Вслед за "чистой водородной бомбой" в 58 мегатонн, которую сбросили с самолета над Новой Землей 30 октября 61-го, на том же Северном полигоне и в том же году испытали еще не менее десяти мощных термоядерных бомб и боеголовок мегатонного класса.
Чем отличается атомная бомба от водородной
Водородная против атомной. Что нужно знать о ядерном оружии | Futurist - будущее уже здесь | Атомные и водородные бомбы мощностью свыше 50 тыс. т относят к классу стратегического оружия. |
«В чем отличие атомной, ядерной и водородной бомб друг от друга?» — Яндекс Кью | термоядерное оружие колоссальной разрушительной силы, использующее в качестве источника энергии синтез тяжёлых ядер дейтерия и трития. |
Водородная бомба и ядерная — какие различия между двумя видами ядерных взрывов? | Как сообщают ученые, водородная бомба в несколько тысяч раз мощнее атомной,и отличается от нее своим строением. |
Чем отличается атомная бомба от водородной | Водородная бомба, также называемая термоядерным оружием или водородной бомбой, является оружием, которое выводит свою взрывную и разрушительную силу из ядерного синтеза. |
В чем разница между атомной и ядерной бомбой?
Какая бомба мощнее: ядерная или водородная | В атомной бомбе делящееся ядерное топливо быстро, под действием энергии подрыва обычных взрывчатых веществ объединяется в небольшом сферическом объеме, где создается его так называемая критическая масса, и начинается реакция деления. |
В чем отличие атомной, ядерной и водородной бомб друг от друга? | Водородная, или термоядерная, бомба является наиболее продвинутой и технологичной бомбой, мощность взрыва которой намного превосходит атомную и ограничена только количеством имеющихся в наличии компонентов. |
Чем отличается атомная бомба от ядерной? | Водородная, или термоядерная, бомба является наиболее продвинутой и технологичной бомбой, мощность взрыва которой намного превосходит атомную и ограничена только количеством имеющихся в наличии компонентов. |
В чем разница между ядерной и термоядерной бомбой?
“Идея бомбы основанной на термоядерном синтезе, инициируемом атомным зарядом, была предложена его коллеге у (который и считается “отцом” термоядерной бомбы) ещё в 1941году. Основное различие между водородной бомбой и атомной заключается в том, что водородная бомба является более мощным и разрушительным оружием, чем атомная. ядерной бомбы) еще в 1941г.
Какая бомба мощнее, атомная или водородная?
Разница между водородной бомбой и атомной бомбой | В водородной бомбе используется энергия не только от деления ядра, но и от последующего термоядерного синтеза, что значительно усиливает мощность взрыва. |
Чем отличается атомная бомба от ядерной? | Водородная бомба, она же термоядерная бомба является наиболее продвинутой и технологичной бомбой. |
Принцип работы водородной бомбы
Мировое сообщество близко подошло к осознанию того, что ядерная война неминуемо приведет к глобальной экологической катастрофе, которая сделает дальнейшее существование человечества невозможным. В течение многих лет создавались правовые механизмы, призванные разрядить напряженность и ослабить противостояние между ядерными державами. Так например, было подписано множество договоров о сокращении ядерного потенциала держав, была подписана Конвенция о Нераспространении Ядерного Оружия, по которой страны-обладателя обязались не передавать технологии производства этого оружия другим странам, а страны, не имеющие ядерного оружия, обязались не предпринимать шагов для его разработки; наконец, совсем недавно сверхдержавы договорились о полном запрещении ядерных испытаний. Очевидно, что ядерное оружие является важнейшим инструментом, который стал регулирующим символом целой эпохи в истории международных отношений и в истории человечества. Первое ядерное оружие было применено Соединенными Штатами против японских городов Хиросимы и Нагасаки в августе 1945 г. При таких взрывах высвобождается огромное количество энергии и губительной радиации: взрывная мощность может равняться мощности 200 000 тонн тринитротолуола. Гораздо более мощная водородная бомба термоядерная бомба , впервые испытанная в 1952 г.
Взрывная мощность может равняться мощности нескольких миллионов тонн мегатонн тринитротолуола. Площадь поражения, вызванного такими бомбами, достигает больших размеров: 15 мегатонная бомба взорвет все горящие вещества в пределах 20 км. Третий тип ядерного оружия, нейтронная бомба, является небольшой водородной бомбой, называемой также оружием повышенной радиации. Слабость взрыв означает то, что здания повреждаются не сильно. Нейтроны же вызывают серьезную лучевую болезнь у людей, находящихся в пределах определенного радиуса от места взрыва, и убивают всех пораженных в течении недели. Вначале взрыв атомной бомбы А образует огненный шар 1 с температурой и миллионы градусов по Цельсию и испускает радиационное излучение?
Через несколько минут В шар увеличивается в обьеме и создав! Огненный шар поднимается С , всасывая пыль и обломки, и образует грибовидное облако D , По мере увеличения в обьеме огненный шар создает мощное конвекционное течение 4 , выделяя горячее излучение 5 и образуя облако 6 , При взрыве 15 мегатонной бомбы разрушение от взрывной волны являются полным 7 в радиусе 8 км, серьезными 8 в радиусе 15км и заметными Я в радиусе 30 км Даже на расстоянии 20 км 10 взрываются все легковоспламеняющиеся вещества, В течение двух дней после взрыва бомбы на расстоянии 300 км от взрыва продолжается выпадение осадков с радиоактивной дозой в 300 рентген Прилагаемая фотография показывает, как взрыв крупного ядерного оружия на земле создает огромное грибовидное облако радиоактивной пыли и обломков, которое может достигать высоты нескольких километров. Опасная пыль, находящаяся в воздухе, свободно переносится затем преобладающими ветрами в любом направлении Опустошение покрывает огромную территорию. Современные атомные бомбы и снаряды Радиус действия В зависимости от мощности атомного заряда атомные бомбы,снаряды делят на калибры:малый,средний и крупный.
Сброшенная на японский город Хиросиму, бомба привела к разрушениям большой силы и стала причиной гибели 140 тысяч человек. Но на монументе в честь пострадавших написано: «Сколько погибло никто не знает». Само же устройство было сброшено с самолёта и взорвалось примерно в 600 метрах над поверхностью земли, подняв ядерный столб высотой 6 километров.
Устройство, прозванное «Толстяком», мощностью 21 килотонн также было сброшено с самолёта. Взрыв унёс жизни более 100 тысяч человек и привёл к большим разрушениям. После августа 1945 года ядерные бомбы против людей не применялись. Сегодня многие специалисты сходятся во мнении, что применять такое страшное оружие против жителей Японии не имело военной необходимости и целесообразности. В эпицентре взрыва находились военные корабли, на которых разместили подопытных животных. Корабли были повреждены, но из-за большого радиоактивного заражения не подлежали ремонту. Остров Бикини из-за заражения до 2010 года оставался необитаем.
Одно из таких испытаний состоялось в 1971 году, когда была взорвана термоядерная бомба «Рея», мощностью 955 килотонн. Правительство стремилось убедить общественность, что испытания безвредны, но все понимали, что это не так. Франция одна из последних стран мира, которая прекратила ядерные испытания. Последний раз южная часть Тихого океана содрогнулась от французских боеприпасов в 1998 году. Заряд, по предположению ядерщиков в 4 мегатонны, разместили на барже. Продолжительные испытания приводили к разрушению атолла, поэтому американскими военными было принято решение поместить мощное устройство на судне. В результате взрыва была заражена огромная площадь океанских просторов.
Редакция TheBiggest. Взрыв произвели у атолла Эниветок. На месте небольших рифовых островков осталась только воронка двухкилометрового диаметра, а брызги и осколки рифов разлетелись на 50 километров. Взрыв «М» показывали в кинотеатрах Соединенных Штатов и по телевидению. Но показы дали совсем другой эффект, чем ожидали политики и военные министры. После увиденного люди массово стали выступать против испытаний. Ядерный гриб взметнулся ввысь на 40 километров, а сама шапка была размером в 16 километров.
Вы только представьте. Такие размеры действительно достойны звания thebiggest! Сильный ветер донёс радиоактивное облако до берегов Мексики, хотя взрыв произошёл на расстоянии 11 тысяч километров от этой страны. Пострадала от радиоактивного заряжения и часть территории Соединённых Штатов. В погоне за рекордами в ядерных испытаниях, в результате этого взрыва были заражены огромнейшие территории. Радиоактивная пыль через несколько дней после взрыва «Castle Bravo» выпала на японское рыболовное судно. Все члены экипажа заболели лучевой болезнью, радист умер через полгода после облучения.
Взрыв, мощностью 58,6 мегатонн, был произведён на архипелаге Новая Земля в 1961 году. В основу реакции АН602 был положен принцип использования энергии реакции ядерного синтеза, и это был самый мощный взрыв водородной бомбы за всю историю испытаний. Испытания имели поистине впечатляющие, но и в то же время, опасные результаты. После сильнейшего взрыва звуковая волна от «Царь-бомбы» распространилась на тысячи километров, обогнув Землю 3 раза, а сейсмические толчки ощущали жители всей планеты. Свет взрыва был виден за 1 000 километров. Взрыв бомбы, которую после высказывания в ООН Никиты Хрущёва стали называть «Кузькина мать», разрушил на островах все постройки и не оставил ничего живого. Высота ядерного гриба от взрыва составляла около 95 километров.
Ударная и сейсмическая волна 3 раза обогнули обогнули Землю. Заключение Отметим, что кроме ядерных и водородных бомб, существуют и другие виды мощного оружия. К слову, и первая водородная бомба была создана в СССР. Изобретение ядерного и неядерного оружия большой мощности привело к гонке вооружений, а также мировому противостоянию. Именно это остаётся сдерживающим фактором неприменения ядерных бомб. Парадокс, но ученые-физики, создатели ядерного оружия, способного уничтожить Человечество, возглавили движение за мир во всём мире и выступили с инициативой уничтожения всего ядерного арсенала. В завершение, редакция TheBiggest.
Какие самые мощные бомбы произвели на вас наибольшее впечатление? Ru: Ядерная и Водородная бомба. Что мощнее ядерная или водородная бомба Ядерное оружие включает в себя водородные бомбы, как частный вариант. У водородной бомбы, в отличие от обычной атомной, мощность практически не ограничена — только весом. Костя Комарь слегка спутал — для водородных бомб имеют обычно мощность в мегатонны, а атомные — десятки килотонн. И взрывали у нас бомбу в 50 мегатонн — дальше были проблемы с грузоподъемностью самолета. В качестве ядерной взрывчатки в водородных бомбах используется дейтерид лития — он компактен и легко подрывается обычной атомной бомбой в качестве взрывателя.
Ограничения на мощность бомб никто не устанавливал, просто такие и более мощные уже неэффективны — дорого, трудно доставить, гораздо эффективнее доставить к месту и взорвать на некотором удалении друг от друга сразу несколько менее мощных бомб.
Ведь атомная ядерная бомба основана на цепной реакции веществ. Но, сама сила взрыва ограничена массой вещества, которое успело распасться. То есть, как только нейтроны распадутся, то реакция продолжительность взрыва затухнет.
Именно водород а точнее, его изотопы — дейтерий и тритий требуется для проведения термоядерной реакции.
Однако есть сложность: чтобы взорвать водородную бомбу, необходимо сначала в ходе обычного ядерного взрыва получить высокую температуру — лишь тогда атомные ядра начнут реагировать. Поэтому в случае с термоядерной бомбой большую роль играет конструкция. Широко известны две схемы. Первая — сахаровская «слойка». В центре располагался ядерный детонатор, который был окружен слоями дейтерида лития в смеси с тритием, которые перемежались со слоями обогащенного урана.
Такая конструкция позволяла достичь мощности в пределах 1 Мт. Вторая — американская схема Теллера — Улама, где ядерная бомба и изотопы водорода располагались раздельно. Выглядело это так: снизу — емкость со смесью жидких дейтерия и трития, по центру которой располагалась «свеча зажигания» — плутониевый стержень, а сверху — обычный ядерный заряд, и все это в оболочке из тяжелого металла например, обедненного урана. Быстрые нейтроны, образовавшиеся при взрыве, вызывают в урановой оболочке реакции деления атомов и добавляют энергию в общую энергию взрыва. Надстраивание дополнительных слоев дейтерида лития урана-238 позволяет создавать снаряды неограниченной мощности.
В 1953 году советский физик Виктор Давиденко случайно повторил идею Теллера — Улама, и на ее основе Сахаров придумал многоступенчатую схему, которая позволила создавать оружие небывалых мощностей. Именно по такой схеме работала «Кузькина мать». Какие еще бомбы бывают? Еще бывают нейтронные, но это вообще страшно. Это выглядит как обычный ядерный заряд малой мощности, к которому добавлен блок с изотопом бериллия — источником нейтронов.
При взрыве ядерного заряда запускается термоядерная реакция. Этот вид оружия разрабатывал американский физик Сэмюэль Коэн. Считалось, что нейтронное оружие уничтожает все живое даже в укрытиях, однако дальность поражения такого оружия невелика, так как атмосфера рассеивает потоки быстрых нейтронов, и ударная волна на больших расстояниях оказывается сильнее. А как же кобальтовая бомба? Нет, сынок, это фантастика.
Официально кобальтовых бомб нет ни у одной страны. Теоретически это термоядерная бомба с оболочкой из кобальта, которая обеспечивает сильное радиоактивное заражение местности даже при сравнительно слабом ядерном взрыве. Физик Лео Силард, описавший эту гипотетическую конструкцию в 1950 году, назвал ее «Машиной судного дня». Что круче: ядерная бомба или термоядерная? Натурный макет «Царь-бомбы" Водородная бомба является гораздо более продвинутой и технологичной, чем атомная.
Ее мощность взрыва намного превосходит атомную и ограничена только количеством имеющихся в наличии компонентов. При термоядерной реакции на каждый нуклон так называются составляющие ядра, протоны и нейтроны выделяется намного больше энергии, чем при ядерной реакции.
Атомная, водородная и нейтронная бомбы
Термоядерные реакции. В недрах Солнца содержится гигантское количество водорода , находящегося в состоянии сверхвысокого сжатия при температуре ок. При столь высоких температуре и плотности плазмы ядра водорода испытывают постоянные столкновения друг с другом, часть из которых завершается их слиянием и в конечном счете образованием более тяжелых ядер гелия. Подобные реакции, носящие название термоядерного синтеза, сопровождаются выделением огромного количества энергии. Согласно законам физики, энерговыделение при термоядерном синтезе обусловлено тем, что при образовании более тяжелого ядра часть массы вошедших в его состав легких ядер превращается в колоссальное количество энергии. Именно поэтому Солнце, обладая гигантской массой, в процессе термоядерного синтеза ежедневно теряет ок. Изотопы водорода. Атом водорода — простейший из всех существующих атомов.
Он состоит из одного протона, являющегося его ядром, вокруг которого вращается единственный электрон. Тщательные исследования воды H 2 O показали, что в ней в ничтожном количестве присутствует «тяжелая» вода, содержащая «тяжелый изотоп» водорода — дейтерий 2 H. Ядро дейтерия состоит из протона и нейтрона — нейтральной частицы, по массе близкой к протону. Существует третий изотоп водорода — тритий, в ядре которого содержатся один протон и два нейтрона. Тритий нестабилен и претерпевает самопроизвольный радиоактивный распад, превращаясь в изотоп гелия. Следы трития обнаружены в атмосфере Земли , где он образуется в результате взаимодействия космических лучей с молекулами газов, входящих в состав воздуха. Тритий получают искусственным путем в ядерном реакторе, облучая изотоп литий-6 потоком нейтронов.
Разработка водородной бомбы. Предварительный теоретический анализ показал, что термоядерный синтез легче всего осуществить в смеси дейтерия и трития. Приняв это за основу, ученые США в начале 1950 приступили к реализации проекта по созданию водородной бомбы HB. Первые испытания модельного ядерного устройства были проведены на полигоне Эниветок весной 1951; термоядерный синтез был лишь частичным. Значительный успех был достигнут 1 ноября 1951 при испытании массивного ядерного устройства, мощность взрыва которого составила 4 ё 8 Мт в тротиловом эквиваленте. Первая водородная авиабомба была взорвана в СССР 12 августа 1953, а 1 марта 1954 на атолле Бикини американцы взорвали более мощную примерно 15 Мт авиабомбу. С тех пор обе державы проводили взрывы усовершенствованных образцов мегатонного оружия.
Взрыв на атолле Бикини сопровождался выбросом большого количества радиоактивных веществ. Часть из них выпала в сотнях километров от места взрыва на японское рыболовецкое судно «Счастливый дракон», а другая покрыла остров Ронгелап. Поскольку в результате термоядерного синтеза образуется стабильный гелий, радиоактивность при взрыве чисто водородной бомбы должна быть не больше, чем у атомного детонатора термоядерной реакции. Однако в рассматриваемом случае прогнозируемые и реальные радиоактивные осадки значительно различались по количеству и составу. Механизм действия водородной бомбы. Последовательность процессов, происходящих при взрыве водородной бомбы, можно представить следующим образом. Сначала взрывается находящийся внутри оболочки HB заряд-инициатор термоядерной реакции небольшая атомная бомба , в результате чего возникает нейтронная вспышка и создается высокая температура, необходимая для инициации термоядерного синтеза.
Нейтроны бомбардируют вкладыш из дейтерида лития — соединения дейтерия с литием используется изотоп лития с массовым числом 6. Литий-6 под действием нейтронов расщепляется на гелий и тритий. Таким образом, атомный запал создает необходимые для синтеза материалы непосредственно в самой приведенной в действие бомбе. Затем начинается термоядерная реакция в смеси дейтерия с тритием, температура внутри бомбы стремительно нарастает, вовлекая в синтез все большее и большее количество водорода. При дальнейшем повышении температуры могла бы начаться реакция между ядрами дейтерия, характерная для чисто водородной бомбы. Все реакции, конечно, протекают настолько быстро, что воспринимаются как мгновенные. Деление, синтез, деление супербомба.
На самом деле в бомбе описанная выше последовательность процессов заканчивается на стадии реакции дейтерия с тритием. Далее конструкторы бомбы предпочли использовать не синтез ядер, а их деление. В результате синтеза ядер дейтерия и трития образуются гелий и быстрые нейтроны, энергия которых достаточно велика, чтобы вызвать деление ядер урана-238 основной изотоп урана, значительно более дешевый, чем уран-235, используемый в обычных атомных бомбах. Быстрые нейтроны расщепляют атомы урановой оболочки супербомбы. Деление одной тонны урана создает энергию, эквивалентную 18 Мт. Энергия идет не только на взрыв и выделение тепла. Каждое ядро урана расщепляется на два сильно радиоактивных «осколка».
В число продуктов деления входят 36 различных химических элементов и почти 200 радиоактивных изотопов. Все это и составляет радиоактивные осадки, сопровождающие взрывы супербомб. Благодаря уникальной конструкции и описанному механизму действия оружие такого типа может быть сделано сколь угодно мощным. Оно гораздо дешевле атомных бомб той же мощности. Последствия взрыва. Ударная волна и тепловой эффект. Прямое первичное воздействие взрыва супербомбы носит тройственный характер.
Наиболее очевидное из прямых воздействий — это ударная волна огромной интенсивности. Сила ее воздействия, зависящая от мощности бомбы, высоты взрыва над поверхностью земли и характера местности, уменьшается с удалением от эпицентра взрыва. Тепловое воздействие взрыва определяется теми же факторами, но, кроме того, зависит и от прозрачности воздуха — туман резко уменьшает расстояние, на котором тепловая вспышка может вызвать серьезные ожоги. Площадь, на которой возникающее во время взрыва проникающее излучение вызывает летальный исход, сравнительно невелика даже в случае супербомбы высокой мощности. Огненный шар. В зависимости от состава и массы горючего материала, вовлеченного в огненный шар, могут образовываться гигантские самоподдерживающиеся огненные ураганы, бушующие в течение многих часов. Однако самое опасное хотя и вторичное последствие взрыва — это радиоактивное заражение окружающей среды.
Радиоактивные осадки. Как они образуются. При взрыве бомбы возникший огненный шар наполняется огромным количеством радиоактивных частиц. Обычно эти частицы настолько малы, что, попав в верхние слои атмосферы, могут оставаться там в течение долгого времени. Но если огненный шар соприкасается с поверхностью Земли, все, что на ней находится, он превращает в раскаленные пыль и пепел и втягивает их в огненный смерч. В вихре пламени они перемешиваются и связываются с радиоактивными частицами. Радиоактивная пыль, кроме самой крупной, оседает не сразу.
Более мелкая пыль уносится возникшим в результате взрыва облаком и постепенно выпадает по мере движения его по ветру. Непосредственно в месте взрыва радиоактивные осадки могут быть чрезвычайно интенсивными — в основном это оседающая на землю крупная пыль. В сотнях километров от места взрыва и на более далеких расстояниях на землю выпадают мелкие, но все еще видимые глазом частицы пепла. Часто они образуют похожий на выпавший снег покров, смертельно опасный для всех, кто окажется поблизости. Еще более мелкие и невидимые частицы, прежде чем они осядут на землю, могут странствовать в атмосфере месяцами и даже годами, много раз огибая земной шар. К моменту выпадения их радиоактивность значительно ослабевает. Наиболее опасным остается излучение стронция-90 с периодом полураспада 28 лет.
Его выпадение четко наблюдается повсюду в мире. Оседая на листве и траве, он попадает в пищевые цепи, включающие и человека.
Чтобы ответить на этот вопрос, нужно разобраться в особенностях тех или иных бомб. Что такое бомба? Атомные электростанции работают по принципу высвобождения и сковывания ядерной энергии. Этот процесс обязательно контролируется. Высвобожденная энергия переходит в электричество.
Атомная бомба приводит к тому, что происходит цепная реакция, которая совершенно не поддается контролю, а огромное количество освобожденной энергии наносит чудовищные разрушения. Уран и плутоний - не такие уж и безобидные элементы таблицы Менделеева, они приводят к глобальным катастрофам. Атомная бомба Чтобы понять, какая самая мощная атомная бомба на планете, узнаем обо всем подробнее. Водородные и атомные бомбы относятся к атомной энергетике. Если объединить два кусочка урана, но каждый будет иметь массу ниже критической, то этот «союз» намного превысит критическую массу. Каждый нейтрон участвует в цепной реакции, потому что расщепляет ядро и высвобождает еще 2-3 нейтрона, которые вызывают новые реакции распада. Нейтронная сила совершенно не поддается контролю человека.
Меньше чем за секунду сотни миллиардов новообразованных распадов не только освобождают огромное количество энергии, но и становятся источниками сильнейшей радиации. Этот радиоактивный дождь покрывает толстым слоем землю, поля, растения и все живое. Если говорить о бедствиях в Хиросиме, то можно заметить, что 1 грамм взрывчатого вещества стал причиной гибели 200 тысяч человек. Принцип работы и преимущества вакуумной бомбы Считается, что вакуумная бомба, созданная по новейшим технологиям, может конкурировать с ядерной. Дело в том, что вместо тротила здесь используется газовое вещество, которое мощнее в несколько десятков раз. Авиационная бомба повышенной мощности - самая мощная вакуумная бомба в мире, которая не относится к ядерному оружию. Она может уничтожить противника, но при этом не пострадают дома и техника, а продуктов распада не будет.
Каков принцип ее работы? Сразу после сбрасывания с бомбардировщика срабатывает детонатор на некотором расстоянии от земли. Корпус разрушается и распыляется огромнейшее облако.
Начинается цепной процесс деления атомных ядер. После разрушения структуры атомов происходит ядерное возбуждение энергии с момента, когда ядерный заряд достигнет критической отметки. Это и приводит к ядерному взрыву. Водородная бомба основана на совершенно ином процессе высвобождения энергии. Для начала в водородной бомбе начинается процесс расщепления тяжелых ядер дейтерида лития-6, который распадается на тритий и гелий. И только потом происходит процесс термоядерного синтеза, что приводит к резкому нагреву боевого заряда с последующим мощнейшим взрывом. Теоретически максимальный верхний предел мощности атомной бомбы, которую люди в настоящий момент могут изготовить, составляет около 800 000 тонн в тротиловом эквиваленте. Но такую бомбу никто не делает, так как мощность в 500 000 тонн — уже вершина безумия. Кстати, ядерное топливо уран-235, который используется в атомной бомбе, делится не полностью. Например, атомная бомба, сброшенная американцами на Хиросиму, Япония, содержала 60 килограммов урана-235. Но успешному делению подверглось только 700 граммов топлива. Поэтому, если вы хотите создать крупную ядерную бомбу с большой мощностью и оснастить ею боеголовку управляемой ракеты, вы должны овладеть технологией водородной бомбы. Водородная бомба более сложная для изготовления. В принципе, водородная бомба основана на легком ядерном синтезе, также известном как термоядерный синтез.
Термоядерное «изделие» решили не сбрасывать с самолета, а подорвать в статическом состоянии на стальной башне на высоте 30 метров от земли. Там же провели и его окончательную сборку, поскольку никто не знал, как поведет себя заряд во время транспортировки на полигон. Подготовку к испытаниям закончили вечером 11 августа 1953 года. Помимо сборки РДС-6с, подготовка включала в себя и размещение на испытательном участке измерительной и исследовательской аппаратуры, возведение небольшого настоящего городка и установку военной техники — полутора десятков самолетов, семи танков, семнадцати орудий и минометов. Отказаться от взрывов Команда на подрыв поступила с пульта управления в 7. Как вспоминали позднее участники испытаний, их поразило, насколько ярким был свет от взрыва: он резал глаза даже через специальные темные очки. Удивил их и внешний вид ядерного гриба: его ножка была куда толще, чем от первых советских атомных бомб. Заряд мог бы стереть с лица земли город радиусом восемь километров, а на полигоне уничтожил все объекты, расположенные на опытном участке. Анализ результатов испытания показал, что «слойка» оказалась удачным решением, но для создания более мощных термоядерных зарядов необходима другая конструкция. И она довольно быстро была создана. Уже 22 ноября 1955 года там же, на Семипалатинском полигоне, испытали «изделие» РДС-37, собранное по двухступенчатому принципу: урановое ядро и сердечник из дейтерида лития-6. Участники разработки этой конструкции ее принцип часто называют «атомным обжатием», поскольку урановое ядро в момент взрыва сначала сильно сжимает, а потом поджигает термоядерное горючее. Подобная схема позволяла увеличивать мощность взрыва практически без ограничений. Довольно скоро это было доказано на практике, когда 30 октября 1961 года Советский Союз испытал на Новоземельском полигоне Царь-бомбу — термоядерную бомбу мощностью 50 мегатонн. Это была половинная мощность боеприпаса, разработанного учеными под руководством Андрея Сахарова, но даже при ней взрывная волна трижды обошла Земной шар. А два года спустя в Москве был заключен первый в мировой истории договор, касающийся ограничений в сфере разработки ядерного оружия — «Договор о запрещении испытаний ядерного оружия в атмосфере, космическом пространстве и под водой».
В чем разница между ядерной и термоядерной бомбой?
Высвобожденная энергия переходит в электричество. Атомная бомба приводит к тому, что происходит цепная реакция, которая совершенно не поддается контролю, а огромное количество освобожденной энергии наносит чудовищные разрушения. Уран и плутоний - не такие уж и безобидные элементы таблицы Менделеева, они приводят к глобальным катастрофам. Чтобы понять, какая самая мощная атомная бомба на планете, узнаем обо всем подробнее. Водородные и атомные бомбы относятся к атомной энергетике. Если объединить два кусочка урана, но каждый будет иметь массу ниже критической, то этот «союз» намного превысит критическую массу. Каждый нейтрон участвует в цепной реакции, потому что расщепляет ядро и высвобождает еще 2-3 нейтрона, которые вызывают новые реакции распада. Нейтронная сила совершенно не поддается контролю человека. Меньше чем за секунду сотни миллиардов новообразованных распадов не только освобождают огромное количество энергии, но и становятся источниками сильнейшей радиации. Этот радиоактивный дождь покрывает толстым слоем землю, поля, растения и все живое.
Если говорить о бедствиях в Хиросиме, то можно заметить, что 1 грамм взрывчатого вещества стал причиной гибели 200 тысяч человек. Принцип работы и преимущества вакуумной бомбы Считается, что вакуумная бомба, созданная по новейшим технологиям, может конкурировать с ядерной. Дело в том, что вместо тротила здесь используется газовое вещество, которое мощнее в несколько десятков раз. Авиационная бомба повышенной мощности - самая мощная вакуумная бомба в мире, которая не относится к ядерному оружию. Она может уничтожить противника, но при этом не пострадают дома и техника, а продуктов распада не будет.
Именно нейтроны позволяют существовать изотопам: ядрам с одинаковыми зарядами то есть идентичными химсвойствами , но при этом отличным по массе. Тонкость же в том, что процесс этот энергетически выгоден то есть протекает с выделением энергии лишь до определённого предела, после чего на создание всё более тяжёлых ядер требуется потратить больше энергии чем выделяется при их синтезе, а сами они становится весьма неустойчивыми. В природе этот процесс нуклеосинтез идёт в звёздах, где чудовищные давления и температуры «утрамбовывают» ядра так плотно, что некоторая их часть сливается, образуя более тяжёлые и выделяя энергию, за счёт которой звезда светит. Термоядерная реакция Ядерная реакция деления она же реакция распада или по-английски nuclear fission — такой вид ядерной реакции, где ядра атомов спонтанно либо под действием частицы «снаружи» распадаются на осколки обычно две-три более лёгкие частицы либо ядра. Ядерная реакция деления В принципе, в обеих типах реакций высвобождается энергия: в первом случае из-за прямой энергетической выгодности процесса, а во втором — высвобождается та энергия, которая во время «смерти» звезды потратилась на возникновение атомов тяжелее железа.
Почему водородная бомба сильнее атомной бомбы? И атом, и водород различаются несколькими сравнительными способами. Водородная бомба считается более мощной, чем атомная бомба из-за их соответствующих принципов и относительной силы.
Обе эти бомбы используют урановые и плутониевые радиоактивные элементы для создания ядерной энергетики, но различаются по тому, как эти элементы используются. Водородная бомба также известна как «термоядерные» бомбы и генерирует энергию из бомбы деления для сжатия и нагревания термоядерного топлива.. Атомная бомба работает атомным делением или расщеплением атомного ядра, в то время как водородная бомба работает атомным синтезом или объединением атомных ядер.
В принципе, в результате деления радиоактивные элементы распадаются от крупных атомов на более мелкие, в то время как синтез объединяет мелкие атомы в более крупные, в результате чего водородная бомба выделяет больше энергии, чем атомная бомба. Энергия, выделяемая атомной бомбой, в миллион раз больше энергии, выделяемой при химических реакциях, тогда как водородная бомба может выделять в три-четыре раза больше атомной бомбы.
Кроме того, что они опережают по своим характеристикам своих «малых братьев», они значительно дешевле в производстве. Изобретение устройства взрывателя Принцип действия водородной бомбы Разберем пошагово, этапы приведения в действие водородных бомб: Детонация заряда. Заряд находится в специальной оболочке. После детонации идет выброс нейтронов и создается высокая температура, требуемая для начала ядерного синтеза в главном заряде.
Расщепление лития. Под воздействием нейтронов, литий расщепляется на гелий и тритий. Термоядерный синтез. Тритий и гелий запускают термоядерную реакцию, вследствие чего в процесс вступает водород, и температура внутри заряда мгновенно возрастает. Происходит термоядерный взрыв. Термоядерный взрыв-гриб Принцип действия атомной бомбы Далее пошаговый принцип действия атомных бомб: Детонация заряда.
В оболочке бомбы находится несколько изотопов уран, плутоний и т. Лавинообразный процесс.
Укрощение термояда. Как Советский Союз создал и испытал первую в мире водородную бомбу
Ядерное оружие схема действия взрыва. Пушечная схема ядерного оружия. Реакция в атомной бомбе. Цепная реакция ядерной бомбы. Цепная реакция в атомной бомбе. Ядерная цепная реакция неуправляемая атомная бомба. Плутоний для атомной бомбы. Плутоний в ядерной бомбе.
Строение атомной бомбы плутонием. Формула атомной бомбы. Испытание водородной бомбы в СССР 1953. Термоядерное оружие водородная бомба Сахаров. Термоядерная бомба СССР 1953 испытание. Атомная и ядерная бомба различия. Водородный гриб и ядерный.
Атомная и водородная бомба в СССР. Ядерное оружие водородная бомба. Ядерные и термоядерные бомбы. Принцип действия ядерной бомбы. Принцип работы водородной бомбы. Изготовление водородной бомбы. Отличия ядерной и атомной бомбы.
Чем отличается ядерная бомба от атомной. Атомная бомба ядерная бомба разница. Водородная бомба принцип действия кратко. Термоядерное оружие водородная бомба. Водородная бомба последствия. Водородная бомба строение Сахаров. Испытание водородной бомбы РДС-6с.
Уран ядерное оружие. Самое сильное ядерное оружие. Принцип действия атомной бомбы кратко. Принцип работы атомной бомбы кратко. Ядерная бомба принцип действия схема. Схема работы ядерной бомбы. Строение водородной бомбы Сахарова.
Водородная бомба для стратегической авиации. Водородная бомба это химическое оружие. Принцип атомной бомбы. Ядерное оружие схема. Принцип действия атомной бомбы. Принцип действия ядерного оружия. Ядерная бомба СССР царь бомба.
Водородная бомба каковы последствия взрыва и как действует. Ядерная бомба царь бомба схема. Царь-бомба ядерное последствия. Формула водородной бомбы. Термоядерная реакция бомба. Химическое оружие массового поражения радиус поражения. Поражающее действие химического оружия основано.
Взрыв этой бомбы поразил всех экспертов в мире. Ее мощность составила 50 миллионов тонн в тротиловом эквиваленте. То есть фактически мощность водородной бомбы была в 111 раз больше самой мощной в мире атомной бомбы. Слева — грибовидное облако водородной бомбы, а справа — грибовидное облако атомной бомбы Почему же если потенциальная энергия ядерного деления урана-235 и ядерного синтеза дейтерид лития-6 отличается всего в 3 раза на деле разница при взрыве оказывается колоссальной? Все дело в различной критической массе ядерного топлива , а также в различии процессов высвобождения энергии. В ядерной бомбе процесс начинается после детонации заряда, расположенного внутри атомной бомбы, в которой находится уран или плутоний. После мини-взрыва, который приводит к детонации, изотопы начинают распадаться, захватывая нейтроны. Начинается цепной процесс деления атомных ядер. После разрушения структуры атомов происходит ядерное возбуждение энергии с момента, когда ядерный заряд достигнет критической отметки. Это и приводит к ядерному взрыву.
Водородная бомба основана на совершенно ином процессе высвобождения энергии. Для начала в водородной бомбе начинается процесс расщепления тяжелых ядер дейтерида лития-6, который распадается на тритий и гелий. И только потом происходит процесс термоядерного синтеза, что приводит к резкому нагреву боевого заряда с последующим мощнейшим взрывом. Теоретически максимальный верхний предел мощности атомной бомбы, которую люди в настоящий момент могут изготовить, составляет около 800 000 тонн в тротиловом эквиваленте.
Однако это мощное термоядерное оружие никогда не применялось в реальных конфликтах. Что такое атомная бомба? Атомная бомба — это ядерное оружие, предназначенное для создания мощного взрыва в результате процесса деления ядер. Бомбы на основе деления работают за счет детонации нескольких ядер урана или плутония. В качестве топлива в атомных бомбах обычно используется крайне нестабильный ядерный материал, такой как уран-235 или плутоний-239. Эти изотопы нестабильны, поскольку имеют избыток нейтронов по сравнению со стабильными изотопами того же элемента. Для того чтобы произошел взрыв, бомба должна быть воспламенена, чтобы ядерный материал быстро сжался. Это можно сделать несколькими способами, но одним из наиболее распространенных является использование обычных взрывчатых веществ например, тротила для создания высокого давления и температуры в центре бомбы. После взрыва в атомной бомбе начинается интенсивная цепная реакция деления ядер. В ходе этой реакции ядра атомов урана или плутония расщепляются на более мелкие ядра с выделением большого количества энергии. Эти более мелкие ядра, называемые продуктами деления, также испускают дополнительные нейтроны, которые могут вызвать деление других ядер, что еще больше усиливает реакцию.
Одним из них был я... Но также, несомненно, очень велика была роль Зельдовича, Трутнева и некоторых... К началу лета 1955г. Но изготовление экспериментального заряда завершилось лишь к осени. Он был успешно испытан 22 ноября 1955г. Это была первая советская двухступенчатая водородная бомба небольшой мощности, получившая обозначение РДС-37. При ее испы- тании пришлось заменить часть термоядерного горючего на инертное вещество, чтобы снизить мощность ради безопасности самолёта и жилого городка, находившегося при- мерно в 70км. Мощность взрыва составила 1,6Мт. Решение о создании водородной бомбы мощностью 100Мт. Хрущев принял в 1961г. До этого максимальным зарядом, испытанным в СССР заряд мощностью 2. К разработке устройства получившего обозначение А602ЭН группа Сахарова приступила сразу после совещания с Хрущевым 10 июля 1961г. Разработка шла ускоренными темпами. Из готовившегося испытания не делали тайны. Публичное заявление по поводу планирующе- гося супервзрыва было сделано Хрущевым 1 сентября 1961г. Бомба имела трехступенчатую схему. Для испытаний было решено ограничить мак- симальную мощность бомбы до 50 Мт. Для этого урановую оболочку третьей ступени заменили на свинцовую что снизило вклад урановой части с 51. Для обеспечения безопасного для экипажа применения «супербомбы» с самолета-носителя в НИИ парашютно-десантных систем была создана тормозная парашютная система с пло- щадью основного купола 1600 кв. Бомба имела длину около 8 м. Груз таких габаритов не помещался ни в один из существующих бомбарди- ровщиков и только Ту-95 на пределе грузоподъемности мог поднять его в воздух. Но и в егов бомбоотсек бомба не помещалась. На заводе-изготовителе стратегический бомбардировщик Ту-95 подвергли доработке, вырезав часть фюзеляжа и все-таки в полете бомба больше чем наполовину торчала наружу. Такая подвеска и немалый вес груза привели к тому, что самолет сильно сбавил в дальности и скорости - становясь практически негодным к боевому применению. Весь корпус самолета, даже лопасти его винтов, были покрыты специальной белой краской, защищающей от световой вспышки при взрыве. Все было готово уже через 112 дней после встречи с Хрущевым. Утром 30 октября 1961г. Ту-95 поднялся в воздух и взял курс на Новую Землю. Экипажем самолета командовал майор А. Бомба отделилась на высоте 10500м. За время падения самолет успел удалиться на относительно безопасное расстояние в 40-50км. Взрыв произошел в 11:32 по московскому времени. Вспышка оказалась настолько ярка, что ее можно было наблюдать с расстояния до 1000 км. Светящийся огненный шар достиг земли и имел размеры около 10км. Гиганский гриб поднялся на высоту в 65 км. После взрыва из-за ионизации атмосферы на 40 мин. Зона полного уничтожения представляла собой круг в 25км. При полной мощности в 100 Мт. С полной уверенностью можно утверждать, что использование такого оружия в военных условиях было невозможно и испытание имело сугубо политическое и психоло- гическое значение. Дальнейшие работы по бомбе были прекращены серийное производ- ство не велось. Великобритания В Великобритании разработка термоядерного оружия была начата в 1954г. В целом информированность британской стороны по термо- ядерной проблеме находилась на весьма зачаточном уровне, так как США не делились информацией, ссылаясь на закон об Атомной энергии 1946г. В 1957г. Великобритания провела серию испытаний на островах Рождества в Тихом океане под общим наименованием «Operation Grapple» Операция Схватка. Первым под наименованием «Short Granite» Хрупкий Гранит было испытано опытное термоядерное устройство мощностью около 300Кт. В ходе испытания «Orange Herald» Оранжевый вестник была взорвана самая мощная из когда-либо созданных атомная бомба мощностью 700Кт. Почти все свидетели испытаний включая экипаж самолета, который ее сбросил считали, что это была термоядерная бомба. Бомба оказалась слишком дорогой в производстве, так как в ее состав входил 117кг. В сентябре 1957г. Первым в испытании под названием «Grapple Х Round» 8 ноября было взорвано двухступенчатое устройство с небольшим термоядерным зарядом. Мощность взрыва составила приблизительно 1. Франция В ходе испытаний «Канопус» во Французской Полинезии в августе 1968 г. Франция взорвала термоядерное устройство типа «Теллер-Улам» мощностью около 2,6Мт. Подроб- ности о развитиии французской программы малоизвестны. Это фотографии испытаний первой французской термоядерной бомбы. Испы- тание было проведено спустя всего 32 месяца после взрыва первой китайской атомной бомбы, что является примером самого быстрого развития национальной ядерной прог- раммы от реакции расщепления к синтезу. Это стало возможным благодаря США откуда в то время были высланы по подозрению в шпионаже работавшие там китайские физики. Айви Майк - первые атмосферные испытания водородной бомбы, проведенные США на атоллле Эниветок 1 ноября 1952 года. Как устроено это оружие, что оно может и чего не может? Мы расскажем об истории ее создания и разберёмся, правда ли, что такой боеприпас почти не загрязняет среду, но может уничтожить мир. Идея термоядерного оружия, где ядра атомов сливаются, а не расщепляются, как в атомной бомбе, появилась не позднее 1941 года. Она пришла в головы физикам Энрико Ферми и Эдварду Теллеру. Примерно в то же время они стали участниками Манхэттенского проекта и помогли создать бомбы, сброшенные на Хиросиму и Нагасаки. Сконструировать термоядерный боеприпас оказалось намного сложнее. Приблизительно понять, насколько термоядерная бомба сложнее атомной, можно и по тому факту, что работающие АЭС давно обыденность, а работающие и практичные термоядерные электростанции - все еще научная фантастика. Чтобы атомные ядра сливались друг с другом, их надо нагреть до миллионов градусов. Схему устройства, которое позволило бы это проделать, американцы запатентовали в 1946 году проект неофициально назывался Super , но вспомнили о ней только спустя три года, когда в СССР успешно испытали ядерную бомбу. Президент США Гарри Трумэн заявил, что на советский рывок нужно ответить «так называемой водородной, или супербомбой». К 1951 году американцы собрали устройство и провели испытания под кодовым названием «Джордж». Конструкция представляла собой тор - проще говоря, бублик - с тяжелыми изотопами водорода, дейтерием и тритием. Выбрали их потому, что такие ядра сливать проще, чем ядра обычного водорода. Запалом служила ядерная бомба. Взрыв сжимал дейтерий и тритий, те сливались, давали поток быстрых нейтронов и зажигали обкладку из урана. В обычной атомной бомбе он не делится: там есть только медленные нейтроны, которые не могут заставить делиться стабильный изотоп урана. За счет дополнительного урана взрыв получился вдвое мощнее, чем с обычной атомной бомбой. Тогда математик Станислав Улам предложил другой подход - двухступенчатый ядерный запал. Его задумка заключалась в том, чтобы поместить в «водородной» зоне устройства плутониевый стержень. Взрыв первого запала «поджигал» плутоний, две ударные волны и два потока рентгеновских лучей сталкивались - давление и температура подскакивали достаточно, чтобы начался термоядерный синтез. Новое устройство испытали на атолле Эниветок в Тихом океане в 1952 году - взрывная мощность бомбы составила уже десять мегатонн в тротиловом эквиваленте. Тем не менее и это устройство было непригодно для использования в качестве боевого оружия. Чтобы ядра водорода сливались, расстояние между ними должно быть минимальным, поэтому дейтерий и тритий охлаждали до жидкого состояния, почти до абсолютного нуля. Для этого требовалась огромная криогенная установка. Второе термоядерное устройство, по сути увеличенная модификация «Джорджа», весило 70 тонн - с самолета такое не сбросишь. СССР начал разрабатывать термоядерную бомбу позднее: первая схема была предложена советскими разработчиками лишь в 1949 году. В ней предполагалось использовать дейтерид лития. Это металл, твердое вещество, его не надо сжижать, а потому громоздкий холодильник, как в американском варианте, уже не требовался. Не менее важно и то, что литий-6 при бомбардировке нейтронами от взрыва давал гелий и тритий, что еще больше упрощает дальнейшее слияние ядер. Бомба РДС-6с была готова в 1953 году. В отличие от американских и современных термоядерных устройств плутониевого стержня в ней не было. Такая схема известна как «слойка»: слои дейтерида лития перемежались урановыми. Мощность взрыва составила 400 килотонн в тротиловом эквиваленте - в 25 раз меньше, чем во второй попытке американцев. Зато РДС-6с можно было сбросить с воздуха. Такую же бомбу собирались использовать и на межконтинентальных баллистических ракетах. А уже в 1955 году СССР усовершенствовал свое термоядерное детище, оснастив его плутониевым стержнем. Сегодня практически все термоядерные устройства - судя по всему, даже северокорейские - представляют собой нечто среднее между ранними советскими и американскими моделями. Все они используют дейтерид лития как топливо и поджигают его двухступенчатым ядерным детонатором. Как известно из утечек, даже самая современная американская термоядерная боеголовка W88 похожа на РДС-6c: слои дейтерида лития перемежаются ураном. Разница в том, что современные термоядерные боеприпасы - это не многомегатонные монстры вроде «Царь-бомбы», а системы мощностью в сотни килотонн, как РДС-6с. Мегатонных боеголовок в арсеналах ни у кого нет, так как в военном отношении десяток менее мощных зарядов ценнее одного сильного: это позволяет поразить больше целей. Техники работают с американской термоядерной боеголовкой W80 Чего не может термоядерная бомба Водород - элемент чрезвычайно распространенный, достаточно его и в атмосфере Земли. Одно время поговаривали, что достаточно мощный термоядерный взрыв может запустить цепную реакцию и весь воздух на нашей планете выгорит. Но это миф. Не то что газообразный, но и жидкий водород недостаточно плотный, чтобы начался термоядерный синтез. Его нужно сжимать и нагревать ядерным взрывом, желательно c разных сторон, как это делается двухступенчатым запалом. В атмосфере таких условий нет, поэтому самоподдерживающиеся реакции слияния ядер там невозможны. Это не единственное заблуждение о термоядерном оружии. Часто говорят, что взрыв «чище» ядерного: мол, при слиянии ядер водорода «осколков» - опасных короткоживущих ядер атомов, дающих радиоактивное загрязнение, - получается меньше, чем при делении ядер урана. Заблуждение это основано на том, что при термоядерном взрыве большая часть энергии якобы выделяется за счет слияния ядер. Это неправда. Да, «Царь-бомба» была такой, но только потому, что ее урановую «рубашку» для испытаний заменили на свинцовую. Современные двухступенчатые запалы приводят к значительному радиоактивному загрязнению. Зона возможного тотального поражения «Царь-бомбой», нанесенная на карту Парижа. Красный круг - зона полного разрушения радиус 35 км. Желтый круг - размер огненного шара радиус 3,5 км. Правда, зерно истины в мифе о «чистой» бомбе все же есть. Взять лучшую американскую термоядерную боеголовку W88. При ее взрыве на оптимальной высоте над городом площадь сильных разрушений практически совпадет с зоной радиоактивного поражения, опасного для жизни. Погибших от лучевой болезни будет исчезающе мало: люди погибнут от самого взрыва, а не радиации. Еще один миф гласит, что термоядерное оружие способно уничтожить всю человеческую цивилизацию, а то и жизнь на Земле. Это тоже практически исключено. Энергия взрыва распределена в трех измерениях, поэтому при росте мощности боеприпаса в тысячу раз радиус поражающего действия растет всего в десять раз - мегатонная боеголовка имеет радиус поражения всего в десять раз больше, чем тактическая, килотонная. Мощность удара составила около 100 млн мегатонн - это в 10 тыс. И жизнь в целом, и человек куда крепче, чем они кажутся. Правда о термоядерном оружии не так популярна, как мифы. На сегодня она такова: термоядерные арсеналы компактных боеголовок средней мощности обеспечивают хрупкий стратегический баланс, из-за которого никто не может свободно утюжить другие страны мира атомным оружием. Боязнь термоядерного ответа - более чем достаточный сдерживающий фактор. В конце 30-х годов прошлого столетия в Европе уже были открыты закономерности деления и распада а водородная бомба из разряда фантастики перешла в реальную действительность. История освоения ядерной энергии интересна и до сих пор представляет собой захватывающее соревнование между научным потенциалом стран: нацистской Германии, СССР и США. Самая мощная бомба, владеть которой мечтало любое государство, была не только оружием, но и мощным политическим инструментом.
Укрощение термояда. Как Советский Союз создал и испытал первую в мире водородную бомбу
Поэтому термоядерную реакцию в водородной бомбе зажигает атомный заряд, в котором используется энергия деления атомных ядер. Момент взрыва водородной бомбы в акватории Тихого океана. РИА Новости. Водородная бомба, она же термоядерная бомба является наиболее продвинутой и технологичной бомбой. Водородная бомба, также называемая термоядерным оружием или водородной бомбой, является оружием, которое выводит свою взрывную и разрушительную силу из ядерного синтеза.
Разница между водородной бомбой и атомной бомбой
Водородная или термоядерная бомба работает на синтезе слиянии ядер дейтерия Н3 выделяется огромное количество м термоядерной бомбы является плутониевая бомба. Поэтому термоядерную реакцию в водородной бомбе зажигает атомный заряд, в котором используется энергия деления атомных ядер. Чем водородная бомба отличается от атомной.
Атомный и ядерный взрыв в чем разница. Чем отличаются атомная, ядерная и водородная бомбы
Она может уничтожить противника, но при этом не пострадают дома и техника, а продуктов распада не будет. Каков принцип ее работы? Сразу после сбрасывания с бомбардировщика срабатывает детонатор на некотором расстоянии от земли. Корпус разрушается и распыляется огромнейшее облако.
При смешивании с кислородом оно начинает проникать куда угодно - в дома, бункеры, убежища. Выгорание кислорода образует везде вакуум. При сбрасывании этой бомбы получается сверхзвуковая волна и образуется очень высокая температура.
Отличие вакуумной бомбы американской от российской Различия состоят в том, что последняя может уничтожать противника, находящегося даже в бункере, при помощи соответствующей боеголовки. Во время взрыва в воздухе боеголовка падает и сильно ударяется об землю, зарываясь на глубину до 30 метров. После взрыва образуется облако, которое, увеличиваясь в размерах, может проникать в убежища и уже там взрываться.
Американские же боеголовки начиняются обыкновенным тротилом, поэтому разрушают здания. Вакуумная бомба уничтожает определенный объект, так как обладает меньшим радиусом. Неважно, какая бомба самая мощная - любая из них наносит несопоставимый ни с чем разрушительный удар, поражающий все живое.
Водородная бомба Водородная бомба - еще одно страшное ядерное оружие. Соединение урана и плутония порождает не только энергию, но и температуру, которая повышается до миллиона градусов.
Трудные дни и ночи 1986 года: как боролись с аварией на Чернобыльской АЭС. Личный опыт "Конечно, разрушение портов — как надводным взрывом "выскочившей" из воды торпеды со 100-мегатонным зарядом, так и подводным взрывом — неизбежно сопряжено с очень большими человеческими жертвами, — вспоминал этот эпизод сам Андрей Сахаров. Я устыдился и больше никогда ни с кем не обсуждал этого проекта". Последующее моделирование процесса образования цунами показало, что данная идея — не самая эффективная с точки зрения нанесения вреда условному противнику. Куда большую степень разрушения принесет взрыв непосредственно вблизи берега.
Проект реализовывать не стали. Предсказание Интернета Среди научных предвидений академика я бы особенно отметил его видение современного интернета. В 1974 году в статье "Мир через полвека" Андрей Сахаров писал: "В перспективе, быть может, поздней, чем через 50 лет, я предполагаю создание всемирной информационной системы ВИС , которая сделает доступным для каждого в любую минуту содержание любой книги, когда-либо и где-либо опубликованной, содержание любой статьи, получение любой справки. ВИС должна включать индивидуальные миниатюрные запросные приемники-передатчики, диспетчерские пункты, управляющие потоками информации, каналы связи, включающие тысячи искусственных спутников связи, кабельные и лазерные линии. Даже частичное осуществление ВИС окажет глубокое воздействие на жизнь каждого человека, на его досуг, на его интеллектуальное и художественное развитие. В отличие от телевизора, который является главным источником информации многих современников, ВИС будет предоставлять каждому максимальную свободу в выборе информации и требовать индивидуальной активности".
В военном плане применяются понятия — атомная бомба и ядерная бомба. Разница между ядерной бомбой и атомной бомбой в следующем: Атомная бомба — это бомба, в основе взрывного и разрушительного действия которой является энергия, выделяемая при распаде радиоактивных изотопов. Ядерной же бомбой является бомба, в основе взрывной волны которой может быть как ядерный распад атомов, так и термоядерный синтез.
Среди различных типов ядерного оружия широко известны три: атомная бомба, водородная бомба и нейтронная бомба. Хотя все они разрушительны, они различаются по своей взрывной силе, механизмам детонации и радиационному воздействию. Атомные бомбы, также известные как бомбы деления, были первым ядерным оружием, разработанным людьми. Они работают по принципу ядерного деления, то есть процесса расщепления тяжелых атомных ядер на более легкие путем бомбардировки их нейтронами. Когда критическая масса делящегося материала, такого как уран-235 или плутоний-239, собирается вместе, начинается цепная реакция, высвобождающая огромное количество энергии в виде тепла, взрыва и излучения.
Энергия, выделяемая атомной бомбой, эквивалентна тысячам тонн тротила, этого достаточно, чтобы сровнять с землей целые города и убить миллионы людей. Первая атомная бомба была взорвана 16 июля 1945 года в Аламогордо, штат Нью-Мексико, Соединенными Штатами в рамках Манхэттенского проекта. Бомба по прозвищу «Тринити» имела взрывную мощность около 20 килотонн в тротиловом эквиваленте и произвела огненный шар, который был виден за много миль. Вторые и последние атомные бомбы, когда-либо использовавшиеся в военных действиях, были сброшены Соединенными Штатами над японскими городами Хиросима и Нагасаки 6 и 9 августа 1945 года соответственно, в результате чего мгновенно погибло около 200 000 человек, а из-за радиации возникли долгосрочные последствия для здоровья. Водородные бомбы, также известные как термоядерные бомбы, намного мощнее атомных бомб и основаны на другом типе ядерной реакции, называемой синтезом.