Новости бнту репозиторий

Репозиторий библиотеки БГУТ. Материалы конференций. Международные научно-технические конференции. Белорусский национальный технический университет. Telegram. Instagram. Белорусский национальный технический университет. Telegram. Instagram. Репозиторий Белорусского национального технического университета улучшил позиции в мировом рейтинге репозиториев Transparent Ranking of Repositories от.

Пресс-релизы/новости

БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ филиал БНТУ "МИНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ КОЛЛЕДЖ". В Белорусском национальном техническом университете обучается более 35 000 студентов. Мой архив ресурсов. Обновления на e-mail. Репозиторий БГАТУ! Факультеты. Факультет технического сервиса в АПК. Заказ 39. Издатель и полиграфическое исполнение: Белорусский национальный технический университет. Лицензия № 02330/0056957 от 01.04.2004. Главная» Новости» Бнту факультеты магистратуры.

Rep.bntu.by

В рейтинге институциональных репозиториев (Institutional Repositories) репозиторий БНТУ расположился на 23-м месте среди 4508 других ресурсов. репозиторий бнту электротехника и электроника — статьи и видео в Дзене. репозиторий бнту электротехника и электроника — статьи и видео в Дзене.

Новости по теме: БНТУ

Визит делегации Северного (Арктического) федерального университета имени М.В. Ломоносова в БГПУ Репозиторий Белорусского национального технического университета улучшил позиции в мировом рейтинге репозиториев Transparent Ranking of Repositories от.
Rep.bntu.by Андижанский машиностроительный институт сотрудничает с БНТУ уже несколько лет, и это один из примеров успешного международного сотрудничества двух вузов в области образования.

Общественные объединения

  • Репозиторий БНТУ впервые в топ-30 репозиториев мира
  • SCIENTIFIC LIBRARY OF BNTU: ITS HISTORY AND PRESENT TIMES
  • Подразделения
  • Репозитории двух белорусских университетов попали в мировой топ-30
  • Факультет Технологий управления и гуманитаризации

Rep.bntu.by

Белорусский нaциональный тeхнический университет. Главная Все новости Участие университета в XIV Евразийском экономическом форуме. 1. Репозиторий Белорусского национального технического университета. В Белорусском национальном техническом университете обучается более 35 000 студентов. В Репозитории #БНТУ создана новая коллекция – «Графические работы» Она содержит проекты студентов университета. электронный архив документов научного, образовательного и нормативного назначения, изданных в БНТУ либо созданных работниками БНТУ.

Визит делегации Северного (Арктического) федерального университета имени М.В. Ломоносова в БГПУ

Важность развития компетенций в области разработки операционных систем на базе Linux подчеркивается также ростом спроса на российские ОС не только на внутреннем рынке, но и со стороны иностранных компаний из Юго-Восточной Азии, Африки, арабских стран. Руководитель направления департамента образования «Группы Астра» Денис Эдуардович Давыдов представил программные продукты компании и проекты подготовки кадров, в том числе стипендию для студентов и программу трудоустройства молодых специалистов «Астра-карьера». Специалист отдела образования «РЕД СОФТ» Юлия Сергеевна Немыкина рассказала о разработках компании для образования и бизнеса и о направлениях сотрудничества с учебными заведениями, которые включают в себя предоставление лицензии на использование созданного компанией программного обеспечения и обучение педагогов, а также практики, стажировки, лекции и олимпиады для студентов. Руководитель программ обучения и сертификации «Базальт СПО» Мария Олеговна Петрова познакомила участников фестиваля с проектом создания технологически независимого репозитория программ «Сизиф» и семейством операционных систем «Альт». После торжественного открытия команды получили задания. Команды должны были выбрать любые 3 из 5 предложенных операционных систем и оценить их по 11 критериям, отражающим удобство использования и наличие программного обеспечения для выполнения различных задач — от инженерных и математических расчетов до моделирования и программирования роботов.

В основе его методологии - показатель количества документов, размещенных в репозиториях открытого доступа и проиндексированных сервисом Google Scholar. Таким образом, оценивается степень открытости академических ресурсов и их интеграция в информационное пространство. Репозиторий БНТУ генерируется с 2012 года.

Подписание данного соглашения является важным шагом в просвещении и патриотическом воспитании молодежи. Демьянович в процессе подписания.

Дополнительное приложение Meshtastic для Android доступно в Google Play , а исходный код находится в отдельном репозитории. Это решение полезно в удаленных местах, где сотовые сети недоступны, и мы могли бы также предположить, что это было бы хорошим решением в зонах бедствия, где инфраструктура не работает, поскольку дальность прямой видимости превышает несколько километров. Программное обеспечение по-прежнему считается альфа, поэтому они работают над улучшением системы и в конечном итоге планируют иметь модифицированную версию приложения Signal, которая работает с проектом.

Новости по теме: БНТУ

Визит делегации Северного Арктического федерального университета имени М. В составе делегации САФУ — Зарубина Любовь Альбертовна — заместитель первого проректора по стратегическому развитию и науке, начальник управления международного сотрудничества; Флотская Наталья Юрьевна — директор Высшей школы педагогики, психологии и физической культуры. БГПУ представили первый проректор Коптева Светлана Ивановна, проректор по учебной работе Маковчик Александр Васильевич, проректор по научной работе Феклистова Светлана Николаевна, заместитель начальника управления международного сотрудничества Балясникова Татьяна Алексеевна. Главная тема переговоров — развитие действующих и проработка новых направлений взаимодействия университетов.

Особый интерес у гостей вызвал белорусский опыт организации ранней профессиональной ориентации школьников педагогические классы и гражданско-патриотический и духовно-нравственный проект — интернациональный Звёздный поход студентов и преподавателей по местам боевой и трудовой славы белорусского народа, ставший инструментом формирования международного имиджа БГПУ. В рамках встречи также состоялись переговоры с начальником Главного управления профессионального образования Министерства образования Республики Беларусь Пищовым Сергеем Николаевичем, ректором Белорусского национального технического университета Харитончиком Сергеем Викторовичем, проректором по учебной работе БНТУ Николайчиком Юрием Александровичем. Минск, ул. Советская, 18, каб.

Условия образования феррои алюмосиликатных, железоокисных и железофосфатных, медноокисных накипей. Условия образования отложений легкорастворимых соединений. Образование отложений на внутренних поверхностях прямоточных парогенераторов. Предотвращение отложений на парообразующих поверхностях нагрева. Удаление отложений с теплообменных поверхностей нагрева парогенераторов.

Способы проведения химических промывок оборудования. Предпусковые химочистки парогенераторов и тракта питательной воды. Эксплуатационные очистки парогенераторов и тракта питательной воды. Загрязнение пара, образование отложений по паровому тракту и способы их удаления. Причины загрязнения пара.

Распределение и способы удаления примесей в проточной части турбины. Способы контроля за чистотой поверхностей основного теплоэнергетического оборудования. Коррозия металла паросилового оборудования и методы борьбы с ней Ре по з ит о Основы теории коррозии металлов. Природа коррозии и формы ее проявления. Влияние внутренних и внешних факторов на скорость протекания коррозии.

Коррозия основного теплоэнергетического оборудования ТЭС. Коррозия тракта питательной воды и конденсата. Причины и виды коррозионного повреждения металла парогенераторов. Характеристика основных видов коррозии металла котлов и мероприятия по ее предотвращению. Коррозия труб пароперегревателей.

Коррозия паровых турбин и способы ее предотвращения. Основные причины и виды коррозии конденсаторов и способы ее предотвращения. Способы консервации теплоэнергетического оборудования. Консервация турбин и энергетических котлов горячим воздухом. Ингибиторы коррозии.

Безотходная консервация турбин ингибиторами. Парокислородная очистка и пассивация поверхностей энергетического оборудования. Анализ существующих методов консервации теплоэнергетического оборудования. Причины загрязнения и методы повышения чистоты насыщенного пара. Организация ступенчатого испарения достоинства и недостатки.

Промывка насыщенного пара питательной водой и способы реализации. Паропромывочные и сепарационные устройства. Назначение и организация непрерывной продувки, расчет ее величины, способы утилизации продувочной воды. Назначение и организация периодической продувки. Коррекционная обработка котловой и питательной воды барабанных котлов.

Назначение и способы реализации фосфатной обработки котловой воды, амминирования и гидразинной обработки питательной воды. Применение комплексонов для обработки питательной воды. Особенности ведения водных режимов барабанных котлов среднего, высокого и сверхвысокого давлений. Бесфосфатный водный режим барабанного котла. Опыт применения нейтрально-окислительного водного режима для барабанного котла.

Основные пути совершенствования ВХР барабанных котлов. Тема 2. Обзор водных режимов прямоточных парогенераторов, используемых в мировой энергетике. Гидразинно-аммиачный водный режим достоинства и недостатки. Водный режим повышенного амминирования.

Особенности восстановительного и комплексонного водных режимов. Нейтральноокислительные водные режимы. Особенности применения кислородных режимов на ТЭС ведущих западных стран. Анализ и условия использования окислителей. Комбинированный водный режим.

ВХР тепловых сетей Основные положения и требования к тепловым сетям в целях повышения надежности их эксплуатации. Нормирование качества подпиточной и сетевой воды. Образование и характер отложений в 41 ТУ водогрейном оборудовании. Коррозия оборудования теплосетей природа и формы проявления коррозии, основные коррозионные агенты. Коррозия теплообменных аппаратов и способы ее снижения.

Особенности коррозии трубопроводов и основные меры, направленные на обеспечение надежной и экономичной их эксплуатации. Стояночная коррозия оборудования систем теплоснабжения и способы ее предотвращения. Пути повышения надежности ВХР и организация химконтроля в теплосетях. БН Тема 2. Характеристика загрязнений турбинного конденсата.

Очистка турбинного конденсата. Блочная обессоливающая установка БОУ. Основное оборудование БОУ. Характеристика загрязнений внешнего конденсата и схемы его очистки, очистка конденсатов от нефтепродуктов. Схемы обезжелезивания и обессоливания конденсатов.

Оборудование для очистки конденсатов насыпные и намывные фильтры, электромагнитные фильтры, фильтры смешанного действия ФСД с выносной регенерацией. Основные потребители технической воды на ТЭС. Расчет расхода технической воды на ТЭС. Прямоточная и оборотная системы охлаждения ТЭС. Требования, предъявляемые к охлаждающей воде.

Методика расчета оборотной системы с водохранилищем-охладителем, с градирнями. Требования к прямоточной системе охлаждения. Удаление из воды минеральных и биологических примесей для обеспечения чистоты поверхности охлаждения конденсаторов турбин физические и химические методы. Конденсация пара сопровождается выделением скрытой теплоты парообразования, которая отводится при помощи охлаждающей циркуляционной воды. Расход воды на охлаждение конденсатора турбины измеряется десятками тысяч тонн в час.

Наиболее ответственной частью конденсатора являются конденсаторные трубки. Одним из основных требований, предъявляемых к ним, является коррозионная стойкость. Поэтому их изготавливают из сплавов цветных металлов на основе меди, а также из хромникелевой нержавеющей стали. Конденсаторные трубки а их в конденсаторе порядка нескольких десятков тысяч крепятся в трубных досках и методы их крепления должны обеспечивать плотность и долговечность. Гидравлическая плотность конденсатора обеспечивается правильным выбором материала трубок и конструкционными мероприятиями, исключающими возможность попадания циркуляционной воды в паровое пространство конденсатора в местах разъемных соединений, вальцовочных креплений трубок в трубных досках и в самих трубках, подверженных различным механическим, эрозионным и коррозионным повреждениям.

Наиболее опасны с точки зрения ухудшения гидравлической плотности механические повреждения трубок, так как обрыв даже одной трубки приводит к серьезному загрязнению турбинного конденсата, являющегося основной составляющей питательной воды котлов. Причинами механических повреждений могут быть: а вибрационная усталость металла; б эрозия трубок; 43 ит о ри й БН ТУ в некачественная вальцовка и стирание стенок трубок в местах перехода их через промежуточные перегородки и т. Наиболее частой причиной повреждения трубок являются следующие виды коррозии: общее и пробочное обесцинкование, коррозионное растрескивание, ударная коррозия и коррозионная усталость. Основные мероприятия для предотвращения попадания в конденсат охлаждающей воды через неплотности в местах вальцовочных соединений рис. Схема трубной доски с покрытием из жидкого наирита а , где 1 — латунная теплообменная трубка; 2 — стальная трубная доска; 3 — жидкий наирит; 4 — грунтовка; схема конденсатора с солевыми отсеками б , где 1 — охлаждающая вода; 2 — основные трубные доски; 3 — дополнительные трубные доски; 4 — трубная теплообменная поверхность; 5 — пар из турбины; 6 — конденсат солевых отсеков; 7.

В целях контроля гидравлической плотности конденсатора его оснащают пробоотборными устройствами в точках 1 — 3 рис. Схема контроля гидравлической плотности конденсатора: 1 — пробоотборник пара, отработавшего в турбине; 2 — пробоотборник охлаждающей воды; 3 — пробоотборник турбинного конденсата В точке 1, находящейся на входе в конденсатор, производят отбор пробы пара, отработавшего в турбине. В точке 3 производят отбор пробы на выходе из конденсатора — турбинный конденсат. Для выполнения работы в качестве пробы точки 1 условно примем дистиллят, пробы точки 2 — водопроводную воду. Определим общую жесткость этих потоков.

Пробу точки 3 — турбинный конденсат — получаем следующим образом: в четыре колбы наливаем по 100 мл дистиллированной воды и в каждую добавляем из бюретки соответственно 0,5, 1, 2, 3 мл водопроводной воды, имитируя тем самым разную величину присоса охлаждающей воды в конденсат. Определим последовательно общую жесткость пробы 3 в каждой колбе при различной величине присоса. Для этого в коническую колбу с соответствующей пробой добавляем 5 мл аммиачного буферного раствора и 5 — 6 капель индикатора кислотный темносиний хром. Затем титруем пробу 0,1 н или 0,01 н раствором трилона Б, интенсивно перемешивая до момента перехода окраски в сине-голубую. Результаты всех опытов заносим в табл.

Она препятствует образованию на поверхности металла пассивирующего защитного слоя, вследствие чего скорость коррозии с течением времени не уменьшается. Ре Степень диссоциации увеличивается с ростом температуры, а это в свою очередь приводит к повышению кислотности воды и резкому возрастанию ее коррозионной агрессивности. Так, вода, содержащая СО2, при комнатной температуре растворяет медь и латунь очень медленно. В присутствии кислорода процесс коррозии активизируется. При температуре воды 40 — 50 оС и выше обесцинкование латуни происходит и при отсутствии кислорода.

Окраска не должна исчезать при выдерживании раствора в колбе с притертой пробкой в течение 1 — 2 мин. Выполнение работы Ре по з ит о ри й Собирают прибор рис. Присоединив его резиновой трубкой 1 к водопроводному крану, заполняют колбу 6 анализируемой водой, давая ей выливаться через трубку 2 до тех пор, пока через прибор не пройдет 6 — 7 объемов воды. После этого резиновую трубку 2 перекрывают зажимом 3, снимают трубку 2, заменяя ее хлоркальциевой трубкой, содержащей влагопоглощающее вещество. Зажим 3 на трубке 1 ослабляют и дают воде вытекать из колбы до уровня, соответствующего отметке 200 мл.

Затем снимают хлоркальциевую трубку и отверстие закрывают резиновой пробкой. После отбора пробы колбу переносят на лабораторный стол для титрования. Открыв резиновую пробку, в воду добавляют 2 — 3 капли фенолфталеина и титруют 0,1 н раствором щелочи из бюретки. Прибавление щелочи производят по каплям с перерывом для перемешивания при закрытой пробке, затем выжидают несколько секунд и снова добавляют щелочь и так до тех пор, пока не появится устойчивая слабо-розовая окраска от одной капли раствора. Прибор для определения концентрации СО2: 1 — резиновая трубка для поступления воды; 2 — резиновая трубка для спуска воды; 3 — зажим; 4 — колба по з Результаты опытов заносим в табл.

Эти отложения различны по химическому составу, структуре, плотности сцепления с металлом оборудования. Все виды отложений вызывают ухудшение теплопередачи и увеличение расхода топлива в котлоагрегатах, приводят к перегреву металла и, как следствие, к появлению отдулин, свищей, разрыву труб. Наиболее эффективным контролем за состоянием внутренней поверхности экранных труб котлов является наблюдение за температурой труб. Возможно применение менее объективного метода — выборочная вырезка контрольных образцов. Вырезанные образцы труб маркируют и передают в химический цех для выполнения необходимых анализов.

Количественную оценку загрязненности поверхностей нагрева отложениями производят путем снятия отложений механическим способом, т. Методика определения Ре по з Отмерить на поверхности вырезанного отрезка трубы определенную площадь и тщательно снять с нее отложения. Оценить плотность отложений, слоистость, сцепляемость с металлом. Полученные отложения поместить на чистый лист бумаги и взвесить. После этого приступить к расчетам.

Загрязненность поверхности трубы оценивается удельной загрязненностью, т. Теплонапряженность поверхности нагрева, тыс. Катастрофически загрязненная 400 и более Ре Т а б л и ц а 2. Поверхность труб считается чистой, если толщина отложений не превышает 0,2 мм для барабанных котлов и 0,1 мм — для прямоточных. По полученным результатам расчета и табл.

Для определения скорости коррозии конструкционных материалов в конденсатно-питательном тракте КПТ устанавливают индикаторы коррозии, изготовленные из того же материала, что и контролируемое оборудование. При вскрытиях контролируемых участков КПТ образцы извлекают и подвергают анализу, по результатам которого оценивают скорость и характер коррозии металла за время нахождения образцов в тракте энергоблока. Индикатор коррозии и схема его установки в трубопроводе приведены на рис. Контрольные пластины 1 представляют собой круглые диски диаметром 60 и толщиной 3 мм с отверстием в центре. Поверхность пластин шлифуется и промывается раствором щелочи, спиртом и эфиром.

Перед установкой в трубопровод высушенные образцы взвешивают с точностью до 0,0001 г. Пластины надевают на стержень 2 и отделяют друг от друга дистанционирующими патрубками 3. Стержень с набором пластин устанавливают по оси трубопровода 4 и фиксируют в нем с помощью бобышки 5 и фланца 6. Рекомендуется ставить их в начале и конце конденсатного тракта, а также на трубопроводе греющего пара ПНД. Длительность испытания индикаторов должна быть не менее 1 года.

В целях изучения кинетики процесса коррозии рекомендуется устанавливать по 15 — 20 индикаторных пластин для возможности извлечения по 3 — 4 пластины через различные промежутки времени. Скорость и формы проявления коррозии конструкционных материалов определяют по состоянию индикаторных пластин, простоявших максимальное время. После извлечения пластин из трубопровода производят их осмотр и записывают в специальный журнал состояние, отмечая цвет образцов, равномерность отложений, наличие локальной язвины, бугорки или щелевой коррозии. Описание внешнего вида поверхности пластин производят и после удаления продуктов коррозии, обращая особое внимание на наличие язв и локализацию коррозии. В табл.

Слабая коррозия 2. Допустимая коррозия 3. Сильная коррозия 4. Измерением и расчетом находим поверхность пластины в см2. Считаем, что индикатор был установлен во входном коллекторе водяного экономайзера и простоял там в течение года.

Содержание пояснительной записки к курсовому проекту Ре по з Введение краткая характеристика ТЭС, значение водоподготовки и водно-химического режима. Выбор источника водоснабжения ТЭС, анализ показателей качества исходной воды. Обоснование метода и выбора схемы подготовки подпиточной воды котлов ТЭС. Эскиз выбранной схемы ВПУ и пересчет изменения показателей качества воды по отдельным стадиям обработки. Полное описание технологических процессов по стадиям обработки воды.

Определение производительности водоподготовительных установок для подпитки котлов и тепловых сетей. Расчет водоподготовительной установки ТЭС: 6. Расчет обессоливающей части водоподготовительной установки ВПУ. Расчет схемы подпитки теплосети. Расчет схемы предочистки.

Анализ результатов расчета. Компоновка оборудования ВПУ.

Коррозия тракта питательной воды и конденсата. Причины и виды коррозионного повреждения металла парогенераторов. Характеристика основных видов коррозии металла котлов и мероприятия по ее предотвращению.

Коррозия труб пароперегревателей. Коррозия паровых турбин и способы ее предотвращения. Основные причины и виды коррозии конденсаторов и способы ее предотвращения. Способы консервации теплоэнергетического оборудования. Консервация турбин и энергетических котлов горячим воздухом.

Ингибиторы коррозии. Безотходная консервация турбин ингибиторами. Парокислородная очистка и пассивация поверхностей энергетического оборудования. Анализ существующих методов консервации теплоэнергетического оборудования. Причины загрязнения и методы повышения чистоты насыщенного пара.

Организация ступенчатого испарения достоинства и недостатки. Промывка насыщенного пара питательной водой и способы реализации. Паропромывочные и сепарационные устройства. Назначение и организация непрерывной продувки, расчет ее величины, способы утилизации продувочной воды. Назначение и организация периодической продувки.

Коррекционная обработка котловой и питательной воды барабанных котлов. Назначение и способы реализации фосфатной обработки котловой воды, амминирования и гидразинной обработки питательной воды. Применение комплексонов для обработки питательной воды. Особенности ведения водных режимов барабанных котлов среднего, высокого и сверхвысокого давлений. Бесфосфатный водный режим барабанного котла.

Опыт применения нейтрально-окислительного водного режима для барабанного котла. Основные пути совершенствования ВХР барабанных котлов. Тема 2. Обзор водных режимов прямоточных парогенераторов, используемых в мировой энергетике. Гидразинно-аммиачный водный режим достоинства и недостатки.

Водный режим повышенного амминирования. Особенности восстановительного и комплексонного водных режимов. Нейтральноокислительные водные режимы. Особенности применения кислородных режимов на ТЭС ведущих западных стран. Анализ и условия использования окислителей.

Комбинированный водный режим. ВХР тепловых сетей Основные положения и требования к тепловым сетям в целях повышения надежности их эксплуатации. Нормирование качества подпиточной и сетевой воды. Образование и характер отложений в 41 ТУ водогрейном оборудовании. Коррозия оборудования теплосетей природа и формы проявления коррозии, основные коррозионные агенты.

Коррозия теплообменных аппаратов и способы ее снижения. Особенности коррозии трубопроводов и основные меры, направленные на обеспечение надежной и экономичной их эксплуатации. Стояночная коррозия оборудования систем теплоснабжения и способы ее предотвращения. Пути повышения надежности ВХР и организация химконтроля в теплосетях. БН Тема 2.

Характеристика загрязнений турбинного конденсата. Очистка турбинного конденсата. Блочная обессоливающая установка БОУ. Основное оборудование БОУ. Характеристика загрязнений внешнего конденсата и схемы его очистки, очистка конденсатов от нефтепродуктов.

Схемы обезжелезивания и обессоливания конденсатов. Оборудование для очистки конденсатов насыпные и намывные фильтры, электромагнитные фильтры, фильтры смешанного действия ФСД с выносной регенерацией. Основные потребители технической воды на ТЭС. Расчет расхода технической воды на ТЭС. Прямоточная и оборотная системы охлаждения ТЭС.

Требования, предъявляемые к охлаждающей воде. Методика расчета оборотной системы с водохранилищем-охладителем, с градирнями. Требования к прямоточной системе охлаждения. Удаление из воды минеральных и биологических примесей для обеспечения чистоты поверхности охлаждения конденсаторов турбин физические и химические методы. Конденсация пара сопровождается выделением скрытой теплоты парообразования, которая отводится при помощи охлаждающей циркуляционной воды.

Расход воды на охлаждение конденсатора турбины измеряется десятками тысяч тонн в час. Наиболее ответственной частью конденсатора являются конденсаторные трубки. Одним из основных требований, предъявляемых к ним, является коррозионная стойкость. Поэтому их изготавливают из сплавов цветных металлов на основе меди, а также из хромникелевой нержавеющей стали. Конденсаторные трубки а их в конденсаторе порядка нескольких десятков тысяч крепятся в трубных досках и методы их крепления должны обеспечивать плотность и долговечность.

Гидравлическая плотность конденсатора обеспечивается правильным выбором материала трубок и конструкционными мероприятиями, исключающими возможность попадания циркуляционной воды в паровое пространство конденсатора в местах разъемных соединений, вальцовочных креплений трубок в трубных досках и в самих трубках, подверженных различным механическим, эрозионным и коррозионным повреждениям. Наиболее опасны с точки зрения ухудшения гидравлической плотности механические повреждения трубок, так как обрыв даже одной трубки приводит к серьезному загрязнению турбинного конденсата, являющегося основной составляющей питательной воды котлов. Причинами механических повреждений могут быть: а вибрационная усталость металла; б эрозия трубок; 43 ит о ри й БН ТУ в некачественная вальцовка и стирание стенок трубок в местах перехода их через промежуточные перегородки и т. Наиболее частой причиной повреждения трубок являются следующие виды коррозии: общее и пробочное обесцинкование, коррозионное растрескивание, ударная коррозия и коррозионная усталость. Основные мероприятия для предотвращения попадания в конденсат охлаждающей воды через неплотности в местах вальцовочных соединений рис.

Схема трубной доски с покрытием из жидкого наирита а , где 1 — латунная теплообменная трубка; 2 — стальная трубная доска; 3 — жидкий наирит; 4 — грунтовка; схема конденсатора с солевыми отсеками б , где 1 — охлаждающая вода; 2 — основные трубные доски; 3 — дополнительные трубные доски; 4 — трубная теплообменная поверхность; 5 — пар из турбины; 6 — конденсат солевых отсеков; 7. В целях контроля гидравлической плотности конденсатора его оснащают пробоотборными устройствами в точках 1 — 3 рис. Схема контроля гидравлической плотности конденсатора: 1 — пробоотборник пара, отработавшего в турбине; 2 — пробоотборник охлаждающей воды; 3 — пробоотборник турбинного конденсата В точке 1, находящейся на входе в конденсатор, производят отбор пробы пара, отработавшего в турбине. В точке 3 производят отбор пробы на выходе из конденсатора — турбинный конденсат. Для выполнения работы в качестве пробы точки 1 условно примем дистиллят, пробы точки 2 — водопроводную воду.

Определим общую жесткость этих потоков. Пробу точки 3 — турбинный конденсат — получаем следующим образом: в четыре колбы наливаем по 100 мл дистиллированной воды и в каждую добавляем из бюретки соответственно 0,5, 1, 2, 3 мл водопроводной воды, имитируя тем самым разную величину присоса охлаждающей воды в конденсат. Определим последовательно общую жесткость пробы 3 в каждой колбе при различной величине присоса. Для этого в коническую колбу с соответствующей пробой добавляем 5 мл аммиачного буферного раствора и 5 — 6 капель индикатора кислотный темносиний хром. Затем титруем пробу 0,1 н или 0,01 н раствором трилона Б, интенсивно перемешивая до момента перехода окраски в сине-голубую.

Результаты всех опытов заносим в табл. Она препятствует образованию на поверхности металла пассивирующего защитного слоя, вследствие чего скорость коррозии с течением времени не уменьшается. Ре Степень диссоциации увеличивается с ростом температуры, а это в свою очередь приводит к повышению кислотности воды и резкому возрастанию ее коррозионной агрессивности. Так, вода, содержащая СО2, при комнатной температуре растворяет медь и латунь очень медленно. В присутствии кислорода процесс коррозии активизируется.

При температуре воды 40 — 50 оС и выше обесцинкование латуни происходит и при отсутствии кислорода. Окраска не должна исчезать при выдерживании раствора в колбе с притертой пробкой в течение 1 — 2 мин. Выполнение работы Ре по з ит о ри й Собирают прибор рис. Присоединив его резиновой трубкой 1 к водопроводному крану, заполняют колбу 6 анализируемой водой, давая ей выливаться через трубку 2 до тех пор, пока через прибор не пройдет 6 — 7 объемов воды. После этого резиновую трубку 2 перекрывают зажимом 3, снимают трубку 2, заменяя ее хлоркальциевой трубкой, содержащей влагопоглощающее вещество.

Зажим 3 на трубке 1 ослабляют и дают воде вытекать из колбы до уровня, соответствующего отметке 200 мл. Затем снимают хлоркальциевую трубку и отверстие закрывают резиновой пробкой. После отбора пробы колбу переносят на лабораторный стол для титрования. Открыв резиновую пробку, в воду добавляют 2 — 3 капли фенолфталеина и титруют 0,1 н раствором щелочи из бюретки. Прибавление щелочи производят по каплям с перерывом для перемешивания при закрытой пробке, затем выжидают несколько секунд и снова добавляют щелочь и так до тех пор, пока не появится устойчивая слабо-розовая окраска от одной капли раствора.

Прибор для определения концентрации СО2: 1 — резиновая трубка для поступления воды; 2 — резиновая трубка для спуска воды; 3 — зажим; 4 — колба по з Результаты опытов заносим в табл. Эти отложения различны по химическому составу, структуре, плотности сцепления с металлом оборудования. Все виды отложений вызывают ухудшение теплопередачи и увеличение расхода топлива в котлоагрегатах, приводят к перегреву металла и, как следствие, к появлению отдулин, свищей, разрыву труб. Наиболее эффективным контролем за состоянием внутренней поверхности экранных труб котлов является наблюдение за температурой труб. Возможно применение менее объективного метода — выборочная вырезка контрольных образцов.

Вырезанные образцы труб маркируют и передают в химический цех для выполнения необходимых анализов. Количественную оценку загрязненности поверхностей нагрева отложениями производят путем снятия отложений механическим способом, т. Методика определения Ре по з Отмерить на поверхности вырезанного отрезка трубы определенную площадь и тщательно снять с нее отложения. Оценить плотность отложений, слоистость, сцепляемость с металлом. Полученные отложения поместить на чистый лист бумаги и взвесить.

После этого приступить к расчетам. Загрязненность поверхности трубы оценивается удельной загрязненностью, т. Теплонапряженность поверхности нагрева, тыс. Катастрофически загрязненная 400 и более Ре Т а б л и ц а 2. Поверхность труб считается чистой, если толщина отложений не превышает 0,2 мм для барабанных котлов и 0,1 мм — для прямоточных.

По полученным результатам расчета и табл. Для определения скорости коррозии конструкционных материалов в конденсатно-питательном тракте КПТ устанавливают индикаторы коррозии, изготовленные из того же материала, что и контролируемое оборудование. При вскрытиях контролируемых участков КПТ образцы извлекают и подвергают анализу, по результатам которого оценивают скорость и характер коррозии металла за время нахождения образцов в тракте энергоблока. Индикатор коррозии и схема его установки в трубопроводе приведены на рис. Контрольные пластины 1 представляют собой круглые диски диаметром 60 и толщиной 3 мм с отверстием в центре.

Поверхность пластин шлифуется и промывается раствором щелочи, спиртом и эфиром. Перед установкой в трубопровод высушенные образцы взвешивают с точностью до 0,0001 г. Пластины надевают на стержень 2 и отделяют друг от друга дистанционирующими патрубками 3. Стержень с набором пластин устанавливают по оси трубопровода 4 и фиксируют в нем с помощью бобышки 5 и фланца 6. Рекомендуется ставить их в начале и конце конденсатного тракта, а также на трубопроводе греющего пара ПНД.

Длительность испытания индикаторов должна быть не менее 1 года. В целях изучения кинетики процесса коррозии рекомендуется устанавливать по 15 — 20 индикаторных пластин для возможности извлечения по 3 — 4 пластины через различные промежутки времени. Скорость и формы проявления коррозии конструкционных материалов определяют по состоянию индикаторных пластин, простоявших максимальное время. После извлечения пластин из трубопровода производят их осмотр и записывают в специальный журнал состояние, отмечая цвет образцов, равномерность отложений, наличие локальной язвины, бугорки или щелевой коррозии. Описание внешнего вида поверхности пластин производят и после удаления продуктов коррозии, обращая особое внимание на наличие язв и локализацию коррозии.

В табл. Слабая коррозия 2. Допустимая коррозия 3. Сильная коррозия 4. Измерением и расчетом находим поверхность пластины в см2.

Считаем, что индикатор был установлен во входном коллекторе водяного экономайзера и простоял там в течение года. Содержание пояснительной записки к курсовому проекту Ре по з Введение краткая характеристика ТЭС, значение водоподготовки и водно-химического режима. Выбор источника водоснабжения ТЭС, анализ показателей качества исходной воды. Обоснование метода и выбора схемы подготовки подпиточной воды котлов ТЭС. Эскиз выбранной схемы ВПУ и пересчет изменения показателей качества воды по отдельным стадиям обработки.

Полное описание технологических процессов по стадиям обработки воды. Определение производительности водоподготовительных установок для подпитки котлов и тепловых сетей. Расчет водоподготовительной установки ТЭС: 6. Расчет обессоливающей части водоподготовительной установки ВПУ. Расчет схемы подпитки теплосети.

Расчет схемы предочистки. Анализ результатов расчета. Компоновка оборудования ВПУ. Нормы качества питательной воды и перегретого пара на ТЭС. Нормы качества подпиточной воды теплосетей и сетевой воды.

Методы коррекции котловой и питательной воды. Характеристика потоков конденсатов на ТЭС и схемы их очистки. Методические указания к выполнению курсового проекта Ре по з При выборе источника водоснабжения необходимо учитывать, что в качестве исходных вод для электростанций используют: — воды поверхностных источников; — воды артезианских скважин не питьевого качества, если по основным показателям они не хуже вод открытых водоемов; — воды прямоточных и циркуляционных систем охлаждения конденсаторов турбин; — очищенные промышленные сточные воды, очищенные сточные воды электростанций, хозяйственно-бытовые сточные воды после их биологической очистки и проверки возможности использования. Аналогично производится пересчет всех содержащихся в воде катионов и анионов. Обоснование метода и выбор схемы ВПУ по з Выбор способов обработки добавочной воды котлов ТЭС производится в зависимости от качества исходной воды и типа установленного оборудования.

Применение испарителей допускается при технико-экономическом обосновании и при наличии в исходной воде упомянутых органических загрязнений. На ТЭС при восполнении потерь дистиллятом испарителей последние дополняются общестанционной испарительной или обессоливающей установкой. Для ТЭС с барабанными котлами в зависимости от параметров пара, способа регулирования температуры перегретого пара и качества исходной воды применяют одно- или двухступенчатое обессоливание, при необходимости совмещаемое с мембранными методами. На ТЭС с прямоточными котлами применяют трехступенчатое обессоливание. Для подготовки подпиточной воды тепловых сетей с закрытой системой горячего водоснабжения могут применяться следующие схемы: при наличии на ТЭЦ водогрейных котлов — известкование с коагуляцией и Na-катионирование; при подогреве сетевой воды только в сетевых подогревателях — известкование с коагуляцией.

Водоподготовительные установки ТЭС, работающие на воде поверхностных источников, как правило, имеют стадию предварительной очистки воды, состоящую из осветлителей и осветлительных механических фильтров. Дальнейшая обработка воды проводится на ионитных фильтрах выбранной схемы обессоливания. На рис. Пересчет показателей качества воды по отдельным стадиям обработки Предочистка — коагуляция Al2 SO4 3.

Репозитории открытого доступа

БНТУ | Белорусский национальный технический университет Репозитории высших учебных заведений Баларуси созданы в основном на платформе DSpace, которая позволяет создавать и хранить электронные документы, регулировать к ним доступ.
репозиторий бнту электротехника и электроника | Дзен Главная Все новости Участие университета в XIV Евразийском экономическом форуме.
Минский бнту В Белорусском национальном техническом университете работа в данном направлении ведётся с 2009/2010 учебного года и явля­ ется одним из основных видов деятельно­.
Репозиторий БНТУ by Dolly Olly on Prezi Заказ 39. Издатель и полиграфическое исполнение: Белорусский национальный технический университет. Лицензия № 02330/0056957 от 01.04.2004.
Индексируются Военно-технический факультет в БНТУ.

Репозиторий БНТУ улучшил позиции в мировом рейтинге

Репозиторий библиотеки БГУТ. Материалы конференций. Международные научно-технические конференции. Domain Statistics. Title: Репозиторий БНТУ. Электронные версии методических пособий, электронные учебники, монографии, материа. Белорусский нaциональный тeхнический университет. Digital Repository. Репозиторий БНТУ улучшил свою позицию в мировом рейтинге.

Будь готов

  • Репозитории высших учебных заведений Беларуси
  • Научная библиотека Белорусского национального технического университета — Рувики
  • ФОТОФАКТ: студенты БГУИР приняли участие в Студенческой весне (+видео)
  • Электронные версии методических пособий, электронные учебники, монографии. Электронная библиотека
  • Кафедра «Иностранные языки»

Добро пожаловать

  • БНТУ | Белорусский национальный технический университет
  • Новости по теме: БНТУ
  • Репозитории открытого доступа учреждений образования Республики Беларусь
  • Репозиторий БНТУ улучшил позиции в мировом рейтинге
  • Репозитории открытого доступа УВО Республики Беларусь

Пресс-релизы/новости

БНТУ официальный сайт. Белорусский национальный технический университет покажи фотографию. Схема корпусов БНТУ. БНТУ 16 корпус. Диплом градостроительство. Архитектура БНТУ. Архитектурно строительное отделение. Архитектурные проекты 2021 года. Архитектурные конкурсы. Диплом БНТУ. Пронович БНТУ.

Проект многофункционального жилого комплекса на 1000 человек подача. ППР на гидротехнические сооружения. Рыбохозяйственная гидротехника учебник. Библиотека глазами молодежи 21 века-. Методические указания к лабораторным работам по физике. Методические указания по выполнению лабораторных работ по физике». Методичка по физике. Методическое пособие по физике лабораторные работы для студентов. Расчет транспортного индекса радиоактивных материалов. Ядерные отходы и захоронения влияют на.

Фото лого БНТУ. Болгарское национальное Телевидение логотип. Логотип Morozoff архитектура. Минский архитектурно-строительный колледж. Архитектурный техникум Минск.

БНТУ вуз. Белорусский национальный технический университет вертикально. Архитектор институты в Белоруссии. БНТУ острое здание. Схема корпусов БНТУ.

Минск БНТУ карта. БНТУ Минск эмблема. Студенты на заводе. Здания государственного белорусского университета в Минске. Аграрный институт Беларусь.

Беларуский государственный технический унститут. Минский педагогический институт 1950. Горьковский педагогический институт им Горького. Центральная научная библиотека им. Якуба Коласа здание.

Минский государственный медицинский колледж. Минский государственный музыкальный колледж. Минский государственный политехнический колледж. Репозиторий БНТУ. Назаров БНТУ.

День открытых дверей Технологический колледж. Колледжи Беларуси. Минский государственный инженерный колледж. МГТК Могилев. Могилевский химико-Технологический техникум.

Минск, ул. Ссылка на портал... Теперь мы есть в государственной информационной системе «Госстройпортал» ГИС «Госстройпортал» — государственная информационная система, созданная для формирования единого информационного пространства строительной отрасли. Система обеспечивает информационное взаимодействие участников жизненного цикла объекта строительства на всех его этапах в среде общих данных, требования к управленческим процессам жизненного цикла объектов строительства, предоставление электронных услуг в инвестиционно-строительной деятельности, а также обеспечивает хранение нормативно-правовой информации и единой нормативно-справочной информации. День строителя — история праздника Как и все профессиональные праздники, день строителя имеет наибольшее значение для людей, которые посвятили свою жизнь строительной профессии, и с гордостью носят звание строителя.

Учебно-методическое пособие по английскому языку для студентов специальности «Упаковочное производство», авторы: Бруй Т. Учебно-методическое пособие по развитию навыков межкультурной коммуникации на французском языке «A larecherchedelaFrance».

Часть 1. Начальный курс. Учебное пособие для студентов специальности 1-96 01 01 «Таможенное дело», автор: Боровец О. Учебные материалы для студентов I курса всех специальностей, автор: Королько О. Учебное пособие для студентов архитектурных специальностей, авторы: Гасова О. Учебное пособие по развитию умений делового общения на немецком языке, автор Иваненко Г. БГЭУ, 2005 электронный вариант.

Сборник упражнений по грамматике французского языка. Metall — Technologie. Учебно-методическое пособие по немецкому языку для студентов специальностей 1-36 01 02 «Материаловедение в машиностроении», 1-42 01 01 «Металлургическое производство и материалообработка», 1-42 01 02 «Порошковая металлургия, композиционные материалы, покрытия», авторы: Ермолович Л. In der Welt des Computers. Учебное пособие по немецкому языку, авторы: Сосна Т. Методическое пособие по грамматике английского языка. Часть 2, авторы: Точилина А.

Business English Language Portfolio. Языковой портфолио делового английского языка, автор: Дерман И.

Похожие новости:

Оцените статью
Добавить комментарий