Водородная бомба, известная также как Hydrogen Bomb или HB — оружие невероятной разрушительной силы, чья мощность исчисляется мегатоннами в тротиловом эквиваленте. Но мирно собрать и использовать выделившуюся таким образом энергию сложновато: в термоядерном реакторе, в отличие от бомбы, энергия должна выделяться постепенно, небольшими порциями, то есть, быть устойчивой. Принцип работы Действие водородной бомбы основано на использовании энергии, выделяющейся при реакции термоядерного синтеза лёгких ядер. Создать водородную (термоядерную) бомбу решили участники «Манхэттенского проекта». Водород, состоящий из протона и электрона, обеспечивает энергетику жизни: протонные градиенты как одну из форм накопления энергии в живой клетке, перенос электрона вдоль транспортных цепей ее макромолекул, мягкие водородные связи и многое другое.
50 лет назад была испытана водородная бомба
Так как в качестве детонаторов водородных бомб служат обычные атомные бомбы и так как все атомные бомбы в зависимости от их размеров вызывают образование определенного количества осадков, то ясно, что и любая водородная бомба образует при взрыве. Создать водородную (термоядерную) бомбу решили участники «Манхэттенского проекта». Водородная бомба, известная также как Hydrogen Bomb или HB — оружие невероятной разрушительной силы, чья мощность исчисляется мегатоннами в тротиловом эквиваленте. Принцип работы Действие водородной бомбы основано на использовании энергии, выделяющейся при реакции термоядерного синтеза лёгких ядер. эдакий "дедушка" многих уникальных разработок.
Как действует водородная бомба и каковы последствия взрыва? Инфографика
Как сделать атомную бомбу | Мощность термоядерной ВВ 30 кт/кг, хотя я считал по формулам и получилось 70 кт/кг. |
Формула водородной бомбы. Водородная бомба | СССР начал разрабатывать термоядерную бомбу позднее: первая схема была предложена советскими разработчиками лишь в 1949 году. |
Как действует водородная бомба и каковы последствия взрыва. — DRIVE2 | Действие водородной бомбы основано на использовании энергии, выделяющейся при реакции термоядерного синтеза лёгких ядер. |
Какая бомба мощнее: ядерная или водородная | ВОДОРОДНАЯ БОМБА — оружие большой разрушительной силы (порядка мегатонн в тротиловом эквиваленте), принцип действия которого основан на реакции термоядерного синтеза легких ядер. |
Формула водородной бомбы. Почему предпочтительнее слияние ядер? Опасность ядерной войны | Испытание этой термоядерной бомбы стало ключевым фактором, позволившим Советскому Союзу обеспечить ядерно-оружейный паритет с США. |
Как устроена водородная бомба
или почему при термоядерном взрыве не начинается самоподдерживающаяся термоядерная реакция в воде и в воздухе В своё время Нильс Бор говорил, что теоретически возможно запустить такой мощности, такого объема термоядерную реакцию. СССР начал разрабатывать термоядерную бомбу позднее: первая схема была предложена советскими разработчиками лишь в 1949 году. Схема термоядерной бомбы, предложенная Теллером, использует для этого взрыв небольшой атомной бомы, которая находится внутри корпуса водородной. В процессе получался целый каскад взрывов — обычная взрывчатка запускала атомную бомбу, а атомная бомба поджигала термоядерную.
Принцип работы водородной бомбы
Даже в этом варианте его мощность превосходила бомбу Хиросимы в несколько тысяч раз! Подготовка к испытанию "Царь-бомбы" АН602 было решено испытать в конце октября 1961 года на полигоне на Новой Земле. Супербомбу собирали в первом советском ядерном центре, родине отечественного ядерного оружия Конструкторском бюро — 11 в Арзамасе-16, прямо на специальной железнодорожной платформе. Для этого даже пришлось проложить железнодорожную ветку внутрь цеха.
В двадцатых числах октября вагон с бомбой выглядевший снаружи как совершенно обычный вагон в составе литерного поезда под усиленной охраной отправился к месту своего назначения — станции Оленьей на Кольском полуострове. Тот поезд состоял из нескольких вагонов, расположенных спереди и сзади вагона с бомбой. Любые неожиданности были исключены.
Маршрутные документы несколько раз менялись для того, чтобы невозможно было определить ни станцию отправления, ни пункт назначения. На станции Оленьей бомба прошла тщательный контроль и была приведена в боевое положение. Испытание "Царь-бомбы" Для испытания "Царь-бомбы" подготовили специальную парашютную систему и самолет.
Габариты изделия поражали воображение: длина — около 8 метров, диаметр — 2,1 метра, вес — 26 тонн. Для того чтобы поместить бомбу в Ту-95, конструкторам пришлось вырезать часть корпуса стратегического бомбардировщика и установить в нем специальное крепление. Но даже при этом "Царь-бомба" наполовину торчала из самолета.
Самолет-носитель сопровождал самолет-лаборатория Ту-16А.
Предполагалось также, что мощность заряда составит от 200 до 400 килотонн, практический результат оказался на верхней границе прогнозов. В день Х, 12 августа 1953 года, первую советскую водородную бомбу проверили в действии. Семипалатинский испытательный полигон, на котором произошел взрыв, находился в Восточно-Казахстанской области. Испытанию РДС-6с предшествовала попытка 1949 года тогда на полигоне провели наземный взрыв бомбы мощностью 22,4 килотонны. Несмотря на изолированное положение полигона, население региона на себе прочувствовало всю прелесть ядерных испытаний. Люди, жившие сравнительно недалеко от полигона на протяжение десятков лет, вплоть до закрытия полигона в 1991 году, подвергались радиационному облучению, а территории за много километров от полигона оказались загрязнены продуктами ядерного распада. Радиоактивный грунт с самого полигона увезли, а ближайшие сооружения и наблюдательные пункты восстановили. Водородную бомбу было решено взорвать на поверхности земли, несмотря на то, что конфигурация позволяла сбросить ее с самолета.
Но ученые знают, что надо делать, и они работают в этом направлении. Нужно накачивать лазер — создавать инверсную населенность — с помощью излучения полупроводниковых диодов. Диодная накачка позволит повысить КПД лазера в в десятки раз. Каковы перспективы извлечения мирной энергии в этой схеме и в ИТЭРе? Вообще говоря, то, что сейчас американцы сделали, к реальной энергетике пока имеет не очень большое отношение.
Для энергетического использования надо будет решить много технических проблем, в том числе тех, о которых мы говорили — диодная накачка, утилизация выделяющейся энергии и другие. А вот то, что они продемонстрировали в рентгеновской схеме сжатие мишени и зажигание реакции — это действительно выдающийся фундаментальный результат, который имеет очень серьезные, в первую очередь, военные приложения, особенно учитывая мораторий на испытания ядерных зарядов. Об этом открытии действительно многие СМИ написали в военном контексте, да и сама Ливерморская лаборатории принадлежит Министерству энергетики США, то есть по сути военным... В американской прессе мы действительно можем увидеть высказывания ряда известных людей в этой области, которые говорят, что главный результат это не энергетический, в смысле энергетики будущего, а прикладной — для исследования рентгеновского сжатия вещества и поджига термоядерной реакции. Речь идет о том, что в этих экспериментах можно моделировать ряд процессов, которые происходят в реальных взрывных устройствах.
А разве процессы слияния ядер водорода не просчитаны еще 70 лет назад Сахаровым и коллегами? Важное значение имеет масштаб того устройства, которое мы обсуждаем. Если есть большое устройство, то там одна иерархия процессов, в том числе рентгеновских. Если размеры меньше, что всех как раз интересует, это другая иерархия процессов. Поэтому установка типа Ливерморской — это инструмент исследования законов подобия — масштабирования — процессов рентгеновского зажигания.
На разных уровнях масштабирования — это решение целого комплекса научных и технических задач. А основные принципы рентгеновского зажигания, действительно, были сформулированы ранее, в том числе А. Lawrence Livermore National Laboratory Можно ли говорить, что США благодаря этим экспериментам получили некоторое преимущество в военном отношении? Конечно, ведь они получили инструмент, с помощью которого они много чего интересного посмотрят, научившись сжимать и поджигать такие мишени. Собственно, эти исследования и строительство этой установки преследовало в первую очередь цели, относящиеся к военным приложениям.
Расскажите об аналогичных работах в России и других странах? После разрухи 90-х годов в стране многое сделано, чтобы сократить отставание в этой критически важной технологии, хотя это было очень непросто. И сейчас в России строится установка с параметрами, даже превосходящими ливерморскую машину. В ней тоже используется неодимовый лазер, энергия которого будет примерно такая же, как у американцев. Эту установку, согласно опубликованным данным, планируется ввести в строй в 2028 году.
Если бы не было лихих 80-х и 90-х, то, конечно, конкуренция с американцами была бы более острая, к этому были все основания.
В самом же центре находится миниатюрный источник нейтронов на основе трития. Масса «ядерной взрывчатки» в шаровом заряде обычно в полтора-три раза меньше критической. Развитие цепной реакции в боеприпасе происходит благодаря дополнительным нейтронам, испускаемым тритием, увеличению плотности металла в момент максимального сжатия, а также потому, что урановый тампер отражает рождающиеся при распаде ядер нейтроны внутрь, не позволяя им покидать зону реакции. Рекорд здесь принадлежит британцам: они изготовили тонкостенную плутониевую сферу, масса которой превышала критическую в 12 раз! Но тогда сынов Туманного Альбиона просто заели амбиции: как же так, у Советов и Штатов есть водородная бомба, а у них нет. На изготовление этого чуда техники королевство потратило годичный запас расщепляющихся материалов. Повысить мощность боеприпаса можно и без такой траты дефицитных материалов. В активированном шаровом заряде цепной распад продолжается не до исчерпания горючего, как в обычной бомбе, а до разрушения устройства. Испарившийся урановый шар уже не обладает достаточной плотностью, чтобы поддерживать цепную реакцию.
Увеличить степень выгорания можно, обеспечив дополнительное сжатие. Для этого используется большой — до четверти тонны — заряд химической взрывчатки. Хорошо помогает и увеличение толщины тампера. Конечно, дополнительная инертная масса лишь краткий миг способна противостоять рвущемуся из зоны реакции ядерному пламени. Но когда интенсивность реакции нарастает по экспоненте, даже этот миг имеет огромное значение. Водородная бомба На этапе горения лития и урана термоядерная бомба по устройству напоминает звезду. Она полностью состоит из плазмы — раскалённого ионизированного газа, но при этом плотнее свинца Ещё сильнее разрушительную силу современных ядерных боеприпасов можно повысить капсулой с термоядерным горючим. Рядом с первым шаровым зарядом, играющим роль детонатора, размещается второй, устроенный несколько иначе. Вместо слоя химической взрывчатки он покрыт инертным пластиком. Сразу под ним располагается тампер из обеднённого урана.
А между тампером и центральной полой сферой, изготовленной из плутония, размещается слой дейтерида лития-6 — соединения лёгкого изотопа лития с тяжёлым водородом. Этот белый порошок не радиоактивен и совершенно безопасен, если не поливать его водой. Подрыв первого шарового заряда превращает пластиковый слой в перегретую плазму, давление которой приводит к имплозии термоядерной капсулы. Её плутониевая сердцевина достигает критической плотности и тоже взрывается. Литий, поглощая образовавшиеся нейтроны, разлагается на гелий и сверхтяжёлый водород — тритий. Температура на фронте столкновения ударных волн в этот момент оказывается достаточной, чтобы началась реакция термоядерного синтеза с участием дейтерия и трития. А это означает третий взрыв — примерно в сто раз сильнее двух первых. Если ядерный взрыв прекращается после разрушения взрывного устройства, то механизм водородной бомбы продолжает работать и после перехода в плазменное агрегатное состояние. При синтезе ядер тяжёлого и сверхтяжёлого водорода рождаются ядра гелия и нейтроны. Энергия нейтронов настолько велика, что они не захватываются тяжёлыми ядрами, а разбивают их, как бильярдный шар пирамиду.
Под градом нейтронов в реакцию вступает уран-238, в обычных условиях вполне безопасный. Это третья фаза взрыва, увеличивающая его мощность ещё впятеро. Вклад энергии от распада ядер урана не так уж велик, но этот процесс порождает новые тучи нейтронов. А чем плотнее нейтронный поток, тем больше лития перейдёт в тритий, тем выше будет КПД взрывного устройства. А это чудовищная энергия. Субкилотонные боеприпасы «Малыш», первая атомная бомба, применённая в бою, относилась к пушечному типу Ядерные боеприпасы ценятся в первую очередь за мощь, но иногда компактность оказывается важнее. Как следствие, некоторое распространение практически только в США получили так называемые пушечные заряды.
60 лет назад водородная бомба помогла СССР достичь ядерного паритета с США
Ученые скопировали эту реакцию с использованием жидких изотопов водорода — дейтерия и трития, что и дало название "водородная бомба". В последствии стал использоваться дейтерид лития-6, твердое вещество, соединение дейтерия и изотопа лития, которое по своим химическим свойствам является аналогом водорода. Таким образом дейтерид лития-6 является горючим бомбы и, по сути, оказывается более "чистым", чем уран-235 или плутоний, используемые в атомных бомбах и вызывающие мощнейшую радиацию. Однако для того, чтобы сама водородная реакция запустилась, что-то должно очень сильно и резко повысить температуры внутри снаряда, для чего используется обычный ядерный заряд. А вот контейнер для термоядерного топлива делают из радиоактивного урана-238, чередуя его со слоями дейтерия, отчего первые советские бомбы такого типа назывались "слойками". Именно из-за них все живое, оказавшееся даже на расстоянии сотен километров от взрыва и уцелевшее при взрыве, может получить дозу облучения, которая приведет к тяжелым заболеваниям и летальному исходу. Почему при взрыве образуется "гриб"? На самом деле облако грибовидной формы — обыкновенное физическое явление. Такие облака образуются при обычных взрывах достаточной мощности, при извержениях вулканов, сильных пожарах и падениях метеоритов. Горячий воздух всегда поднимается выше холодного, однако тут его нагрев происходит настолько быстро и так мощно, что он видимым столбом поднимается вверх, закручивается в кольцеобразный вихрь и тянет за собой "ножку" — столб пыли и дыма с поверхности земли. Поднимаясь, воздух постепенно охлаждается, становясь похожим на обычное облако из-за конденсации паров воды.
К примеру, устройство, испытанное США в 1952 году, представляло собой наземное сооружение высотой с 2-этажный дом и весом свыше 80 тонн. Жидкое термоядерное горючее хранилось в нём с помощью огромной холодильной установки. Поэтому в дальнейшем серийное производство термоядерного оружия осуществлялось с использованием твёрдого топлива - дейтерида лития-6. В 1954 году США испытали устройство на его основе на атолле Бикини, а в 1955 году на Семипалатинском полигоне была испытана новая советская термоядерная бомба. В 1957 году испытания водородной бомбы провели в Великобритании. В октябре 1961 года в СССР на Новой Земле была взорвана термоядерная бомба мощностью 58 мегатонн - самая мощная бомба из когда-либо испытанных человечеством, вошедшая в историю под названием «Царь-бомба». Дальнейшее развитие было направлено на уменьшение размеров конструкции водородных бомб, чтобы обеспечить их доставку к цели баллистическими ракетами. Уже в 60-е годы массу устройств удалось уменьшить до нескольких сотен килограммов, а к 70-м годам баллистические ракеты могли нести свыше 10 боеголовок одновременно - это ракеты с разделяющимися головными частями, каждая из частей может поражать свою собственную цель.
На сегодняшний день термоядерным арсеналом обладают США, Россия и Великобритания, испытания термоядерных зарядов были проведены также в Китае в 1967 году и во Франции в 1968 году. Принцип действия водородной бомбы Действие водородной бомбы основано на использовании энергии, выделяющейся при реакции термоядерного синтеза лёгких ядер. Именно эта реакция протекает в недрах звёзд, где под действием сверхвысоких температур и гигантского давления ядра водорода сталкиваются и сливаются в более тяжёлые ядра гелия. Во время реакции часть массы ядер водорода превращается в большое количество энергии - благодаря этому звёзды и выделяют огромное количество энергии постоянно. Учёные скопировали эту реакцию с использованием изотопов водорода - дейтерия и трития, что и дало название « водородная бомба ». Изначально для производства зарядов использовались жидкие изотопы водорода, а впоследствии стал использоваться дейтерид лития-6, твёрдое вещество, соединение дейтерия и изотопа лития. Дейтерид лития-6 является основным компонентом водородной бомбы, термоядерным горючим. В нём уже хранится дейтерий, а изотоп лития служит сырьём для образования трития.
Для начала реакции термоядерного синтеза требуется создать высокие температуру и давление, а также выделить из лития-6 тритий. Эти условия обеспечивают следующим образом. Вспышка взрыва бомбы АН602 сразу после отделения ударной волны. В это мгновение диаметр шара составлял около 5,5 км, а через несколько секунд он увеличился до 10 км. Оболочку контейнера для термоядерного горючего делают из урана-238 и пластика, рядом с контейнером размещают обычный ядерный заряд мощностью несколько килотонн - его называют триггером, или зарядом-инициатором водородной бомбы. Во время взрыва плутониевого заряда-инициатора под действием мощного рентгеновского излучения оболочка контейнера превращается в плазму, сжимаясь в тысячи раз, что создаёт необходимое высокое давление и огромную температуру. Одновременно с этим нейтроны, испускаемые плутонием, взаимодействуют с литием-6, образуя тритий. Ядра дейтерия и трития взаимодействуют под действием сверхвысоких температуры и давления, что и приводит к термоядерному взрыву.
Световое излучение вспышки взрыва могло вызвать ожоги третьей степени на расстоянии до ста километров. Это фото сделано с расстояния в 160 км. Если сделать несколько слоёв урана-238 и дейтерида лития-6, то каждый из них добавит свою мощность ко взрыву бомбы - т. Благодаря этому водородную бомбу можно сделать почти любой мощности, причём она будет гораздо дешевле обычной ядерной бомбы такой же мощности. Сейсмическая волна, вызванная взрывом, обогнула земной шар трижды. Высота ядерного гриба достигла 67 километров в высоту, а диаметр его «шляпки» - 95 км.
Термоядерная бомба построена на другом принципе: энергия выделяется при слиянии легких изотопов водорода , дейтерия и трития. Материалы на основе легких элементов не имеют критической массы, что было большой конструкционной сложностью в атомной бомбе. Кроме того, при синтезе дейтерия и трития выделяется в 4,2 раза больше энергии, чем при делении ядер такой же массы урана -235. Словом, водородная бомба - гораздо более мощное оружие, чем атомная бомба.
Работа над водородной бомбой стала первой интеллектуальной гонкой в истории человечества.
Но, основываясь на некоторых фактах, известных многим, можно догадываться, что лежит в основе процесса очищения. Поэтому ясно, что для создания «чистой» бомбы необходимо удалить «грязный» элемент из процесса, происходящего внутри бомбы. Но, как будет показано в дальнейшем, это связано с огромными трудностями, которые одно время казались непреодолимыми. Природа «грязного» элемента была впервые раскрыта в работах японских физиков, опубликовавших подробный отчет в двух томах с результатами тщательного анализа смертоносного радиоактивного пепла, который выпал на японское рыболовное судно после взрыва «грязной» водородной бомбы 1 марта 1954 г. Эти исследования показали, что образование гигантского облака радиоактивной пыли, заразившего площадь в восемнадцать тысяч квадратных километров, не было вызвано присутствием в бомбе ни водорода, ни одного из двух расщепляющихся элементов — урана-235 или плутония, которые служат детонаторами в водородных бомбах. При синтезе водородных элементов за одну десятимиллионную долю секунды, в течение которой бомба еще представляет единое целое, выделяется огромное количество нейтронов такой большой энергии, что они способны расщепить атомы урана-238.
В отличие от элементов обычной атомной бомбы, которые могут мгновенно взрываться при достижении сравнительно небольшой критической массы, для основного компонента водородной бомбы — урана-238 — нет предела, и это делает его особенно устрашающим для человечества. Так как уран-238 по своей природе является «мягким доктором Джекиллом» до момента взрыва, в бомбу можно поместить любое его количество в зависимости от того, какой мощности должен быть взрыв. Од- номегатонная бомба взорвет пятьдесят килограммов элемента «Джекилл и Хайд», а бомба в двадцать мегатонн— около тысячи килограммов этого «грязного» элемента. Стивенсона, в котором мягкий и воспитанный доктор Джекилл, выпив определенное снадобье, может превращаться в злого и распутного мистера Хайда. Единственная возможность получения «чистой» водородной бомбы, совершенно не образующей радиоактивных осадков, за исключением лишь небольшого их количества от атомной бомбы-детонатора,— это создание оружия, взрывная сила которого имеет своим источником исключительно процесс ядерного синтеза водорода. Но здесь природа выдвинула, казалось бы, непреодолимое препятствие. Для создания «чистой» водородной бомбы необходимо наличие двух тяжелых изотопов водорода — водорода-2 и водорода-3.
Но водород-3, или тритий, вес которого в три раза больше обычного водорода, исчез на Земле миллионы лет назад. Нейтрон, выделяемый при делении урана-235 в реакторе, попадает в ядро лития-6, которое состоит из трех протонов и трех нейтронов. При этом образуются два газа — тритий, ядро которого состоит из одного протона и двух нейтронов, и гелий, ядро которого состоит из двух протонов и двух нейтронов. На общую массу ядер трития и гелия приходится, таким образом, три протона и три нейтрона ядра бывшего лития-6 плюс дополнительный нейтрон, образовавшийся при делении урана. Получение трития в большом количестве, необходимом для создания запаса «чистых» водородных бомб порядка нескольких мегатонн с взрывной силой, создаваемой исключительно за счет синтеза дейтерия и трития не принимая во внимание взрывную силу атомной бомбы-детонатора ,— процесс исключительно дорогой, требующий наличия большого числа ядерных реакторов стоимостью много миллионов долларов.
Непростая бомба
- Чистая атомная бомба
- Атомная, водородная и нейтронная бомбы
- Как Сахаров и Теллер чуть не взорвали мир
- Термоядерная реакция
«Сахаровская слойка»: секреты появления в СССР водородной бомбы
- Атомная, водородная и нейтронная бомбы
- ГЛАВА 24 „Чистая" водородная бомба
- ВОДОРОДНАЯ БОМБА | Энциклопедия Кругосвет
- Как один солдат водородную бомбу изобрел
- Курсы валюты:
- RU2477449C1 - Водородная бомба - Google Patents
Сколько водорода в водородной бомбе?
В процессе получался целый каскад взрывов — обычная взрывчатка запускала атомную бомбу, а атомная бомба поджигала термоядерную. Атомная бомба и Манхэтенский проект упомянуты в тексте дважды, но нет ни слова о водородной бомбе, которая в ту пору ещё находилась на этапе создания в Лос-Аламосе. Информация о работах американцев над термоядерной бомбой и ее испытании поступала в Советский Союз очень оперативно: над ее добычей работал специальный отдел научно-технической разведки в структуре внешней разведки НКВД. Испытание этой термоядерной бомбы стало ключевым фактором, позволившим Советскому Союзу обеспечить ядерно-оружейный паритет с США. Формула LiD, в советском водородном проекте нежно названная Лидочкой. Атомный заряд служит запалом для водородной бомбы, а дальше происходит термоядерная реакция.
Истинное происхождение советской водородной бомбы
Самой мощной водородной бомбой стала царь-бомба, которая была испытана нашей страной во времена Советского Союза в 1961 году. Создание же водородной бомбы потребовало появления совершенно новых физических дисциплин: физики высокотемпературной плазмы и сверхвысоких давлений. 30 октября 1961 года в СССР прошли испытания самой мощной в мире термоядерной бомбы (устаревшее название – водородная бомба), принцип действия которой основан. Взрыв водородной бомбы – неуправляемый термоядерный синтез, что делает его непригодным для энергетических целей, но весьма эффективным для целей разрушения. Испытание этой термоядерной бомбы стало ключевым фактором, позволившим Советскому Союзу обеспечить ядерно-оружейный паритет с США.
Сколько водорода в водородной бомбе?
И тот выдал главный секрет , открытый за три года до того Эдвардом Теллером и Станиславом Уламом. Эти ученые пришли к выводу, что капсулу с тяжелым водородом и атомный запал надо развести в пространстве. В этом случае после подрыва запала до капсулы первым дойдет рентгеновское излучение, которое распространяется со скоростью света и посему обгоняет взрывную волну. Оно обрушит на капсулу давление в десятки и сотни миллионов атмосфер и разогреет ее содержимое до ста миллионов градусов. Ядра тяжелого водорода начнут сливаться друг с другом и после множества промежуточных реакций превратятся в ядра гелия. Таким образом человечество впервые получило в руки контроль над настоящим ядерным взрывом. Научный руководитель советского ядерного проекта Арзамас-16 Юлий Харитон говорил Стиллману, что русские придумали все сами. Согласно словам Харитона, в марте или апреле 1954 года принцип радиационного сжатия предложил один из главных разработчиков ядерного оружия Яков Зельдович , в будущем великий космолог. Академик Сахаров в своих мемуарах отметил, что тогда же к этой мысли одновременно пришли он сам и еще несколько засекреченных теоретиков.
И, надо полагать, что при наличии политической воли в Вашингтоне и при наличии того флота стратегических бомбардировщиков в том числе и B-52 , Америка запросто могла реализовать свои планы. Необходимо было как-то отвечать, демонстрировать возможность адекватного ответа. Конечно, у СССР уже тогда имелись термоядерные боеприпасы.
Но их разнообразие было невелико, а количество было существенно меньше, чем у США. Да и с носителями были определённые трудности. Безусловно, у нашей страны уже тогда были межконтинентальные ракеты Р-7, но количество их было крайне мало.
И так было до 1963 года, когда на боевое дежурство стали ставить ракеты Р-16. Оставалась одна надежда на стратегические бомбардировщики в связке с мощными термоядерными боеприпасами. В общем, испытания "Царь-бомбы" были вынужденной мерой.
Зато с развитием ракетной техники наша страна обзавелась самым мощным ядерным арсеналом сдерживания. Да и сейчас есть чем ответить.
Там не было четкого разделения между первичной атомной бомбой и вторичной термоядерной. В отличие от этого, схема термоядерной бомбы разработки Теллера-Улама резко различает первичный взрыв, вторичный, и при необходимости, дополнительный. Устройство термоядерной бомбы по принципу Теллера-Улама Многие его детали по-прежнему остаются засекреченными, но есть достаточная уверенность, что все имеющееся ныне термоядерное оружие использует в качестве прототипа устройство, созданное Эдвардом Теллерос и Станиславом Уламом, в котором атомная бомба т. Андрей Сахаров в Советском Союзе, по-видимому, независимо придумал аналогичную концепцию, которую он назвал "третьей идеей". Схематически устройство термоядерной бомбы в этом варианте показано на рисунке ниже.
Она имела цилиндрическую форму, с примерно сферической первичной атомной бомбой на одном конце. Вторичный термоядерный заряд в первых, еще непромышленных образцах, был из жидкого дейтерия, несколько позднее он стал твердым из химического соединения под названием дейтерид лития. Дело в том, что в промышленности давно используется гидрид лития LiH для безбалонной транспортировки водорода. Разработчики бомбы эта идея сначала была использована в СССР просто предложили брать вместо обычного водорода его изотоп дейтерий и соединять с литием, поскольку с твердым термоядерным зарядом выполнить бомбу гораздо проще. По форме вторичный заряд представлял собой цилиндр, помещенный в контейнер со свинцовой или урановой оболочкой. Между зарядами находится щит нейтронной защиты. Пространство, между стенками контейнера с термоядерным топливом и корпусом бомбы заполнено специальным пластиком, как правило, пенополистиролом.
Сам корпус бомбы выполнен из стали или алюминия. Эти формы изменились в последних конструкциях, таких как показанная на рисунке ниже. В ней первичный заряд сплюснут, как арбуз или мяч в американском футболе, а вторичный заряд - сферический. Такие формы гораздо более эффективно вписываются во внутренний объем конических ракетных боеголовок. Последовательность термоядерного взрыва Когда первичная атомная бомба детонирует, то в первые мгновения этого процесса генерируется мощное рентгеновское излучение поток нейтронов , которое частично блокируется щитом нейтронной защиты, и отражается от внутренней облицовки корпуса, окружающего вторичный заряд, так что рентгеновские лучи симметрично падают на него по всей его длине. На начальных этапах термоядерной реакции нейтроны от атомного взрыва поглощаются пластиковым заполнителем, чтобы не допустить чересчур быстрого разогрева топлива. Рентгеновские лучи вызвают появление вначале плотной пластиковой пены, заполняющей пространство между корпусом и вторичным зарядом, которая быстро переходит в состояние плазмы, нагревающей и сжимающей вторичный заряд.
Кроме того, рентгеновские лучи испаряют поверхность контейнера, окружающего вторичный заряд. Симметрично испаряющееся относительно этого заряда вещество контейнера приобретает некоторый импульс, направленный от его оси, а слои вторичного заряда согласно закону сохранения количества движения получают импульс, направленный к оси устройства. Принцип здесь тот же, что и в ракете, только если представить, что ракетное топливо разлетается симметрично от ее оси, а корпус сжимается внутрь. В результате такого сжатия термоядерного топлива, его объем уменьшается в тысячи раз, а температура достигает уровня начала реакции слияния ядер. Происходит взрыв термоядерной бомбы. Реакция сопровождается образованием ядер трития, которые сливаются с ядрами дейтерия, изначально имеющимися в составе вторичного заряда. Первые вторичные заряды были построены вокруг стержневого сердечника из плутония, неофициально называемого "свечой", который вступал в реакцию ядерного деления, т.
В настоящее время считается, что более эффективные системы сжатия устранили «свечу», позволяя дальнейшую миниатюризацию конструкции бомбы. Операция Плющ Так назвались испытания американского термоядерного оружия на Маршалловых островах в 1952 г. Она называлась Плющ Майк и была построена по типовой схеме Теллера-Улама. Ее вторичный термоядерный заряд был помещен в цилиндрический контейнер, представляющий собой термически изолированный сосуд Дьюара с термоядерным топливом в виде жидкого дейтерия, вдоль оси которого проходила «свеча» из 239-плутония. Дьюар, в свою очередь, был покрыт слоем 238-урана весом более 5 метрических тонн, который в процессе взрыва испарялся, обеспечивая симметричное сжатие термоядерного топлива. Контейнер с первичным и вторичным зарядами был помещен в стальной корпус 80 дюймов шириной и 244 дюйма длиной со стенками в 10-12 дюймов толщиной, что было крупнейшим примером кованого изделия до того времени. Внутренняя поверхность корпуса был выстлана листами свинца и полиэтилена для отражения излучения после взрыва первичного заряда и создания плазмы, разогревающей вторичный заряд.
Все устройство весило 82 тонны. Вид устройства незадолго до взрыва показан на фото ниже. Первое испытание термоядерной бомбы состоялось 31 октября 1952 г. Мощность взрыва составила 10,4 мегатонны. Аттол Эниветок, на котором он был произведен, был полностью разрушен. Момент взрыва показан на фото ниже. Из описания выше становится ясно, что американцами на Эниветоке была взорвана собственно не бомба, как вид готового к применению боеприпаса, а скорее лабораторное устройство, громоздкое и весьма несовершенное.
Советские же ученые, несмотря на небольшую мощность всего 400 кг, испытали вполне законченный боеприпас с термоядерным топливом в виде твердого дейтерида лития, а не жидкого дейтерия, как у американцев. Кстати, следует отметить, что в составе дейтерида лития используется только изотоп 6 Li это связано с особенностями прохождения термоядерных реакций , а в природе он находится в смеси с изотопом 7 Li. Поэтому были построены специальные производства для разделения изотопов лития и отбора только 6 Li. Достижение предельной мощности Затем последовало десятилетие непрерывной гонки вооружений, в течение которого мощность термоядерных боеприпасов непрерывно возрастала. Наконец, 30. Этот трехступенчатый боеприпас разрабатывался на самом деле как 101,5-мегатонная бомба, но стремление снизить радиоактивное заражение территории заставило разработчиков отказаться от третьей ступени мощностью в 50 мегатонн и снизить расчетную мощность устройства до 51,5 мегатонн. При этом 1,5 мегатонны составляла мощность взрыва первичного атомного заряда, а вторая термоядерная ступень должна была дать еще 50.
Реальная мощность взрыва составила до 58 мегатонн. Внешний вид бомбы показан на фото ниже. Последствия его были впечатляющими. Несмотря на весьма существенную высоту взрыва в 4000 м, невероятно яркий огненный шар нижним краем почти достиг Земли, а верхним поднялся до высоты более 4,5 км. Давление ниже точки разрыва было в шесть раз выше пикового давления при взрыве в Хиросиме. Вспышка света была настолько яркой, что ее было видно на расстоянии 1000 километров, несмотря на пасмурную погоду. Один из участников теста увидел яркую вспышку через темные очки и почувствовал последствия теплового импульса даже на расстоянии 270 км.
Фото момента взрыва показано ниже. При этом было показано, что мощность термоядерного заряда действительно не имеет ограничений. Ведь достаточно было выполнить третью ступень, и расчетная мощность была бы достигнута. А ведь можно наращивать число ступеней и далее, так как вес «Царь-бомбы» составил не более 27 тонн. Вид этого устройства показан на фото ниже. После этих испытаний многим политикам и военным как в СССР, так и в США стало ясно, что наступил предел гонки ядерных вооружений и ее нужно остановить. Сегодня термоядерные бомбы России продолжают служить сдерживающим фактором для тех, кто стремится к мировой гегемонии.
Будем надеяться, что они сыграют свою роль только в виде средства устрашения и никогда не будут взорваны. Однако все, что мы могли почерпнуть из предыдущего текста, говорит о взрывном характере таких процессов. Тогда почему Солнце не взрывается как термоядерная бомба? Дело в том, что ядра дейтерия сами образуются в результате слияния двух ядер водорода, да не просто слияния, а с распадом одного из протонов на нейтрон, позитрон и нейтрино т. При этом образующиеся ядра дейтерия распределены по объему солнечного ядра довольно равномерно. Поэтому при её огромных размерах и массе отдельные и редкие очаги термоядерных реакций относительно небольшой мощности как бы размазаны по всему его ядру Солнца. Выделяемого при этих реакциях тепла явно недостаточно, чтобы мгновенно выжечь весь дейтерий в Солнце, но хватает для его нагрева до температуры, обеспечивающей жизнь на Земле.
Разрушительную силу которого при взрыве никому не остановить. Какая самая мощная бомба в мире? Чтобы ответить на этот вопрос, нужно разобраться в особенностях тех или иных бомб. Что такое бомба? Атомные электростанции работают по принципу высвобождения и сковывания ядерной энергии. Этот процесс обязательно контролируется. Высвобожденная энергия переходит в электричество.
Атомная бомба приводит к тому, что происходит цепная реакция, которая совершенно не поддается контролю, а огромное количество освобожденной энергии наносит чудовищные разрушения. Уран и плутоний - не такие уж и безобидные элементы таблицы Менделеева, они приводят к глобальным катастрофам. Атомная бомба Чтобы понять, какая самая мощная атомная бомба на планете, узнаем обо всем подробнее. Водородные и атомные бомбы относятся к атомной энергетике. Если объединить два кусочка урана, но каждый будет иметь массу ниже критической, то этот «союз» намного превысит критическую массу. Каждый нейтрон участвует в цепной реакции, потому что расщепляет ядро и высвобождает еще 2-3 нейтрона, которые вызывают новые реакции распада. Нейтронная сила совершенно не поддается контролю человека.
Меньше чем за секунду сотни миллиардов новообразованных распадов не только освобождают огромное количество энергии, но и становятся источниками сильнейшей радиации. Этот радиоактивный дождь покрывает толстым слоем землю, поля, растения и все живое. Если говорить о бедствиях в Хиросиме, то можно заметить, что 1 грамм стал причиной гибели 200 тысяч человек. Принцип работы и преимущества вакуумной бомбы Считается, что вакуумная бомба, созданная по новейшим технологиям , может конкурировать с ядерной. Дело в том, что вместо тротила здесь используется газовое вещество, которое мощнее в несколько десятков раз. Авиационная бомба повышенной мощности - самая мощная вакуумная бомба в мире, которая не относится к ядерному оружию. Она может уничтожить противника, но при этом не пострадают дома и техника, а продуктов распада не будет.
Каков принцип ее работы? Сразу после сбрасывания с бомбардировщика срабатывает детонатор на некотором расстоянии от земли. Корпус разрушается и распыляется огромнейшее облако. При смешивании с кислородом оно начинает проникать куда угодно - в дома, бункеры, убежища. Выгорание кислорода образует везде вакуум. При сбрасывании этой бомбы получается сверхзвуковая волна и образуется очень высокая температура. Отличие вакуумной бомбы американской от российской Различия состоят в том, что последняя может уничтожать противника, находящегося даже в бункере, при помощи соответствующей боеголовки.
Во время взрыва в воздухе боеголовка падает и сильно ударяется об землю, зарываясь на глубину до 30 метров. После взрыва образуется облако, которое, увеличиваясь в размерах, может проникать в убежища и уже там взрываться.
Эдлай Стивенсон, выступая в апреле и мае 1956 г. Впоследствии он заменил это предложение проектом заключения соглашения с СССР о прекращении испытаний мощных водородных бомб. Истинный смысл вопроса «испытывать или не испытывать» был разъяснен выдающимся внешнеполитическим экспертом, бывшим послом в Советском Союзе Джорджем Ф. Кеннэном, профессором Института прогрессивных исследований в Принстоне.
Нельзя игнорировать чувства этих миллионов». То, что ужасные радиоактивные осадки действительно вызывали беспокойство наших руководителей, стало ясно после выступления президента Эйзенхауэра на пресс-конференции за несколько дней до тихоокеанских испытаний 1956 г. Он заявил, что одна из основных целей программы предстоящих ядерных испытаний состоит в создании оружия с «меньшим количеством осадков». В заявлении Льюиса Л. Страусса, бывшего тогда председателем Комиссии по атомной энергии, а затем в заявлении самого президента Эйзенхауэра в ходе избирательной кампании 1956 г. Испытания именно этого «чистого» оружия я наблюдал утром 21 мая с палубы флагманского корабля «Маунт Мак-Кинли» у атолла Бикини.
Как сообщил Страусс, «максимальный эффект оружия, испытанного в Тихом океане весной и летом 1956 г. Эти испытания «подтвердили,— добавил Страусс,— что существует много факторов, включая оперативные, которые позволяют уменьшить выпадение осадков при ядерных взрывах до таких размеров, о которых до сих пор и не подозревали». Под «оперативными факторами», о которых говорил Страусс, подразумевался взрыв многомегатонной водородной бомбы на большой высоте, примерно девять тысяч метров, т. Когда взрыв происходит на высоте, превышающей этот радиус от 5 до 6,5 километра , огненный шар не касается земли или водной поверхности и поэтому не поднимает при взрыве тысячи тонн земли или воды, зараженных радиоактивными частицами и образующих гигантское облако, дающее смертоносные осадки. Однако предположение Страусса о том, что существует много факторов, кроме чисто оперативных, «которые позволяют уменьшить выпадение осадков при ядерных взрывах», может означать только одно — уменьшение количества используемого расщепляющегося материала, прежде всего урана, который является основным источником опасных осадков. Эта мысль была еще.
Можно надеяться на дальнейший прогресс в этом направлении». Так как в качестве детонаторов водородных бомб служат обычные атомные бомбы и так как все атомные бомбы в зависимости от их размеров вызывают образование определенного количества осадков, то ясно, что и любая водородная бомба образует при взрыве радиоактивные осадки.