ядром из двух протонов и двух нейтронов. Меньше чем за миллионную долю секунды взрыв атомной бомбы освобождает дейтерий и тритий и в тоже время создает температуру более чем в 50 млн. Возможна и другая, хотя и менее вероятная, реакция синтеза.
Две ядерные частицы дейтерия один протон и один нейтрон могут при высокой температуре ядер- ного деления соединиться с ядром лития три протона и три нейтрона , образовав ядро из четырех протонов и четырех нейтронов. Это ядро очень неустойчивой разновидности бериллия, которое немедленно распадется на два ядра гелия, содержащих по два протона и два нейтрона. При синтезе одного килограмма исходных продуктов освободится огромная энергия, эквивалентная 60 000 тонн тротила, что в три раза больше взрывной силы атомной бомбы. Получение нового химического соединения, позволившего создать водородную бомбу, показывает, что может быть в принципе создано еще более страшное оружие — кобальтовая бомба.
Кобальтовая бомба — это в сущности та же водородная бомба, но в качестве материала для корпуса, внутри которого находятся активные вещества, вместо стали, превращающейся при взрыве в слабо радиоактивное облако пара, используется кобальт. Превратившись при взрыве в пар, кобальт образует радиоактивное облако в 320 раз смертоноснее радия. Об этом виде водородной бомбы Альберт Эйнштейн сказал: «Если удастся ее создать, то радиоактивное отравление атмосферы, а следовательно, уничтожение всякой жизни на Земле станет в пределах технических возможностей». При синтезе ядер 600 граммов трития с ядрами 400 граммов дейтерия, т.
Это небольшое количество нейтронов вызовет образование 12 килограммов смертоносного кобальта атомный вес его 60 , радиоактивность которого эквивалентна громадному количеству 3832 килограмма! Кобальтовую бомбу можно взорвать на пустой барже в середине океана; вес ее может быть любым. Если к обычным компонентам добавить около тонны дейтерия в виде твердого соединения, то такое чудовище, синтезируясь в гелий, выделит до ИЗ килограммов свободных нейтронов. Они сделают радиоактивными 7,5 тонны радиоактивного кобальта, что эквивалентно почти 2,3 миллиона килограммов радия.
По мнению профессора Гаррисона Брауна, радиохимика из Калифорнийского технологического института, если кобальтовую бомбу с одной тонной дейтерия взорвать в Тихом океане в тысяче километров к западу от Калифорнии, то через день после взрыва радиоактивная пыль достигнет Калифорнии, а через четыре-пять дней — Нью-Йорка и уничтожит жизнь на всем своем пути. Он добавляет: «Аналогичным образом, если западные державы взорвут водородно-кобальтовые бомбы на долготе Праги, то они уничтожат всю жизнь на площади в 2300 километров ширины от Ленинграда до Одессы и в 3000—4800 километров длины от Праги до Уральских гор. Это привело бы к созданию невиданной в истории «выжженной земли». Профессор Сциллард подсчитал, что 400 однотонных кобальтовых бомб выделят такое количество радиоактивного излучения, которого будет достаточно, чтобы уничтожить все живое на Земле.
Почему не может быть новой войны? Это произошло за час до рассвета в понедельник 21 мая 1956 г. Я стоял на палубе флагманского военного корабля «Маунт МакКинли» и наблюдал за взрывом первой экспериментальной американской водородной бомбы. Бомба была сброшена в районе острова Наму атолла Бикини с бомбардировщика «Б-52», имевшего в то время самую высокую скорость в мире.
Взрыв произошел на высоте около 5 тысяч метров, в то время как бомба была сброшена с высоты 16 километров. Хотя водородные бомбы огромной разрушительной силы и ранее взрывались на тихоокеанском полигоне на Маршальских островах, это была первая транспортабельная бомба, которая могла нанести катастрофический удар по любому агрессору. Это была первая бомба, способная донести до потенциального противника апокалипсическую силу мегатонною разрушения, эквивалентную миллионам тонн тротила. Через темные очки я наблюдал за тем, как над сине-черными просторами Тихого океана поднималось сверхсолнце, заливая все ослепительным зелено-белым светом, сила которого в какой-то миг была равна свету пятисот полуденных солнц.
Потрясенный, я смотрел, как на глазах рос огромный огненный шар, диаметр которого в доли секунды достиг шести с половиной километров, что в двадцать раз превышало диаметр огненного шара атомных бомб, разрушивших Хиросиму и Нагасаки. Почти в течение часа после исчезновения огненного шара я с изумлением следил за громадным многоцветным облаком, рожденным в гигантской колонне огня. Это облако поднималось и расширялось, пока кипящий гриб на ее вершине не поднялся примерно на сорок километров в стратосферу и не закрыл участок неба длиной в полторы сотни километров, окрашенный лучами восходящего солнца. Я видел своими глазами, что огненный шар и грибообразное облако меньших размеров сделали с городом Нагасаки, и был потрясен, представив, что может сделать водородная бомба, взрыв которой я сейчас наблюдал, с такими великими городами мира, как Нью-Йорк, Вашингтон, Чикаго, Париж, Лондон, Рим или Москва.
Но тут мне пришла в голову утешительная мысль, в правоте которой я все более убеждался после этого исторического утра.
Магнитный и инерционный синтез Температура в миллион градусов создает астрономически высокое давление. Без механизмов его ограничения нагретое топливо будет взрывным образом расширяться и быстро потеряет плотность, необходимую для протекания значительного числа реакций. Попытка решить эту проблему привела к двум очень различающимся стратегиям. Первая стратегия — удержать горячую плазму в «магнитной бутылке», то есть использовать магнитные поля для противодействия её огромной силе расширения. Сегодня на сцене доминирует проект гигантского Международного термоядерного экспериментального реактора ИТЭР , который сейчас строится в Кадараше, Франция.
На мой взгляд, ИТЭР ценен прежде всего как платформа для исследований плазмы, разработки технологий и как средство поддержки экосистемы ученых и инженеров, работающих в соответствующих областях. Однако с точки зрения практической реализации термоядерного синтеза в качестве коммерческого источника энергии ИТЭР выглядит тупиком. Модель реакторной камеры ИТЭР Намного более перспективными являются устройства гораздо меньшего размера, использующие сильно неравновесные импульсные режимы, такие как фокусированная плотная плазма DPF. DPF использует процессы самоорганизации в плазме для достижения чрезвычайно высокой плотности энергии. Второй основной подход, на котором я сосредоточусь в этой статье, называется термоядерным синтезом с инерционным удержанием ICF. В ICF мы не пытаемся ограничить расширение плазмы; но перед началом процесса мы сжимаем топливо до такой высокой плотности, что большое количество реакций происходит уже в первые моменты, до того как оно успевает расшириться.
В этот крошечный промежуток времени энергия, выделяемая каждой реакцией, нагревает смесь еще больше; процесс горения становится самоподдерживающимся — достигается воспламенение. Получается миниатюрный термоядерный взрыв. Будущий реактор ICF будет работать в импульсном режиме, при этом крошечные топливные таблетки одна за другой сбрасываются во взрывную камеру и зажигаются лазерными импульсами. Взрывная камера NIF слева. Лазерный отсек NIF, генерирующий 192 луча Излишне говорить, что базовая физика ICF была разработана в контексте разработки ядерного оружия и до сих пор существенно пересекается с областью секретных военных исследований. Можно было бы много сказать о политике магнитного и инерционного синтеза, но это не моя тема здесь.
ОтSuper-бомбы к радиационному взрыву Пока что единственной доступной технологией генерирования большого количества избыточной энергии с помощью реакций ядерного синтеза является водородная бомба, также известная как термоядерная бомба. Впервые эта технология была успешно испытана 31 октября 1952 года. Во время американского Манхэттенского проекта создания атомной бомбы, использующей реакции ядерного деления, физик Эдвард Теллер задумал потенциально гораздо более разрушительное оружие, основанное не на делении урана, а на синтезе изотопов водорода. Его называли Super. Поскольку было ясно, что химические взрывчатые вещества не могут генерировать температуру в десятки миллионов градусов, необходимую для зажигания термоядерных реакций, единственным вариантом было использование бомбы деления.
Здания в секунду превращались в песок. В радиусе 800 километров был слышен ужасный взрыв. Если вы думаете, что атомная боеголовка является самым страшным оружием человечества, значит еще не знаете об водородной бомбе. Мы решили исправить эту оплошность и рассказать о том, что же это такое. Мы уже рассказывали о количестве ядерных боеголовках в странах мира и количестве ядерных боеголовок России. Немного о терминологии и принципах работы в картинках Разбираясь в том, как выглядит ядерная боеголовка и почему, необходимо рассмотреть принцип ее работы, основанный на реакции деления. Сначала в атомной бомбе происходит детонация. В оболочке располагаются изотопы урана и плутония. Они распадаются на частички, захватывая нейтроны. Далее разрушается один атом и инициируется деление остальных. Делается это при помощи цепного процесса. В конце начинается сама ядерная реакция. Части бомбы становятся одним целым. Заряд начинает превышать критическую массу. При помощи такой структуры освобождается энергия и происходит взрыв. Кстати, ядерную бомбу еще называют атомной. А водородная получила название термоядерной. Поэтому вопрос, чем отличается атомная бомба от ядерной, по сути своей является некорректным. Это одно и то же. Отличие ядерной бомбы от термоядерной же заключается не только в названии. Термоядерная реакция основана не на реакции деления, а сжатия тяжелых ядер. Ядерная боеголовка является детонатором или запалом для водородной бомбы. Другими словами, представьте себе огромную бочку с водой. В нее погружают атомную ракету. Вода представляет собой тяжелую жидкость. Тут протон со звуком замещается в ядре водорода на два элемента - дейтерий и тритий: Дейтерий представляет собой один протон и нейтрон. Их масса вдвое тяжелее, чем водород; Тритий состоит из одного протона и двух нейтронов. Они тяжелее водорода в три раза. Сначала взрывается атомный запал из двух кусков урана-235 или плутония-239. Находятся они в хвостовой части бочки. При соединении они достигают критической массы и начинается цепная реакция. Это и есть атомный взрыв. За счет него выделяется тепло, которое начинает термоядерный синтез гелия из дейтерия. Подробнее о самых мощных атомных бомбах. Испытания термоядерной бомбы После взрыва в Хиросиме и Нагасаки , окончания Второй Мировой Войны, началась гонка между Америкой и СССР и мировое сообщество поняло, что мощнее ядерная или водородная бомба. Разрушительная сила атомного оружия начала привлекать каждую из сторон.
Хованский, Я. Зильберман создали технологическую часть для строительства радиохимического завода. Руководителем советского атомного проекта стал И. В, Курчатов март 1943 г. До этого назначения сорокалетний ученый: был приглашен академиком А. Иоффе в ЛФТИ 1925 г. На первом этапе проекта 1943-1945 гг. Для этих работ Курчатов добился демобилизации из армии нужных специалистов. После американских взрывов практические работы резко ускорились. Были построены экспериментальный реактор на основе циклотрона, перевезенного из Ленинграда и рабочий реактор для получения оружейного плутония декабрь 1946 г. Для получения изотопов урана использовалась газодиффузионная методика. На их основе в закрытой зоне «Комбинат 817» Озерск Челябинской области заработал промышленный реактор июнь 1948 г. Комбинат «Маяк» начал производство плутония по ацетатно-осадительной технологии, произвел оружейный плутоний в количестве, необходимом для первого испытания 1949 г. Одновременно были изобретены запалы для бомб на полоний-бериллиевых источниках. Правой рукой Курчатова в атомном проекте стал Ю. Под его научным руководством был построен и заработал секретный КБ-11 в закрытой зоне «Кремлев», «Арзамас-75», «Арзамас-16», Саров Нижегородской области. Игорь Васильевич Курчатов и Юлий Борисович Харитон на отдыхе в Семипалатинске Главный конструктор засекреченного КБ-11 был занят конструированием плутониевого устройства, увеличением мощности, снижением веса бомбы, скопированной с американской схемы полученной от советских разведчиков. При этом был найден ряд новых решений, позволивших вдвое улучшить исходные параметры американского образца. Третьей ключевой точкой промышленного изготовления боеприпаса стало сборочное производство, организованное под Заречным Пензенская область. На загородных закрытых территориях, которые в обиходе назывались «Второе производство», «База оборудования» до 2002 года собирались все устройства разработки Сарова и Снежинска «Челябинск-50». В Заречном, на базе ПО «Старт», работает один из трех российских музеев ядерного оружия. Два других музея открыты в Сарове и Снежинске дублер «Арзамаса-16» был построен под Челябинском в 1957 г. Испытания «РДС-1» кодовое название наземного устройства без авиационной оболочки были проведены на Семипалатинском полигоне в 1949 г. К утру 29 августа устройство было собрано. В 7 утра с пульта руководства была отдана команда на подрыв заряда в 20 килотонн. Подлинный пульт запуска ядерного устройства на первых испытаниях демонстрируется в музее Сарова На полигоне в 170 километрах от областного центра была построена сорокаметровая стальная вышка, По территории полигона концентрическими окружностями разместили несколько тысяч приборов и датчиков излучения. На десятикилометровом круге были построены военные фортификации, гражданские объекты жилые дома, бетонные производственные цеха. На позициях разместили технику — танки, самолеты, орудия. В войсковых укрытиях окопах и блиндажах были привязаны овцы и козы. На дальнем диаметре разместились вольеры с подопытными животными кроликами, свиньями, крысами. Все дома, мосты были разрушены или сгорели, так же как грузовики. Ударной волной перевернуло пушки и танки. Уцелели только монолитные каркасы зданий из железобетона. В конструкции термоядерной бомбы советские физики применили бомбардировку оболочки из урана-238 быстрыми нейтронами. Номинальная мощность трехоболочечного заряда могла составить полторы мегатонны. Но для испытаний изготовили заряд с одной оболочкой. Тем не менее, взрыв над полигоном «Сухой Нос» Новая Земля, октябрь 1961 г. Макет рекордной «Царь-бомбы» в натуральную величину Раньше об этом испытании было известно только из официальных сообщений. Теперь вы можете посмотреть видео на основе архивных киносъемок, который «Росатом» рассекретил к 75-летнему юбилею создания атомной отрасли. Бомба спускалась на 5 парашютах, чтобы бомбардировщик успел улететь до срабатывания заряда через 188 секунд на безопасное расстояние. При взрыве зафиксирован огненный шар до 5 километров в диаметре , грибовидное облако, поднявшееся на 67 км с шириной 95 км. Сейсмологи зарегистрировали пятибалльное землетрясение, ударная волна обогнула Землю трижды. Для сброса рекордного ядерного боеприпаса серийный бомбардировщик Ту-95В был модернизирован. Но машина вышла трудноуправляемой, со слишком большим взлетным весом.
Термоядерная тайна СССР: академик раскрыл секреты создания царь-бомбы
Однако подобного рода материалы, как правило, ограничиваются началом 50-х годов. Лишь в одном месте в воспоминаниях Ю. Харитона упоминается, что и в отношении американской водородной бомбы имеется от разведки документ. Но никак не раскрывается его содержание. Возможно, прав А. Не располагая точными данными, можно только догадываться, случайно это происходило или причины были более глубокими. Ни мы, ни американцы эту загадку пока не решили.
Хирта и У. Поступаю я так умышленно, потому что в мои намерения входит сопоставление различных взглядов на этот острый вопрос. В своё время в полемику с американцами вступил патриарх советской атомной науки академик Ю. Смирновым формируют определённый взгляд на историю развития отечественного водородного оружия, который практически ни в одном пункте не совпадает с американским. По материалам юбилейной сессии Курчатовским центром издан доклад. Выдержки из него цитируются под цифрой II.
Я постараюсь максимально точно передать позиции сторон и выразить свою, которая, как оказалось, не совпадает с двумя предыдущими. При этом я прошу читателя быть снисходительным — любое воспоминание субъективно, а одни и те же события по-разному воспринимаются разными людьми. Тем более, если учесть, что автор располагал далеко не всей возможной информацией. Как теперь известно, американская водородная бомба начинает свою историю с 1946 года. Именно тогда, вскоре после появления атомных бомб, Э. Подобно тому как от капсюля-детонатора провоцируется волна горения детонации в химическом взрывчатом веществе, в водородной бомбе Э.
Теллера распространяется термоядерная волна по дейтерию, инициированная атомным взрывом. Если устойчивое незатухающее горение возможно, то оно, вызванное относительно скромной энергией атомного взрыва, затем при распространении выделяет произвольно большую энергию. Захватывающая перспектива, не правда ли? В 1951 году, когда я после окончания Московского университета оказался в группе Я. Зельдовича в КБ amp;ndash;11 , там с большим энтузиазмом занимались сходной проблемой отставая , по-видимому, на год-два от Лос-Аламоса. Сейчас, когда узнаёшь у тех же Д.
Например, для нас с самого начала представлялась очевидной невозможность разжигания чистого дейтерия — это могло осуществиться только через промежуточную область, насыщенную тритием. Но трития требуется так много, что его производство вступает в острую конкуренцию с производством военного плутония на промышленных реакторах. Нет ответа и на главный принципиальный вопрос: осуществим ли стационарный режим горения? Дело в том, что при любой детонации существует некоторый минимальный размер радиус детонационного шнура , ниже которого устойчивого режима не существует. Вещество вследствие собственного энерговыделения разлетается быстрее, чем успевает сгореть. Особенностью же высокотемпературной термоядерной плазмы является наличие не только нижнего, но и верхнего радиуса.
Всякое вещество, предоставленное самому себе, стремится к термодинамическому равновесию, выравниванию температуры между веществом и излучением. Нетрудно подсчитать, что при рассматриваемых параметрах плазмы подавляющая часть энергии приходится на излучение. Образуется, таким образом, паразитный сток энергии от вещества, то есть от горячих материальных частиц, вступающих в ядерную реакцию, в излучение. Этим объясняется наличие двух радиусов — разлётного и радиационного, причём первый должен быть больше некоторого значения, а второй — меньше некоторого другого. Трудность задачи состояла в том, что радиусы эти оказались близкими. До сих пор осталось невыясненным, есть ли между ними щель, необходимая для существования устойчивого распространения.
Это, скажем так, теоретическая сторона вопроса. А вот как развивались события в плоскости политической. В 1951 году президент США Г. Трумэн направил комиссии по атомной энергии директиву о возобновлении работы по созданию водородной бомбы. К аналогичному выводу в группе Я. Зельдовича пришли к концу 1953 года.
Американцы стали пионерами в практической фазе исследований. Взрыв состоялся 1 ноября 1952 года на коралловом атолле Эниветок, что в Тихом океане. Операция получила секретное название Ivy Mike. Специалисты накачали 3-этажное строение жидким дейтерием. Полная мощность заряда составила 10,4 мегатонны в тротиловом эквиваленте.
Получилось в 1 000 раз мощнее, чем было в сброшенной на Хиросиму бомбе. После подрыва островок Элугелаб, который стал центром размещения заряда, бесследно исчез с лица земли. На его месте образовалась воронка диаметром в 1 милю. За всю историю разработок ядерного оружия на Земле было произведено более 2 000 подрывов: в надземном, подземном, воздушном и подводном положениях. Экосистеме нанесён колоссальный ущерб.
Аналогичный процесс происходит внутри звезды, где воздействие сверхвысоких температур вместе с гигантским давлением заставляют ядра водорода сталкиваться. На выходе образуются утяжелённые ядра гелия. В процессе часть массы водорода преображается в энергию исключительной силы. Именно поэтому звёзды являются постоянными источниками энергии. Физики переняли схему деления, заменив изотопы водорода таким элементами, как дейтерий и тритий.
Однако изделию всё равно дали название водородная бомба на основании базовой схемы. В ранних разработках ещё использовались жидкие изотопы водорода. Но впоследствии основным компонентом стал твёрдый дейтерий лития-6. Дейтерий лития-6 уже содержит тритий. Но чтобы его выделить, требуется создать пиковую температуру и грандиозное давление.
Для этого под термоядерное горючее конструируется оболочка из урана-238 и полистирола. По соседству устанавливается небольшой ядерный заряд мощностью несколько килотонн. Он служит триггером.
В этом случае говорят о «магнитогидродинамике». Поведение плазмы по самой своей природе крайне нелинейно. Плазма демонстрирует огромное разнообразие различных типов волн и колебаний; она испускает электромагнитное излучение, проявляет коллективные, самоорганизующиеся свойства. В ней наблюдаются эффекты столкновения частиц, квантовые эффекты и т.
Все это есть в плазме. Для физика плазма — рай или кошмар, в зависимости от того, как на это смотреть. Предсказание и управление поведением плазмы при высоких энергиях — сложная задача даже при использовании самых быстрых суперкомпьютеров. Магнитный и инерционный синтез Температура в миллион градусов создает астрономически высокое давление. Без механизмов его ограничения нагретое топливо будет взрывным образом расширяться и быстро потеряет плотность, необходимую для протекания значительного числа реакций. Попытка решить эту проблему привела к двум очень различающимся стратегиям. Первая стратегия — удержать горячую плазму в «магнитной бутылке», то есть использовать магнитные поля для противодействия её огромной силе расширения.
Сегодня на сцене доминирует проект гигантского Международного термоядерного экспериментального реактора ИТЭР , который сейчас строится в Кадараше, Франция. На мой взгляд, ИТЭР ценен прежде всего как платформа для исследований плазмы, разработки технологий и как средство поддержки экосистемы ученых и инженеров, работающих в соответствующих областях. Однако с точки зрения практической реализации термоядерного синтеза в качестве коммерческого источника энергии ИТЭР выглядит тупиком. Модель реакторной камеры ИТЭР Намного более перспективными являются устройства гораздо меньшего размера, использующие сильно неравновесные импульсные режимы, такие как фокусированная плотная плазма DPF. DPF использует процессы самоорганизации в плазме для достижения чрезвычайно высокой плотности энергии. Второй основной подход, на котором я сосредоточусь в этой статье, называется термоядерным синтезом с инерционным удержанием ICF. В ICF мы не пытаемся ограничить расширение плазмы; но перед началом процесса мы сжимаем топливо до такой высокой плотности, что большое количество реакций происходит уже в первые моменты, до того как оно успевает расшириться.
В этот крошечный промежуток времени энергия, выделяемая каждой реакцией, нагревает смесь еще больше; процесс горения становится самоподдерживающимся — достигается воспламенение. Получается миниатюрный термоядерный взрыв. Будущий реактор ICF будет работать в импульсном режиме, при этом крошечные топливные таблетки одна за другой сбрасываются во взрывную камеру и зажигаются лазерными импульсами. Взрывная камера NIF слева.
Здесь действительно очень уютно тем, кто ценит спокойствие, порядок и полное отсутствие приезжих с Кавказа и Средней Азии.
И, о чудо, улицы все подметены и подъезды вымыты! Поводов было как минимум два: 90-летний юбилей физика-ядерщика, создателя термоядерной бомбы, академика Юрия Трутнева и посещение стройки века — самого мощного лазера в мире, который, как надеются наши ученые, должен переломить тенденцию к затуханию передовых научных исследований в России. Научный обозреватель «МК» оказался в числе немногих допущенных на этот самый засекреченный российский объект можно сказать, до нас тут еще не ступала нога журналиста. Здесь, в Сарове, мы услышали историю развития российского атомного проекта из первых уст. Город Саров вновь появился на географической карте нашей страны только в 1995 году.
Теперь историческое название возвращено, горожане уже забыли то время, когда произносили слово «Саров» шепотом. Но, пожалуй, на этом вольности и заканчиваются. Город по-прежнему считается закрытым, в него впускают по особым спискам, и напрямую в кассе билет вы сюда никогда не купите. Территория в 200 с лишним квадратных километров охраняется «по советским ГОСТам», тремя рядами колючей проволоки и самыми современными электронными средствами слежения. Город, в котором 18 тысяч жителей являются сотрудниками ядерного центра, охраняет целая дивизия Росгвардии.
Как монахи с физиками подружились Когда в 1946 году заместитель председателя Совнаркома Лаврентий Берия, который курировал атомный проект СССР, приехал сюда с академиками Игорем Курчатовым и Юлием Харитоном строить экспериментальный центр, местечко называлось Свято-Успенская Саровская пустынь. Намоленная земля, мужской монастырь — и вдруг ядерный центр, место создания смертоносного оружия. Не кощунство ли? В этом монастырском приюте работали в первые годы участники атомного проекта. Но, как выяснилось, выбор был предопределен: после войны спрятанный в саровских лесах святой уголок, который к тому же не очень далеко располагался от столицы, оказался идеальным местом для создания секретного ВНИИ.
Во-первых, тут уже существовала материально-техническая база — завод-550 по производству снарядов для «катюш»; во-вторых, строителям и ученым надо было где-то жить, и монастырь, где после войны чудом сохранились почти все постройки, в буквальном смысле приютил физиков. Помнится, в 90-е годы, когда первый зампредседателя правительства Егор Гайдар выдвинул идею об уничтожении Россией всего ядерного оружия, именно церковь в лице патриарха Алексия II заступилась за ученых… И сейчас, спустя 70 с лишним лет, руководство института базируется в монастырских корпусах, ранее предназначавшихся для паломников. Говорят, монахи на возвращение построек церкви пока даже не намекают. История про двух «толстяков» К 1949 году у американцев уже готов был план уничтожения 20 самых крупных советских городов. К этому времени в Арзамасе-16, в секретном КБ-11 как именовали тогда ВНИИЭФ , полным ходом шла разработка атомной бомбы по техзаданию, занявшему всего… один лист бумаги.
Перед руководителем центра Юлием Харитоном стояла задача: не просто создать бомбу, но создать ее быстро. Потому ставка была сделана на данные, которые раздобыли наши разведчики у американцев. Используя их, ученым удалось создать оружие массового поражения не за пять лет, как планировалось сначала, а за неполные три года. Из двух бомб, сброшенных на Хиросиму и Нагасаки американцы называли их «Малышом» и «Толстяком» , наши выбрали для заимствования более сложного, но более эффективного «Толстяка», в котором вместо урана-235 использовался плутоний. Однако советские конструкторы внесли свои дополнения: систему предохранения экипажа, которая не позволяла бомбе подрываться в течение 20 секунд после сброса, систему самоликвидации и др.
В Музее ядерного оружия до сих пор хранится натуральный корпус той бомбы под зашифрованным названием РДС-1 реактивный двигатель специальный. Его разрешают фотографировать, а вот что касается самого заряда — черного шара, который размещался под оболочкой, — его экскурсоводы охраняют от камер как зеницу ока. Дело в том, что первый атомный взрыв в СССР был взрывом именно такого черного шара — заряда, который создатели не решились сбрасывать с самолета в виде бомбы потому корпус и остался невредим. Рисковать было нельзя, а потому решили взорвать заряд аккуратно, не выбрасывая с самолета. Черный шар привезли в Семипалатинск, установили на 37-метровую вышку взрыв должен был быть только над землей и со специального пульта, который располагался в бункере в 10 километрах от вышки, произвели принудительный подрыв.
В бункере присутствовал сам Берия». Дело было сделано: русские доказали, что обладают секретом атомной бомбы. Но дальше, в широкую серию, советский вариант «Толстяка» не пошел.
Термоядерное оружие: Как устроена водородная бомба
Теперь, как оно работает. Пишу в расчете на то, что принцип работы ядерной бомбы и основные понятия ядерной физики вам известны. Ядерный триггер - по сути "обычная" ядерная бомба, которая используется для пуска термоядерной реакции. Этот поток излучения испаряет тепловой экран и рентгеновское излучение начинает интенсивно поглощаться ураном контейнера термоядерного заряда. В результате так называемой абляции уноса массы с поверхности нагретого контейнера возникает реактивная сила, сжимающая контейнер в 10 раз. Этот эффект называется радиационной имплозией или обжатием излучением.
Во время взрыва в воздухе боеголовка падает и сильно ударяется об землю, зарываясь на глубину до 30 метров. После взрыва образуется облако, которое, увеличиваясь в размерах, может проникать в убежища и уже там взрываться. Американские же боеголовки начиняются обыкновенным тротилом, поэтому разрушают здания. Вакуумная бомба уничтожает определенный объект, так как обладает меньшим радиусом.
Неважно, какая бомба самая мощная - любая из них наносит несопоставимый ни с чем разрушительный удар, поражающий все живое. Водородная бомба Водородная бомба - еще одно страшное ядерное оружие. Соединение урана и плутония порождает не только энергию, но и температуру, которая повышается до миллиона градусов. Изотопы водорода соединяются в гелиевые ядра, что создает источник колоссальной энергии.
Водородная бомба самая мощная - это неоспоримый факт. Достаточно всего лишь представить, что взрыв ее равен взрывам 3000 атомных бомб в Хиросиме. Взрыв такого боеприпаса сопоставим с процессами, которые наблюдается внутри Солнца и звезд. Быстрые нейтроны с огромной скоростью расщепляют урановые оболочки самой бомбы.
Выделяется не только тепло, но и радиоактивные осадки. Насчитывают до 200 изотопов. Производство такого ядерного оружия дешевле, чем атомного, а его действие может быть усилено во сколько угодно раз. Это самая мощная взорванная бомба, которую испытали в Советском Союзе 12 августа 1953 года.
Последствия взрыва Результат взрыва водородной бомбы носит тройной характер. Самое первое, что происходит - наблюдается мощнейшая взрывная волна. Ее мощность зависит от высоты проводимого взрыва и типа местности, а также степени прозрачности воздуха. Могут образовываться большие огненные ураганы, которые не успокаиваются в течение нескольких часов.
И все же вторичное и наиболее опасное последствие, которое может вызвать самая мощная термоядерная бомба - это радиоактивное излучение и заражение окружающей местности на длительное время. Радиоактивные остатки после взрыва водородной бомбы При взрыве огненный шар содержит в себе множество очень маленьких радиоактивных частиц, которые задерживаются в атмосферном слое земли и надолго там остаются.
В первый день тренировок пуски успешно выполнили все компоненты российской триады О прорыве СССР в термоядерных исследованиях заявил 8 августа 1953 года председатель Совета министров СССР Георгий Маленков, выступая на закрытом заседании Верховного Совета. Испытание водородной бомбы провели под научным руководством Игоря Курчатова 12 августа 1953 года. Полигон представлял собой поле, на котором построили объекты разного назначения: небольшие дома, многоэтажки, мост. Там же разместили образцы военной техники. В центре этого своеобразного макета населенного пункта установили мачту высотой 30 м, откуда и была сброшена бомба.
Фото: commons. Эти показатели в 20 раз превзошли мощность атомных бомб, сброшенных на Хиросиму и Нагасаки. Абсолютно все объекты, которые были построены на Семипалатинском полигоне, оказались уничтожены: танки перевернуты, от макетов жилых зданий остались лишь бетонные ошметки, а 100-тонные элементы моста отбросило на 150—200 м. Нервное спокойствие Официально об испытаниях первой водородной бомбы объявили лишь спустя восемь дней — 20 августа 1953 года — в газетах «Правда» и «Известия». Отечественную ядерную триаду ждут большие перемены «Вследствие осуществления в водородной бомбе мощной термоядерной реакции взрыв был большой силы, — писали «Известия». В той статье также отметили резонанс в зарубежных СМИ. Многие считали, что обладание СССР таким мощным оружием является угрозой для мирового порядка.
The New York Times делала акцент не на самом факте создания Советским Союзом бомбы, а на том, что США всего в течение полугода были безоговорочными лидерами гонки вооружений. Пока Запад переваривал информацию, союзный блок социалистических стран радовался новостям о новом оружии. А СССР сначала разработал атомную бомбу, а потом и водородную.
Вот некоторая информация о водородной бомбе: Принцип работы: Водородная бомба использует принцип ядерного синтеза, в отличие от ядерного расщепления, как это происходит в атомной бомбе.
В ядерном синтезе легкие ядра, обычно изотопы водорода деутерий и тритий , объединяются, чтобы образовать более тяжелое ядро, освобождая при этом огромное количество энергии. Двухступенчатая конструкция: Водородная бомба состоит из двух ступеней. Первая ступень, называемая урановой "подрывной зарядкой" или "примесной зарядкой", использует энергию атомной бомбы, чтобы создать условия для термоядерной реакции. Вторая ступень, называемая "термоядерной ступенью", содержит деутерий и тритий, которые при взрыве испускают огромное количество энергии в результате ядерного синтеза.
Гораздо большая мощность: Водородная бомба значительно мощнее атомной бомбы. Мощность водородной бомбы измеряется в мегатоннах TNT эквивалент тротилового эквивалента , что означает, что она способна создать разрушения, эквивалентные множеству миллионов тонн тротила. Разработка и испытания: Разработка водородной бомбы требует значительных научных знаний и технологического уровня.
Какая бомба мощнее: ядерная или водородная
ВОДОРОДНАЯ БОМБА, оружие большой разрушительной силы (порядка мегатонн в тротиловом эквиваленте), принцип действия которого основан на реакции термоядерного синтеза легких ядер. Водородная бомба содержит корпус осесимметричной формы с хвостовыми стабилизаторами, внутри которого смонтирован термоядерный заряд, и систему управления с датчиком инициирования взрыва. Отметим, что реализация ключевого для водородной бомбы принципа сжатия термоядерной взрывчатки в «Слойке» был иным, чем в бомбе Теллера-Улама.
Термоядерная тайна СССР: академик раскрыл секреты создания царь-бомбы
Испытание этой термоядерной бомбы стало ключевым фактором, позволившим Советскому Союзу обеспечить ядерно-оружейный паритет с США. Лаврентьев описал принцип действия водородной бомбы, где в качестве горючего использовался твердый дейтерид лития. После успешных испытаний первой советской термоядерной бомбы в 1961 году у академика Андрея Сахарова возникла идея, с помощью которой в перспективе можно было бы разрешить любой глобальный кризис. Конструктив водородной бомбы сформирован на использовании энергии, выделяемой в процессе реакции термоядерного синтеза лёгких ядер.
Как устроена водородная бомба
Как работала «ядерная торпеда» Сахарова Ядерная бомба Сахарова известна всем. Но в СССР был и другой проект, связанный и с академиком, и с атомной энергией. Речь о «ядерной торпеде», которой Союз планировал, в случае чего, одним ударом уничтожить своего главного врага — США. Рассказываем подробнее историю, возможно, самого опасного военного проекта времен второй половины 20 века.
Он настаивал, что уничтожать противника нужно там, где находятся главные транспортные узлы и логистические центры. Однако в нормальном, пригодном для боевого применения виде, торпеда не появилась.
Компактный термоядерный заряд мощностью 400 кт под названием «изделие РДС-6c» был разработан в КБ-11 в городе Арзамас-16 современный Саров Нижегородской области. Для того чтобы оценить мощность нового оружия, на полигоне построили макет населённого пункта из 190 сооружений, между которыми поместили образцы военной техники, а также около 3 тыс. Заряд подняли на стальной мачте на 30 м от земли. В результате взрыва в радиусе 4 км были снесены все кирпичные здания, а железобетонный мост, находившийся в 1 км от эпицентра, сместился на 200 м. Советский Союз вышел в лидеры военно-технической гонки. За океаном компактный термоядерный заряд появился только в 1954 году. Значение и последствия «За восемь лет до описываемых событий произошла первая атомная бомбардировка Хиросимы и Нагасаки.
Эти два города не были военными объектами, но Америка продемонстрировала свой военный арсенал, которого на тот момент не было ни у одной другой страны. Все понимали, что американские бомбардировщики, летавшие в годы Второй мировой войны над фашистской Германией, могли в условиях холодной войны полететь и в нашу сторону. Поэтому СССР было необходимо чем-то ответить, остановить армаду в 3 тыс. Так, бомба, которую сбрасывали на Хиросиму и Нагасаки , имела мощность 20 кт. Бомба, которую испытали в 1953 году, имела мощность 400 кт. По количеству, может, американцы нас и опережали. Но мы одной бомбой могли поразить гораздо большую площадь. Ничего подобного у них не было», — подчеркнул Леонков. По мнению руководителя Центра военно-политических исследований Института США и Канады РАН Владимира Батюка, американцы вплоть до 1950-х годов относились к достижениям советской науки с изрядным скептицизмом.
Было принято списывать всё на «атомный шпионаж». Более того, не стало сенсацией и испытание водородной, хотя здесь Советский Союз явно опередил Америку.
Это была огромная конструкция размером с двухэтажный дом.
Перед советскими учеными поставили задачу создать похожее устройство, но минимального размера. В 1949 году физик Андрей Сахаров предложил основной принцип советской водородной бомбы — слойку. Во внешнем слое — взрывчатое вещество, в середине между слоями — термоядерное горючее, в центре — ядерный заряд.
Взрывчатое вещество запускали с помощью электродетонаторов, происходило обжатие — сжатие бомбы, ядерный заряд в центре взрывался и смешивался с термоядерным горючим в слоях. Слойка Сахарова стала прорывом в ядерной науке.
Ударная волна и тепловой эффект. Прямое первичное воздействие взрыва супербомбы носит тройственный характер.
Наиболее очевидное из прямых воздействий - это ударная волна огромной интенсивности. Сила ее воздействия, зависящая от мощности бомбы, высоты взрыва над поверхностью земли и характера местности, уменьшается с удалением от эпицентра взрыва. Тепловое воздействие взрыва определяется теми же факторами, но, кроме того, зависит и от прозрачности воздуха - туман резко уменьшает расстояние, на котором тепловая вспышка может вызвать серьезные ожоги. Площадь, на которой возникающее во время взрыва проникающее излучение вызывает летальный исход, сравнительно невелика даже в случае супербомбы высокой мощности.
Огненный шар. В зависимости от состава и массы горючего материала, вовлеченного в огненный шар, могут образовываться гигантские самоподдерживающиеся огненные ураганы, бушующие в течение многих часов. Однако самое опасное хотя и вторичное последствие взрыва - это радиоактивное заражение окружающей среды. Радиоактивные осадки.
Как они образуются. При взрыве бомбы возникший огненный шар наполняется огромным количеством радиоактивных частиц. Обычно эти частицы настолько малы, что, попав в верхние слои атмосферы, могут оставаться там в течение долгого времени. Но если огненный шар соприкасается с поверхностью Земли, все, что на ней находится, он превращает в раскаленные пыль и пепел и втягивает их в огненный смерч.
В вихре пламени они перемешиваются и связываются с радиоактивными частицами. Радиоактивная пыль, кроме самой крупной, оседает не сразу. Более мелкая пыль уносится возникшим в результате взрыва облаком и постепенно выпадает по мере движения его по ветру. Непосредственно в месте взрыва радиоактивные осадки могут быть чрезвычайно интенсивными - в основном это оседающая на землю крупная пыль.
В сотнях километров от места взрыва и на более далеких расстояниях на землю выпадают мелкие, но все еще видимые глазом частицы пепла. Часто они образуют похожий на выпавший снег покров, смертельно опасный для всех, кто окажется поблизости. Еще более мелкие и невидимые частицы, прежде чем они осядут на землю, могут странствовать в атмосфере месяцами и даже годами, много раз огибая земной шар. К моменту выпадения их радиоактивность значительно ослабевает.
Наиболее опасным остается излучение стронция-90 с периодом полураспада 28 лет.