Звуковая волна Амплитуду звуковых колебаний называют звуковым давлением или силой звука.
Почему при преодолении звукового барьера слышится хлопок?
Все эти звуковые волны распространяются в воздушной среде с уже известной нам скоростью звука. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, причем для каждого такого участка устанавливается определенная величина амплитуды. Неподвижный объект, испускающий звуковые волны, по классике сравнивают с брошенным в воду камнем: камень возмущает спокойную водную гладь, вызывая появление кругов, где высота образующихся волн будет амплитудой колебаний – «громкостью» нашей волны. В процессе кодирования звукового сигнала производится его временная дискретизация – непрерывная волна разбивается на отдельные маленькие временные участки и для каждого такого участка устанавливается определенная величина амплитуды. процесс, при котором, во время кодирования непрерывного звукового сигнала, звуковая волна разбивается на отдельные маленькие временные участки, причем для каждого такого участка устанавливается определенная величина амплитуды. Новости Новости.
Визитка Facebook
- Дискретизация звука
- Измерение количества информации: Звук. Информационный объем звукового файла
- Структура и соотношение компонентов непрерывной звуковой волны
- Что препятствует распространению звука? Распространение звука в среде
- Кодирование звуковой информации
Акція для всіх передплатників кейс-уроків 7W!
ИнформБюро: Кодирование звука. Практическая работа. Дискретизация звуковой информации | Временная дискретизация звука Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, для каждого такого участка устанавливается определённая величина интенсивности звука. |
Презентация, доклад на тему Кодирование звука для 10 класса | Качество непрерывного звукового сигнала в дискреиный сигнал зав. На что разбивается непрерывная звуковая волна. |
Содержание
- Физика 9 класс. §33 Отражение звука. Звуковой резонанс
- Архив блога
- Кодирование звуковой информации дискретизация
- Что такое звуковой удар и как он ощущается
Непрерывная волна
Звук - теория, часть 1 | Soundmain | Слайд 9Временная дискретизация звука Непрерывная звуковая волна разбивается на отдельные маленькие временные участки Частота. |
Кодирование звука для 10 класса доклад, проект | Слайд 12Временная дискретизация звука Непрерывная звуковая волна разбивается на отдельные маленькие временные. |
Дискретизация звука
Пожаловаться Ну а чтобы окончательно развеять мифы и сомнения, давайте все-таки разберемся - как и почему происходят эти хлопки при переходе на сверхзвук? Что об этом знает наука? Более высокие скорости иногда выражаются в числах Маха и соответствуют сверхзвуковым скоростям. При движении в среде со сверхзвуковой скоростью тело обязательно создаёт за собой звуковую волну. При равномерном прямолинейном движении фронт звуковой волны имеет конусообразную форму, с вершиной в движущемся теле.
Звуковые редакторы Звуковые редакторы позволяют не только записывать и воспроизводить звук, но и редактировать его. Оцифрованный звук представляется в звуковых редакторах в наглядной визуальной форме, поэтому операции копирования, перемещения и удаления частей звуковой дорожки можно легко осуществлять с помощью компьютерной мыши. Кроме того, можно накладывать, перехлёстывать звуковые дорожки друг на друга микшировать звуки и применять различные акустические эффекты эхо, воспроизведение в обратном направлении и др.
Звуковые редакторы позволяют изменять качество цифрового звука и объём конечного звукового файла путём изменения частоты дискретизации и глубины кодирования. Оцифрованный звук можно сохранять без сжатия в звуковых файлах в универсальном формате WAV формат компании Microsoft или в форматах со сжатием OGG, МР3 сжатие с потерями. Также доступны менее распространённые, но заслуживающие внимания форматы со сжатием без потерь. О музыкальных форматах читайте нашу статью: Разнообразие цифровых форматов При сохранении звука в форматах со сжатием отбрасываются не слышимые и невоспринимаемые "избыточные" для человеческого восприятия звуковые частоты с малой интенсивностью, совпадающие по времени со звуковыми частотами с большой интенсивностью. Применение такого формата позволяет сжимать звуковые файлы в десятки раз, однако приводит к необратимой потере информации файлы не могут быть восстановлены в первоначальном, исходном виде.
Microsoft Office 2007. Структура офисного приложения. Microsoft PowerPoint. Microsoft Excel. Microsoft Access. Профилактика вирусов. Дублируя себя, вирус заражает другие программы. Основные методы борьбы с вирусами.
Гц и глубине кодирования 16 бит. Они позволяют изменять качество звука и объем звукового файла. Оцифрованный звук можно сохранять без сжатия в универсальном формате wav или в формате со сжатием mp 3. Гц Звук «живой» и оцифрованный Задачи 1. Оцените информационный объем моноаудиофайла длительностью звучания 20 с, если "глубина" кодирования и частота дискретизации звукового сигнала равны соответственно 8 бит и 8 к. Задачи 2.
Преобразование непрерывной звуковой волны в последовательность
В статье мы расскажем, что препятствует распространению звука, но прежде разберемся, что собой представляет звуковая волна. Волны является когерентными, если разность их фаз постоянна во времени, а при сложении получается волна той же частоты. Мы постоянно обновляем базу тестов, чтобы вы могли получить наиболее актуальную информацию и проверить свои знания. Звук – это звуковая волна с непрерывно меняющийся амплитудой и частотой. непрерывную звуковая волна разбивается на отдельные маленькие временные. Чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть преобразован в цифровую дискретную форму.
Всё, что Вам нужно знать о звуке
Основные понятия | Временная дискретизация звука Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, для каждого такого участка устанавливается определённая величина интенсивности звука. |
Звуковые волны: изучаем основы физики звука | Волны является когерентными, если разность их фаз постоянна во времени, а при сложении получается волна той же частоты. |
Измерение количества информации: Звук. Информационный объем звукового файла | Непрерывная звуковая волна разбивается на отдельные участки по времени. |
Физика 9 класс. §33 Отражение звука. Звуковой резонанс | Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, для каждого такого участка устанавливается определённая величина интенсивности звука. |
Кодирование звуковой информации | На что разбивается непрерывная звуковая волна? |
Задание МЭШ
В звуковой аппаратуре звук представляется либо непрерывным электрическим сигналом, либо набором цифр (нулей и единиц). Неподвижный объект, испускающий звуковые волны, по классике сравнивают с брошенным в воду камнем: камень возмущает спокойную водную гладь, вызывая появление кругов, где высота образующихся волн будет амплитудой колебаний – «громкостью» нашей волны. Чтобы уменьшить проблему высокой несущей частоты, звуковой поток разбивается на несколько однобитных потоков, где каждый поток отвечает за свою группу разряда, что эквивалентно кратному увеличению несущей частоты от числа потоков. это чередование уплотнений и разряжений воздуха, т. е. волна, отделяющаяся от непрерывно от самолета. Для того чтобы произвести оцифровку сигнала, необходимо разбить непрерывную звуковую волну на отдельные участки, т. е. рассматривать наборы состояний, а значит нужно выполнить дискретизацию звука. Причина заключается в том, что звуковая волна является настолько длинной, что ей нужно 1/20 секунды, чтобы достичь Вашего уха.
Кодирование звуковой информации
Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, причем для каждого такого участка устанавливается определенная величина интенсивности звука. Если звуковая волна может раскачать препятствие – она его раскачивает, и вся энергия колебаний передаётся препятствию. Если звуковая волна может раскачать препятствие – она его раскачивает, и вся энергия колебаний передаётся препятствию. Фазовое разложение является одним из важных процессов в изучении и анализе звуковой волны. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки причем для каждого такого участка устанавливается определенная величина амплитуды. Например, следующая звуковая волна была разбита с глубиной кодирования, равной 3 битам (поэтому уровней громкости ровно 2 ^ 3 = 8 и каждый закодирован кодом, длиной в 3 символа) и частотой дискретизации 4 Гц.
Навигация по записям
- Кодирование звуковой информации_8 класс_Урок информатики
- Звук - теория, часть 1
- Звуки смерти или пара слов об ударных волнах | Пикабу
- Структура и соотношение компонентов непрерывной звуковой волны
- Что такое оцифровка звука?
- Преобразование непрерывной звуковой волны в последовательность - 11702-38
Дифракция и дисперсия света. Не путать!
Звуковые редакторы Звуковые редакторы позволяют не только записывать и воспроизводить звук, но и редактировать его. Оцифрованный звук представляется в звуковых редакторах в наглядной визуальной форме, поэтому операции копирования, перемещения и удаления частей звуковой дорожки можно легко осуществлять с помощью компьютерной мыши. Кроме того, можно накладывать, перехлёстывать звуковые дорожки друг на друга микшировать звуки и применять различные акустические эффекты эхо, воспроизведение в обратном направлении и др. Звуковые редакторы позволяют изменять качество цифрового звука и объём конечного звукового файла путём изменения частоты дискретизации и глубины кодирования. Оцифрованный звук можно сохранять без сжатия в звуковых файлах в универсальном формате WAV формат компании Microsoft или в форматах со сжатием OGG, МР3 сжатие с потерями. Также доступны менее распространённые, но заслуживающие внимания форматы со сжатием без потерь. О музыкальных форматах читайте нашу статью: Разнообразие цифровых форматов При сохранении звука в форматах со сжатием отбрасываются не слышимые и невоспринимаемые "избыточные" для человеческого восприятия звуковые частоты с малой интенсивностью, совпадающие по времени со звуковыми частотами с большой интенсивностью. Применение такого формата позволяет сжимать звуковые файлы в десятки раз, однако приводит к необратимой потере информации файлы не могут быть восстановлены в первоначальном, исходном виде.
Для человека звук тем громче, чем больше амплитуда сигнала, и тем выше тон, чем больше частота сигнала. Оцифровку звука выполняет специальное устройство на звуковой плате. Называется оно аналого-цифровой преобразователь АЦП. Подробнее рассмотрим эти процессы. Каждой «ступеньке» присваивается значение громкости звука 1, 2, 3 и т.
И вот, обращаю Ваше внимание, какая петрушка получается: сверхзвуковой самолёт летит, ревёт, звуковой энергии излучает столько, что мало не покажется!.. А мы его не слышим. Ну, нечего, услышим! Закон сохранения энергии ещё никто не отменял! Опустим пока сам момент "начала звучания". Пусть, например, мы заткнули оба уха, а потом открыли,... В правом, кроме удаляющегося рёва, ничего не будет. Так что же услышит наше левое ухо? Но при этом этот "кажущийся" самолёт будет лететь влево. Сначала над Ближним Муракино, потом над Средним, а потом и над Дальним. Приходить в левое ухо! Подведём итог этих двух пролётов. При сверхзвуковом полёте самолёта имеем противоположную картину: наше левое ухо воспринимает уменьшающийся по интенсивности поток звуковой энергии как УДАЛЕНИЕ самолёта в левую сторону. А что мы имеем, когда самолёт летит со звуковой скоростью? Правильно, вся энергия, которую самолёт, как источник звука а это - ой, как немало! Я думаю, теперь Вам понятно, почему возникает "звуковой удар". Но это, так сказать, только первое приближение. Потому что мы, по правде говоря, рассмотрели самолёт, пронёсшийся в нескольких сантиметрах у нас над головами, и скорость которого относительно нас с Вами на всём продолжении полёта от Дальнего Муракина до точки наблюдения была постоянна. А реальность несколько другая. Рассмотрим сверхзвуковой самолёт, летящий с двойной скоростью звука как говорят - два Маха и на высоте где-то 200 метров. Самолёт показался где-то над Дальним Муракино. Это ещё маленькая точка чуть выше горизонта. Разложим скорость самолёта на две составляющие: одна направлена строго на нас с Вами а мы всё ещё в поле , и она указывает на то, что самолёт приближается к нам, другая, перпендикулярная ей - направлена вверх и соответствует постепенному "поднятию" самолёта к точке зенита. Понятно, что если Дальнее Муракино далеко а оно далеко , то почти все два Маха направлены на нас, а к зениту направлена совсем маленькая составляющая скорости. Другое дело - точка зенита. В этом случае уже скорость прохождения точки зенита равна двум Махам, а составляющая, направленная на нас с Вами, равна нулю. Таким образом, составляющая скорости самолёта направленная на нас с Вами проходит значение от двух скоростей звука от двух Махов до ноля. Понятно, что где-то на отрезке от Дальнего Муракино до точки зенита она достигает и значения скорости звука. Пусть, например, она достигает значения скорости звука над Ближнем Муракино.
В твердых телах, особенно металлах, звук проходит намного быстрее до 5-6 тыс. Что препятствует распространению звука От тела звук расходится во все стороны одинаково, но только в том случае, если на его пути нет преград. Не все препятствия мешают распространению звука. Очевидно, что листом картона, как от света, от шума не закроешься. Дело в том, что звуковые волны обходят преграды, если их размер меньше длины волны. Длина волн, которые мы слышим, составляет 0,015-15 м. Дерево волна может обогнуть, а здание или скалистые горы — нет. От таких больших объектов она отражается. Как и свет, звуковая волна отражается под углом, равным по величине углу падения. В момент отражения мы слышим эхо. Переход звука из среды в среду Он возможен, только если плотности двух сред не слишком отличаются. Например, у воздуха и воды разница слишком велика. Звук, подойдя к границе, отражается от поверхности реки. Только маленькая часть энергии волны расходуется на вибрацию верхних слоев воды.
Презентация, доклад на тему Кодирование звука для 10 класса
Самое высокое качество оцифрованного звука, соответствующее качеству аудио-CD, достигается при частоте дискретизации 48 000 раз в секунду, глубине дискретизации 16 битов и записи двух звуковых дорожек режим "стерео". Необходимо помнить, что чем выше качество цифрового звука, тем больше информационный объем звукового файла. Можно оценить информационный объем цифрового стереозвукового файла длительностью звучания 1 секунда при среднем качестве звука 16 битов, 24 000 измерений в секунду. Звуковые редакторы. Звуковые редакторы позволяют не только записывать и воспроизводить звук, но и редактировать его. Оцифрованный звук представляется в звуковых редакторах в наглядной форме, поэтому операции копирования, перемещения и удаления частей звуковой дорожки можно легко осуществлять с помощью мыши. Кроме того, можно накладывать звуковые дорожки друг на друга микшировать звуки и применять различные акустические эффекты эхо, воспроизведение в обратном направлении и др.
Звуковые редакторы позволяют изменять качество цифрового звука и объем звукового файла путем изменения частоты дискретизации и глубины кодирования. Оцифрованный звук можно сохранять без сжатия в звуковых файлах в универсальном формате WAV или в формате со сжатием МР3. При сохранении звука в форматах со сжатием отбрасываются "избыточные" для человеческого восприятия звуковые частоты с малой интенсивностью, совпадающие по времени со звуковыми частотами с большой интенсивностью. Применение такого формата позволяет сжимать звуковые файлы в десятки раз, однако приводит к необратимой потере информации файлы не могут быть восстановлены в первоначальном виде.
Ударная волна постоянно сопровождает самолет на сверхзвуковой скорости. Однако хлопки будет слышно лишь во время прохождения самолета в определенной точке — поблизости с наблюдателем. Когда эта волна достигает наблюдателя, находящегося, например, на Земле, он слышит громкий звук, похожий на взрыв.
Распространенным заблуждением является мнение, будто бы это следствие достижения самолётом скорости звука, или «преодоления звукового барьера». На самом деле, в этот момент мимо наблюдателя проходит ударная волна, которая постоянно сопровождает самолёт, движущийся со сверхзвуковой скоростью.
Являются ли идеальными импульсные ЦАП? Но на практике не все безоблачно, и существует ряд проблем и ограничений. Основной функцией современных импульсных ЦАП является перевод многоразрядного сигнала в однобитный с относительно невысокой несущей частотой с прореживанием данных. В основном именно эти алгоритмы и определяют конечное качество звучания импульсных ЦАП-ов.
Чтобы уменьшить проблему высокой несущей частоты, звуковой поток разбивается на несколько однобитных потоков, где каждый поток отвечает за свою группу разряда, что эквивалентно кратному увеличению несущей частоты от числа потоков. Такие ЦАП называются мультибитными дельта-сигма. Сегодня импульсные ЦАП-ы получили второе дыхание в быстродействующих микросхемах общего назначения в продуктах компаний NAD и Chord за счет возможности гибко программировать алгоритмы преобразования. Формат DSD После широкого распространения дельта-сигма ЦАП-ов вполне логичным было и появления формата записи двоичного кода напрямую дельта-сигма кодировке. Широкого распространения формат не получил по нескольким причинам. Редактирование файлов в этом формате оказалось излишне ограниченным: нельзя микшировать потоки, регулировать громкость и применять эквализацию.
А это значит, что без потери качества можно лишь архивировать аналоговые записи и производить двухмикрофонную запись живых выступлений без последующей обработки. Одним словом — денег толком не заработать. В борьбе с пиратством диски формата SA-CD не поддерживались и не поддерживаются до сих пор компьютерами, что не позволяет делать их копии. Нет копий — нет широкой аудитории. Этим воспользовались поклонники формата DSD. Несущие частоты для DSD сравнительно небольшие, 2.
Все упирается в качество реализации конкретного ЦАП и таланта звукорежиссера при записи конечного файла. Общий вывод Аналоговый звук — это то, что мы слышим и воспринимаем, как окружающий мир глазами. Цифровой звук, это набор координат, описывающих звуковую волну, и который мы напрямую услышать не можем без преобразования в аналоговый сигнал. Аналоговый сигнал, записанный напрямую на аудиокассету или винил нельзя без потери качества перезаписать, в то время как волну в цифровом представлении можно копировать бит в бит. Цифровые форматы записи являются постоянным компромиссом между количеством точностью координат против объема файла и любой цифровой сигнал является лишь приближением к исходному аналоговому сигналу.
GIMP 12 это способ записи графической информации. Графические форматы файлов предназначены для хранения изображений, таких как фотографии и рисунки 13 в широком смысле — упругие волны, распространяющиеся в среде и создающие в ней механические колебания; в узком смысле — субъективное восприятие этих колебаний специальным органом чувств человека и животных 14 временная дискретизации-Для того чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть преобразован в цифровую дискретную форму с помощью временной дискретизации. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, для каждого такого участка устанавливается определенная величина интенсивности звука частота дискретизации-Для записи аналогового звука и г го преобразования в цифровую форму используется микрофон, подключенный к звуковой плате. Качество полученного цифрового звука зависит от количества измерений уровня громкости звука в единицу времени, т.
Всё, что Вам нужно знать о звуке
Такой процесс называется оцифровкой звука. Таким образом, непрерывная зависимость громкости звука от времени A t заменяется на дискретную последовательность уровней громкости. На графике это выглядит как замена гладкой кривой на последовательность "ступенек". Рис 2. Временная дискретизация звука Частота дискретизации. Для записи аналогового звука и его преобразования в цифровую форму используется микрофон, подключенный к звуковой плате. Качество полученного звука зависит от количества измерений уровня громкости звука в единицу времени, то есть частоты дискретизации. Чем большее количество измерений производится за 1 секунду, тем выше качество записанного звука. Частота дискретизации звука — это количество измерений громкости звука за одну секунду.
Одно измерение в секунду соответствует частоте 1Гц, 1000 измерений в секунду — 1 кГц. Частота дискретизации звука может лежать в диапазоне от 8000 до 48000 измерений громкости звука за одну секунду.
Гц Звук «живой» и оцифрованный Задачи 1. Оцените информационный объем моноаудиофайла длительностью звучания 20 с, если "глубина" кодирования и частота дискретизации звукового сигнала равны соответственно 8 бит и 8 к. Задачи 2. Рассчитайте время звучания моноаудиофайла, если при 16 -битном кодировании и частоте дискретизации 32 к.
Гц его объем равен 700 Кбайт.
Такие эксперименты проводились крайне редко, так как они смертельно опасны для самого самолета и летчика. Не каждый реактивный самолет способен и рассчитан, на то, чтобы разогнаться до сверхзвуковой скорости на малой высоте. Поэтому о длительном полете на сверхзвуковой скорости у поверхности земли никто и не мечтает. Но при советской власти, ученые и инженеры всерьез ставили перед собой задачу, создания такого сверхзвукового разрушителя. Проект подобного военного самолета M-25 успешно разрабатывался и назывался в узком кругу «адский косильщик». Жаль, но данный проект так и не был реализован. M-25 адский косильщик M-25 адский косильщик Тем не менее, даже сейчас военные самолеты, обладающие мощной силовой установкой, могут кратковременно, «наделать шума» в боевых порядках противника.
Но однозначно, такой боевой прием, очень опасен для летчика и сложно выполним на практике, так как разогнать самолет на сверхзвуке и управлять им на малой высоте, это не только искусство пилотирования, но и огромное везение и риск для пилота. Фактически максимального воздействия можно долбится именно в момент преодоления звукового барьера когда скорость самолета равна 1 Мах.
При скоростях полета в районе 1. Двигаясь на сверхзвуке самолет как бы тащит ударную звуковую волну за собой. Внешне это явление очень напоминает след, который оставляет корабль двигаясь по воде. Волны сильнее вблизи корабля, а угол их распространения зависит в основном, от скорости корабля. Ударная волна при полете на сверхзвуке Ударная волна при полете на сверхзвуке Поэтому если над нами пролетит самолет, летящий на сверхзвуке на много больше, чем 1 Мах, то на земле мы услышим хлопок, а потом гул удаляющегося самолета.
Причем нас спасет именно высота, на которой, над нами, пролетел самолет. При высоте полета, около 10 км этот хлопок будет не очень громким, Мы его даже навряд ли правильно оценим, так как сам самолет при такой высоте полета будет от нас уже на расстоянии 12-15 км. Ну а если представить, что самолет на сверхзвуке пролетит над нами на высоте 50-100 метров, это будет уже совсем другая, очень печальная история. Ударная волна будет порядка 200 КПа, что в разы больше смертельного порога для человека и такая ударная волна способна разрушить практически любое строение и технику.
Всё, что Вам нужно знать о звуке
Для самолёта ударная волна создаёт громкий и грохочущий звуковой удар. Происходит это на самом деле постоянно, однако люди слышат этот грохот только один раз - когда над ними пролетает «след» от самолёта. Иногда даже слышен бывает двойной хлопок из-за двух следов: за носом самолёта и за хвостом.
Человек воспринимает звуковые волны колебания воздуха с помощью слуха в форме звука различных громкости и тона. Чем больше интенсивность звуковой волны, тем громче звук, чем больше частота волны, тем выше тон звука рис. Зависимость громкости и высоты тона звука от интенсивности и частоты звуковой волны Человеческое ухо воспринимает звук с частотой от 20 колебаний в секунду низкий звук до 20 000 колебаний в секунду высокий звук. Человек может воспринимать звук в огромном диапазоне интенсивностей, в котором максимальная интенсивность больше минимальной в 1014 раз в сто тысяч миллиардов раз.
Для измерения громкости звука применяется специальная единица «децибел» дбл. Уменьшение или увеличение громкости звука на 10 дбл соответствует уменьшению или увеличению интенсивности звука в 10 раз. Временная дискретизация звука. Для того чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть преобразован в цифровую дискретную форму с помощью временной дискретизации. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, для каждого такого участка устанавливается определенная величина интенсивности звука. Таким образом, непрерывная зависимость громкости звука от времени A t заменяется на дискретную последовательность уровней громкости. На графике это выглядит как замена гладкой кривой на последовательность «ступенек» рис.
Линейное однородное квантование амплитуды Оцифрованный сигнал в виде набора последовательных значений амплитуды уже можно сохранить в памяти компьютера. Стандартный аудио компакт-диск CD-DA , применяющийся с начала 80-х годов 20-го столетия, хранит информацию в формате PCM с частотой дискретизации 44. Другие способы оцифровки Альтернативным способом аналогово-цифрового преобразования является разностная импульсно-кодовая модуляция — разностная ИКМ англ. В случае разностной ИКМ квантованию подвергают не саму амплитуду, а относительные значения величины амплитуды. В полной аналогии с ИКМ, разностная ИКМ может сочетаться с использованием как однородного, так и неоднородного методов квантования. Разностное кодирование имеет много разных вариантов.
Качество кодирования зависит от количества измерений уровня сигнала в единицу времени, то есть от частоты дискретизации. Чем больше количество измерений производится за 1 секунду чем больше частота дискретизации , тем точнее процедура двоичного кодирования. Количество измерений в секунду может лежать в диапазоне от 8000 до 48000, то есть частота дискретизации аналогового звукового сигнала может принимать значения от 8 до 48 кГц - качество звучания аудио-CD. Следует также учитывать, что возможны как моно-, так и стерео-режимы. Стандартная программа Windows Звукозапись играет роль цифрового магнитофона и позволяет записывать звук, то есть дискретизировать звуковые сигналы, и сохранять их в звуковых файлах в формате wav.
Блог Артищевой Оксаны Леонидовны, учителя информатики, г. Лекция по теме Кодирование звука. Для человека звук тем громче, чем больше амплитуда сигнала, и тем выше тон, чем больше частота сигнала. Оцифровку звука выполняет специальное устройство на звуковой плате. Называется оно аналого-цифровой преобразователь АЦП.